CONTENTS

Welcome .. 8
Typographic Conventions .. 10

1 Introduction ... 11
 1.1 New Features in 11.2 .. 11
 1.2 Changes Since 11.2 ... 13
 1.2.1 RELEASE-U1 .. 14
 1.2.2 U2 ... 14
 1.2.3 U3 ... 15
 1.2.4 U4 ... 15
 1.2.5 U5 ... 15
 1.2.6 U6 ... 16
 1.2.7 U7 ... 16
 1.2.8 U8 ... 16
 1.3 Path and Name Lengths .. 17
 1.4 Hardware Recommendations .. 18
 1.4.1 RAM ... 18
 1.4.2 The Operating System Device 19
 1.4.3 Storage Disks and Controllers 19
 1.4.4 Network Interfaces .. 20
 1.5 Getting Started with ZFS .. 21

2 Installing and Upgrading .. 22
 2.1 Getting FreeNAS® .. 22
 2.2 Preparing the Media .. 22
 2.2.1 On FreeBSD or Linux .. 23
 2.2.2 On Windows ... 23
 2.2.3 macOS .. 23
 2.3 Performing the Installation .. 24
 2.4 Installation Troubleshooting .. 31
 2.5 Upgrading .. 32
 2.5.1 Caveats ... 32
 2.5.2 Initial Preparation .. 32
 2.5.3 Upgrading Using the ISO .. 33
 2.5.4 Upgrading From the GUI .. 36
 2.5.5 If Something Goes Wrong ... 36
 2.5.6 Upgrading a ZFS Pool ... 38
 2.6 Virtualization ... 39
 2.6.1 VirtualBox .. 39
 2.6.2 VMware ESXi .. 50

3 Booting .. 57
 3.1 Obtaining an IP Address .. 58
 3.2 Logging In ... 59
Contents

3.3 Initial Configuration ... 60

4 Account .. 61
 4.1 Groups ... 61
 4.2 Users .. 64

5 System .. 68
 5.1 Information .. 68
 5.2 General ... 69
 5.3 Boot ... 72
 5.3.1 Mirroring the Operating System Device 74
 5.4 Advanced ... 75
 5.4.1 Autotune ... 77
 5.4.2 Self-Encrypting Drives .. 77
 5.4.2.1 Deploying SEDs .. 78
 5.4.2.2 Check SED Functionality 79
 5.5 Email ... 80
 5.6 System Dataset ... 81
 5.7 Tunables .. 82
 5.8 Cloud Credentials .. 85
 5.9 Update .. 88
 5.9.1 Preparing for Updates ... 88
 5.9.2 Updates and Trains .. 88
 5.9.3 Checking for Updates ... 90
 5.9.4 Applying Updates ... 90
 5.9.5 Manual Updates .. 90
 5.10 Alerts ... 91
 5.11 Alert Services ... 92
 5.12 CAs ... 93
 5.13 Certificates .. 95
 5.14 Support .. 98

6 Tasks .. 101
 6.1 Cloud Sync .. 101
 6.1.1 Cloud Sync Example .. 105
 6.2 Cron Jobs .. 107
 6.3 Init/Shutdown Scripts ... 109
 6.4 Rsync Tasks .. 110
 6.4.1 Rsync Module Mode ... 114
 6.4.2 Rsync over SSH Mode .. 114
 6.5 S.M.A.R.T. Tests ... 117

7 Network .. 120
 7.1 Global Configuration ... 120
 7.2 Interfaces .. 122
 7.3 IPMI .. 124
 7.4 Link Aggregations ... 126
 7.4.1 LACP, MPIO, NFS, and ESXi 126
 7.4.2 Creating a Link Aggregation 127
 7.5 Network Summary .. 130
 7.6 Static Routes .. 130
 7.7 VLANs .. 130

8 Storage ... 132
 8.1 Swap Space ... 132
 8.2 Volumes ... 132
 8.2.1 Volume Manager ... 133
 8.2.1.1 Encryption ... 135
11 Services

11.1 Control Services 233
11.2 AFP .. 235
 11.2.1 Troubleshooting AFP 236
11.3 Domain Controller 236
 11.3.1 Samba Domain Controller Backup 238
11.4 Dynamic DNS 238
11.5 FTP .. 239
 11.5.1 Anonymous FTP 242
 11.5.2 FTP in chroot 243
 11.5.3 Encrypting FTP 244
 11.5.4 Troubleshooting FTP 244
11.6 iSCSI ... 244
11.7 LLDP .. 245
11.8 Netdata ... 245
11.9 NFS ... 247
11.10Rsync ... 248
 11.10.1 Configure Rsyncd 248
 11.10.2 Rsync Modules 249
11.11S3 ... 250
11.12S.M.A.R.T. .. 252
11.13SMB ... 253
 11.13.1 Troubleshooting SMB 256
11.14SNMP ... 257
11.15SSH .. 259
 11.15.1 SCP Only 261
 11.15.2 Troubleshooting SSH 261
11.16TFTP .. 261
11.17 UPS
- **11.17.1 Multiple Computers with One UPS**

11.18 WebDAV

12 Plugins
- **12.1 Installed Plugins**
- **12.2 Deleting Plugins**

13 Jails
- **13.1 Jails Configuration**
- **13.2 Managing Jails**
 - **13.2.1 Accessing a Jail Using SSH**
 - **13.2.2 Add Storage**
- **13.3 Starting Installed Software**

14 Virtual Machines
- **14.1 Creating VMs**
- **14.2 Adding Devices to a VM**
 - **14.2.1 Network Interfaces**
 - **14.2.2 Disk Devices**
 - **14.2.3 Raw Files**
 - **14.2.4 CD-ROM Devices**
 - **14.2.5 VNC Interface**
 - **14.2.6 Virtual Serial Ports**
- **14.3 Running VMs**
- **14.4 Deleting VMs**
- **14.5 Docker VM**
 - **14.5.1 Docker VM Requirements**
 - **14.5.2 Create the Docker VM**
 - **14.5.3 Start the Docker VM**
 - **14.5.4 SSH into the Docker VM**
 - **14.5.5 Installing and Configuring the Rancher Server**
 - **14.5.6 Configuring Persistent NFS-Shared Volumes**

15 Reporting

16 Wizard

17 Display System Processes

18 Shell

19 Log Out

20 Reboot

21 Shutdown

22 Support Icon

23 User Guide

24 Alert

25 Support Resources
- **25.1 Website and Social Media**
- **25.2 Forums**
- **25.3 IRC**
- **25.4 Videos**
- **25.5 Professional Support**
Welcome

This Guide covers the installation and use of FreeNAS® 11.2.

The FreeNAS® User Guide is a work in progress and relies on the contributions of many individuals. If you are interested in helping us to improve the Guide, read the instructions in the README (https://github.com/freenas/freenas-docs/blob/master/README.md). IRC Freenode users are welcome to join the #freenas channel where you will find other FreeNAS® users.

The FreeNAS® User Guide is freely available for sharing and redistribution under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/). This means that you have permission to copy, distribute, translate, and adapt the work as long as you attribute iXsystems as the original source of the Guide.

FreeNAS® and the FreeNAS® logo are registered trademarks of iXsystems.

Active Directory® is a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

Apple, Mac and Mac OS are trademarks of Apple Inc., registered in the U.S. and other countries.

Asigra Inc. Asigra, the Asigra logo, Asigra Cloud Backup, Recovery is Everything, Recovery Tracker and Attack-Loop are trademarks of Asigra Inc.

Broadcom is a trademark of Broadcom Corporation.

Chelsio® is a registered trademark of Chelsio Communications.

Cisco® is a registered trademark or trademark of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

Django® is a registered trademark of Django Software Foundation.

Facebook® is a registered trademark of Facebook Inc.

FreeBSD® and the FreeBSD® logo are registered trademarks of the FreeBSD Foundation®.
Intel, the Intel logo, Pentium Inside, and Pentium are trademarks of Intel Corporation in the U.S. and/or other countries.
LinkedIn® is a registered trademark of LinkedIn Corporation.
Linux® is a registered trademark of Linus Torvalds.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates.
Twitter is a trademark of Twitter, Inc. in the United States and other countries.
UNIX® is a registered trademark of The Open Group.
VirtualBox® is a registered trademark of Oracle.
VMware® is a registered trademark of VMware, Inc.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.
Windows® is a registered trademark of Microsoft Corporation in the United States and other countries.
Typographic Conventions

The FreeNAS® 11.2 User Guide uses these typographic conventions:

Table 1: Text Format Examples

<table>
<thead>
<tr>
<th>Item</th>
<th>Visual Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphical elements: buttons, icons, fields, columns, and boxes</td>
<td>Click the Import CA button.</td>
</tr>
<tr>
<td>Menu selections</td>
<td>Select System → Information.</td>
</tr>
<tr>
<td>Commands</td>
<td>Use the scp command.</td>
</tr>
<tr>
<td>File names and volume and dataset names</td>
<td>Locate the /etc/rc.conf file.</td>
</tr>
<tr>
<td>Keyboard keys</td>
<td>Press the Enter key.</td>
</tr>
<tr>
<td>Important points</td>
<td>This is important.</td>
</tr>
<tr>
<td>Values entered into fields, or device names</td>
<td>Enter 127.0.0.1 in the address field.</td>
</tr>
</tbody>
</table>
FreeNAS® is an embedded open source network-attached storage (NAS) operating system based on FreeBSD and released under a 2-clause BSD license (https://opensource.org/licenses/BSD-2-Clause). A NAS has an operating system optimized for file storage and sharing.

FreeNAS® provides a browser-based, graphical configuration interface. The built-in networking protocols provide storage access to multiple operating systems. A plugin system is provided for extending the built-in features by installing additional software.

1.1 New Features in 11.2

FreeNAS® 11.2 is a feature release, which includes several new significant features, many improvements and bug fixes to existing features, and version updates to the operating system, base applications, and drivers. Users are encouraged to Update (page 88) to this release in order to take advantage of these improvements and bug fixes.

These major features are new in this version:

- The login screen defaults to the new, Angular-based UI. Users who wish to continue to use the classic UI can select “Legacy UI” in the login screen.

- Beginning with this release, the screenshots that appear in the published version of the Guide (http://doc.freenas.org/11.2/freenas.html) and in the Guide option within the new UI are for the new UI. However, users who click the Guide option while logged into the classic UI will continue to see screenshots for the old UI. The availability of both versions of the Guide is to assist users as they become familiar with the new UI during the transition period before the classic UI is deprecated in a future release.

- The rewrite from the old API to the new middlewared continues. Once the rewrite is complete, api.freenas.org (http://api.freenas.org/) will be deprecated and replaced by the new API documentation. In the mean time, to see the API documentation for the new middleware, log into the new UI, click on the URL for the FreeNAS system in your browser’s location bar, and add :api/docs to the end of that URL.

- The boot loader has changed from GRUB to the native FreeBSD boot loader. This should resolve several issues that some users experienced with GRUB. GRUB was introduced as a temporary solution until the FreeBSD boot loader had full support for boot environments, which it now has.

- The Plugins (page 268) and Jails (page 270) backend has switched from warden to iocage and warden will no longer receive bug fixes. The new UI will automatically use iocage to create and manage Plugins (page 268) and Jails (page 270). Users are encouraged to recreate any existing Plugins (page 268) and Jails (page 270) using the new UI to ensure that they are running the latest supported application versions.

- Plugins (page 268) have switched to FreeBSD 11.2-RELEASE and all Plugins have been rebuilt for this version.

- Virtual Machines (page 280) are more crash-resistant. When a guest is started, the amount of available memory is checked and an initialization error will occur if there is insufficient system resources. When a guest is stopped, its resources are returned to the system. In addition, the UEFI boot menu fix allows Linux kernels 4.15 and higher to boot properly.

- Cloud Sync (page 101) provides configuration options to encrypt data before it is transmitted and to keep it in the encrypted format while stored on the cloud. The filenames can also be encrypted.
• Preliminary support has been added for Self-Encrypting Drives (page 77) (SEDs).

This software has been added or updated:

• The base operating system is the STABLE branch of FreeBSD 11.2 (https://www.freebsd.org/releases/11.2R/announce.html), which brings in many updated drivers and bug fixes. This branch has been patched to include the FreeBSD security advisories up to FreeBSD-SA-18:13.nfs (https://www.freebsd.org/security/advisories/FreeBSD-SA-18:13.nfs.asc).

• OpenZFS is up-to-date with Illumos and slightly ahead due to support for sorted scrubs which were ported from ZFS on Linux. Notable improvements include channel programs, data disk removal, more resilient volume import, the ability to import a pool with missing vdevs, pool checkpoints, improved compressed ARC performance, and ZIL batching. As part of this change, the default ZFS indirect block size is reduced to 32 KiB from 128 KiB. Note that many of these improvements need further testing so have not yet been integrated into the UI.

• The IPsec kernel module has been added. It can be manually loaded with kldload ipsec.

• Support for eMMC flash storage has been added.

• The em (https://www.freebsd.org/cgi/man.cgi?query=em&apropos=0&sektion=4), igb (https://www.freebsd.org/cgi/man.cgi?query=igb&apropos=0&sektion=4), ixgbe (https://www.freebsd.org/cgi/man.cgi?query=ixgbe&apropos=0&sektion=4), and ixl (https://www.freebsd.org/cgi/man.cgi?query=ixl&apropos=0&sektion=4) Intel drivers have been patched to resolve a performance degradation issue that occurs when the MTU is set to 9000 (9k jumbo clusters). Before configuring 9k jumbo clusters for cxgbe (https://www.freebsd.org/cgi/man.cgi?query=cxgbe&apropos=0&sektion=4) create a Tunables (page 82) with a Variable of hw.cxgbe.largest_rx_cluster, a Type of Loader, and a Value of 4096. The cxgb (https://www.freebsd.org/cgi/man.cgi?query=cxgb&apropos=0&sektion=4) driver does not support jumbo clusters and should not use an MTU greater than 4096.

• The bnxt (https://www.freebsd.org/cgi/man.cgi?query=bnxt) driver has been added which provides support for Broadcom NetXtreme-C and NetXtreme-E Ethernet drivers.

• The vt terminal (https://www.freebsd.org/cgi/man.cgi?query=vt&sektion=4&manpath=FreeBSD+11.2-RELEASE+and+Ports) is now used by default and the syscons terminal is removed from the kernel.

• ncdru (https://dev.yorhel.nl/ncdru) has been added to the base system. This CLI utility can be used to analyze disk usage from the console or an SSH session.

• drm-next-kmod (https://www.freshports.org/graphics/drm-next-kmod/) has been added to the base system, adding support for UTF-8 fonts to the console for Intel graphic cards.

• Samba 4.7 has been patched to address the latest round of security vulnerabilities (https://www.samba.org/samba/latest_news.html#4.9.3).

• rsync has been updated to version 3.1.3 (https://download.samba.org/pub/rsync/src/rsync-3.1.3-NEWS).

• rclone has been updated to version 1.44 (https://rclone.org/changelog/#v1-44-2018-10-15).

• Minio has been updated to version 2018-04-04T05 (https://github.com/minio/minio/releases/tag/RELEASE.2018-04-04T05-20-54Z).

• Netdata as been updated to version 1.10.0 (https://github.com/firehol/netdata/releases/tag/v1.10.0).

• iocage has been synced with upstream as of October 3, providing many bug fixes and improved IPv6 support.

• RancherOS has been updated to version 1.4.2 (https://github.com/rancher/os/releases/tag/v1.4.2).

• zsh (http://www.zsh.org/) is the root shell for new installations. Upgrades will continue to use the csh shell as the default root shell.

• ifconfig (https://www.freebsd.org/cgi/man.cgi?query=ifconfig) tap interface descriptions now show the name of the attached virtual machine.

• xattr (https://github.com/xattr/xattr) has been added to the base system and can be used to modify file extended attributes from the command line. Type xattr -h to view the available options.
FreeNAS® 11.2-U8 User Guide, Release 11.2

- **convmv** (https://www.j3e.de/linux/convmv/man/) has been added to the base system and can be used to convert the encoding of filenames from the command line. Type `convmv` to view the available options.
- The `cloneacl` CLI utility has been added. It can be used to quickly clone a complex ACL recursively to or from an existing share. Type `cloneacl` for usage instructions.
- These switches have been added to `freenas-debug` (page 329): `-M` for dumping SSD info and `-z` to delete old debug information. The `-G` switch has been removed as the system no longer uses GRUB. The `-J` switch has been removed and the `-j` switch has been reworked to show iocage jail information instead of Warden.
- These switches have been added to `arcstat` (page 322): `-a` for displaying all available statistics and `-p` for displaying raw numbers without suffixes.

These screen options have changed:

- The **ATA Security User, SED Password, and Reset SED Password** fields have been added to **System → Advanced**.
- The **Enable screen saver** field has been removed from **System → Advanced**.
- The **Enable automatic upload of kernel crash dumps and daily telemetry** checkbox has been removed from **System → Advanced**.
- **Alerts** has been added to **System** and can be used to list the available alert conditions and to configure the notification frequency on a per-alert basis.
- These **Cloud Credentials** (page 85) have been added to **System → Cloud Credentials**: Amazon Cloud Drive, Box, Dropbox, FTP, Google Drive, HTTP, hubiC, Mega, Microsoft OneDrive, pCloud, SFTP, WebDAV, and Yandex.
- The **Team Drive ID** field has been added to **System → Cloud Credentials → Add** form when **Google Drive** is the **Provider**.
- The **Endpoint URL** has been added to **System → Cloud Credentials → Add Cloud Credential** but only appears when **Amazon S3** is selected as the **Provider**. This can be used to configure a connection to another S3-compatible service, such as Wasabi.
- **Drive Account Type** and **Drive ID** has been added to **System → Cloud Credentials → Add Cloud Credential**. These fields appear when **Microsoft OneDrive** is selected as the **Provider**.
- The **Automatically check for new updates** option in **System → Update** has been renamed to **Check for Updates Daily and Download if Available**.
- The **Remote encryption, Filename encryption, Encryption password, and Encryption salt** fields have been added to **Tasks → Cloud Sync Tasks → Add Cloud Sync**.
- The **Exec** field has been added to **Storage → Volumes → Create Dataset → Advanced Mode**.
- The **Password for SED** column has been added to **Storage → Volumes → View Disks**.
- The **MSDOSFS locale** drop-down menu has been added to **Storage → Import Disk**.
- The **User Base** and **Group Base** fields have been removed from **Directory Services → Active Directory → Advanced Mode**.
- The **Enable home directories, Home directories, Home share name, and Home Share Time Machine** fields have been removed from **Services → AFP** and the **Time Machine Quota** field has been removed from **Sharing → Apple (AFP) Shares**. These fields have been replaced by **Sharing → Apple (AFP) Shares → Use as home share**.
- The **Umask** field in **Services → TFTP** has changed to a **File Permissions** selector.
- Disk temperature graphs have been added to **Reporting → Disk**.

1.2 Changes Since 11.2

FreeNAS® uses a “rolling release” model instead of point releases. The **Update** (page 88) mechanism makes it easy to keep up-to-date with the latest security fixes, bug fixes, and new features. Some updates affect the user interface, so this section lists any functional changes that have occurred since 11.2 was released.
Note: The screenshots in this documentation assume that the system has been fully updated to the latest STABLE version of FreeNAS® 11.2-U8. If a screen on the system is not the same as shown in this guide, make sure that all updates have been applied.

1.2.1 RELEASE-U1

- Netatalk has been updated to 3.1.12 (https://nvd.nist.gov/vuln/detail/CVE-2018-1160) to address CVE-2018-1160.

1.2.2 U2

- The base operating system has been patched to address these security advisories:
 - ZFS vnode reclaim deadlock (https://www.freebsd.org/security/advisories/FreeBSD-EN-18%3A18.zfs.asc)
 - sqlite update (https://www.freebsd.org/security/advisories/FreeBSD-EN-19%3A03.sqlite.asc)
 - kqueue race condition and kernel panic (https://www.freebsd.org/security/advisories/FreeBSD-EN-19%3A05.kqueue.asc)
 - System call kernel data register leak (https://www.freebsd.org/security/advisories/FreeBSD-SA-19%3A01.syscall.asc)
 - The mlx5ib(4) (https://www.freebsd.org/cgi/man.cgi?query=mlx5ib) driver for the Mellanox ConnectX-4 family of infiniband drivers has been added.
 - Samba has been updated to 4.9.4 (https://www.samba.org/samba/history/samba-4.9.4.html) which is the current stable release receiving new features. This version bump provides significant performance improvements as well as improved Time Machine support. This deprecates the dfs_samba4, fake_acls, skel_opaque, skel_transparent, and snapper modules which have been removed from Sharing → Windows (SMB) Shares → ADD → ADVANCED MODE → VFS Objects.
 - OpenSSL has been updated to 1.0.2q (https://www.openssl.org/news/vulnerabilities-1.0.2.html) to address CVE-2018-5407.
 - curl has been updated to 7.62.0 (https://curl.haxx.se/changes.html#7_62_0) to address security vulnerabilities.
 - The Endpoint does not support regions and Use v2 signatures fields have been added to System → Cloud Credentials → Add Cloud Credential when Amazon S3 is chosen as the Provider.
 - The ixnas VFS module has been added to and the aio_pthread VFS module has been removed from Sharing → Windows (SMB) → VFS Objects.
 - The Time Machine field has been added to Sharing → Windows (SMB) Shares → Add.
 - The Enable SMB1 support checkbox has been added to Services → SMB.
 - The ARC Size graph in Reporting now shows the compressed physical L2ARC size.
 - The openipmi package and usr/local/lib/collectd/ipmi.so were removed to disable the non-functional collectd IPMI plugin.
 - An Alert (page 311) for syslog-ng (https://www.freebsd.org/cgi/man.cgi?query=syslog-ng) stopping has been added to System → Alerts.
1.2.3 U3

- ZeroTier has been updated to 1.2.12 (https://github.com/zerotier/ZeroTierOne/blob/master/RELEASE-NOTES.md).
- The shadow_copy_zfs VFS object has replaced the shadow_copy_test object in Sharing → Windows (SMB) Shares → Add Windows (SMB) Share → Advanced Mode.
- The Host field has been added to Services → TFTP.

1.2.4 U4

- Samba has been patched to address CVE-2019-3880 (https://www.samba.org/samba/security/CVE-2019-3880.html).
- Python has been updated to 2.7.15 (https://www.python.org/downloads/release/python-2715/) to address multiple CVEs.
- Apache has been updated to 2.4.39 (https://www.apachelounge.com/Changelog-2.4.html) to address multiple CVEs.
- wget has been updated to 1.20.3 (http://lists.gnu.org/archive/html/info-gnu/2019-04/msg00001.html) to address a buffer overflow vulnerability.
- convmv has been updated to 2.05 (https://svnweb.freebsd.org/ports?view=revision&revision=493773) which adds support for NFC/NFD conversion on APFS volumes.
- ladvd has been updated to 1.1.2 (https://github.com/sspans/ladvd/compare/v1.1.1...v1.1.2), which adds LLDP support to lagg interfaces.
- rrdtool has been updated to 1.7.1 (https://github.com/oetiker/rrdtool-1.x/releases).
- The hw.vga.acpi_ignore_no_vga=1 tunable has been added to loader.conf. See vt(4) (https://www.freebsd.org/cgi/man.cgi?query=vt).
- The Administrators Group field has been added to Services → SMB.
- The Expose zislist via SNMP checkbox has been added to Services → SNMP.
- Saving a new configuration in Services → UPS now also requires values for the Identifier, Shutdown Command, Monitor User, and Monitor Password fields.

1.2.5 U5

- The operating system has been patched to address FreeBSD-SA-19:07 (https://www.freebsd.org/security/advisories/FreeBSD-SA-19:07.mds.asc).
- AMD CPU temperature drivers have been updated to accommodate the AMD Family 15H models. Temperature measurements are more accurate.
- Python3 has been updated to version 3.6.8 (https://www.python.org/downloads/release/python-368/) and Python2 to version 2.7.16 (https://www.python.org/downloads/release/python-2716/).
- Samba has been updated to version 4.9.9 to address CVE-2019-12435 (https://nvd.nist.gov/vuln/detail/CVE-2019-12435).
- Perl has been updated to version 5.26.2 (https://metacpan.org/changes/release/SHAY/perl-5.26.2) to address several security vulnerabilities.
- libnghttp2 has been updated to version 1.31.1 to address CVE-2018-1000168 (https://nvd.nist.gov/vuln/detail/CVE-2018-1000168).
- libgcrypt has been updated to version 1.8.3 (https://lists.gnupg.org/pipermail/gnu-gcrypt-announce/2018q2/000426.html) to address CVE-2018-0495.
- The hubiC cloud service suspended creation of new accounts (https://www.ovh.co.uk/subscriptions-hubic-ended/).
Open Authorization (OAuth) support has been added for many Cloud Credentials (page 85). The Automatic config link, OAuth Client ID, and OAuth Client Secret fields have been added to the Box, Dropbox, Google Drive, Microsoft OneDrive, pCloud, and Yandex providers in System → Cloud Credentials → Add Cloud Credential.

The noacl VFS module (page 206) has been added to Sharing → Windows (SMB) → Add Windows (SMB) Share.

1.2.6 U6

The operating system has been patched for:

- Some operating system and ZFS fixes were added (https://github.com/freenas/os/pull/204/commits).
- The Amazon Cloud Drive provider has been removed from System → Cloud Credentials. See this rclone forum post about Amazon Drive (https://forum.rclone.org/t/rclone-has-been-banned-from-amazon-drive/2314) for more details.

1.2.7 U7

1.2.8 U8

1.3 Path and Name Lengths

Names of files, directories, and devices are subject to some limits imposed by the FreeBSD operating system. The limits shown here are for names using plain-text characters that each occupy one byte of space. Some UTF-8 characters take more than a single byte of space, and using those characters reduces these limits proportionally. System overhead can also reduce the length of these limits by one or more bytes.

<table>
<thead>
<tr>
<th>Type</th>
<th>Maximum Length</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>File Paths</td>
<td>1024 bytes</td>
<td>Total file path length ((PATH_MAX)). The full path includes directory separator slash characters, subdirectory names, and the name of the file itself. For example, the path <code>/mnt/tank/mydataset/mydirectory/myfile.txt</code> is 42 bytes long. Using very long file or directory names can be problematic. A complete path with long directory and file names can exceed the 1024-byte limit, preventing direct access to that file until the directory names or filename are shortened or the file is moved into a directory with a shorter total path length.</td>
</tr>
<tr>
<td>Individual directory or file name length ((NAME_MAX)).</td>
<td>255 bytes</td>
<td>Mounting/Accessing</td>
</tr>
<tr>
<td>Mounted Filesystem Paths</td>
<td>88 bytes</td>
<td>Mounted filesystem path length ((MNAMELEN)). Longer paths can prevent a device from being mounted or data from being accessible.</td>
</tr>
<tr>
<td>Device Filesystem Paths</td>
<td>63 bytes</td>
<td>devfs(8) https://www.freebsd.org/cgi/man.cgi?query=devfs device path lengths ((SPECNAMELEN)). Longer paths can prevent a device from being created.</td>
</tr>
</tbody>
</table>

Note: 88 bytes is equal to 88 ASCII characters. The number of characters will vary when using Unicode.

Warning: If the mounted path length for a snapshot exceeds 88 bytes the data in the snapshot will be safe but inaccessible. When the mounted path length of the snapshot is less than the 88 byte limit, the data will be accessible again.

The 88 byte limit affects automatic and manual snapshot mounts in slightly different ways:

- **Automatic mount:** ZFS temporarily mounts a snapshot whenever a user attempts to view or search the files within the snapshot. The mountpoint used will be in the hidden directory '.zfs/snapshot/name' within the same ZFS dataset. For example, the snapshot 'mypool/dataset/snap1@snap2' is mounted at '/mnt/mypool/dataset/.zfs/snapshot/snap2/'. If the length of this path exceeds 88 bytes the snapshot will not be automatically mounted by ZFS and the snapshot contents will not be visible or searchable. This can be resolved by renaming the ZFS pool or dataset containing the snapshot to shorter names ('mypool' or 'dataset'), or by shortening the second part of the snapshot name ('snap2'), so that the total mounted path length does not exceed 88 bytes. ZFS will automatically perform any necessary unmount or remount of the file system as part of the rename operation. After renaming, the snapshot data will be visible and searchable again.

- **Manual mount:** If the same example snapshot is mounted manually from the CLI, using `mount -t zfs mypool/dataset/snap1@snap2 /mnt/mymountpoint` the path `/mnt/mountpoint/` must not exceed 88 bytes, but the length of the snapshot name will be irrelevant. When renaming a manual mountpoint, any object mounted on the mountpoint must be manually unmounted (using the `umount` command in the CLI) before renaming the mountpoint and can be remounted afterwards.

Note: A snapshot that cannot be mounted automatically by ZFS, can still be mounted manually from the CLI using a shorter mountpoint path. This makes it possible to mount and access snapshots that cannot be accessed
automatically in other ways, such as from the GUI or from features such as “File History” or “Versions”.

1.4 Hardware Recommendations

FreeNAS® 11.2 is based on FreeBSD 11.2 and supports the same hardware found in the FreeBSD Hardware Compatibility List (https://www.freebsd.org/releases/11.2R/hardware.html). Supported processors are listed in section 2.1 amd64 (https://www.freebsd.org/releases/11.2R/hardware.html#proc). FreeNAS® is only available for 64-bit processors. This architecture is called amd64 by AMD and Intel64 by Intel.

Note: FreeNAS® boots from a GPT partition. This means that the system BIOS must be able to boot using either the legacy BIOS firmware interface or EFI.

1.4.1 RAM

The best way to get the most out of a FreeNAS® system is to install as much RAM as possible. More RAM allows ZFS to provide better performance. The FreeNAS® Forums (https://forums.freenas.org/index.php) provide anecdotal evidence from users on how much performance can be gained by adding more RAM.

General guidelines for RAM:

- **A minimum of 8 GiB of RAM is required.**

 Additional features require additional RAM, and large amounts of storage require more RAM for cache. An old, somewhat overstated guideline is 1 GiB of RAM per terabyte of disk capacity.

- To use Active Directory with many users, add an additional 2 GiB of RAM for the winbind internal cache.

- For iSCSI, install at least 16 GiB of RAM if performance is not critical, or at least 32 GiB of RAM if good performance is a requirement.

- **Jails** (page 270) are very memory-efficient, but can still use memory that would otherwise be available for ZFS. If the system will be running many jails, or a few resource-intensive jails, adding 1 to 4 additional gigabytes of RAM can be helpful. This memory is shared by the host and will be used for ZFS when not being used by jails.

- **Virtual Machines** (page 280) require additional RAM beyond any amounts listed here. Memory used by virtual machines is not available to the host while the VM is running, and is not included in the amounts described above. For example, a system that will be running two VMs that each need 1 GiB of RAM requires an additional 2 GiB of RAM.

- When installing FreeNAS® on a headless system, disable the shared memory settings for the video card in the BIOS.

- For ZFS deduplication, ensure the system has at least 5 GiB of RAM per terabyte of storage to be deduplicated.

If the hardware supports it, install ECC RAM. While more expensive, ECC RAM is highly recommended as it prevents in-flight corruption of data before the error-correcting properties of ZFS come into play, thus providing consistency for the checksumming and parity calculations performed by ZFS. If your data is important, use ECC RAM. This Case
Study (http://research.cs.wisc.edu/adsl/Publications/zfs-corruption-fast10.pdf) describes the risks associated with memory corruption.

Do not use FreeNAS® to store data without at least 8 GiB of RAM. Many users expect FreeNAS® to function with less memory, just at reduced performance. The bottom line is that these minimums are based on feedback from many users. Requests for help in the forums or IRC are sometimes ignored when the installed system does not have at least 8 GiB of RAM because of the abundance of information that FreeNAS® may not behave properly with less memory.

1.4.2 The Operating System Device

The FreeNAS® operating system is installed to at least one device that is separate from the storage disks. The device can be a SSD, a small hard drive, or a USB stick.

Note: To write the installation file to a USB stick, **two** USB ports are needed, each with an inserted USB device. One USB stick contains the installer, while the other USB stick is the destination for the FreeNAS® installation. Be careful to select the correct USB device for the FreeNAS® installation. FreeNAS® cannot be installed onto the same device that contains the installer. After installation, remove the installer USB stick. It might also be necessary to adjust the BIOS configuration to boot from the new FreeNAS® operating system device.

When determining the type and size of the target device where FreeNAS® is to be installed, keep these points in mind:

- The absolute **bare minimum** size is 8 GiB. That does not provide much room. The **recommended** minimum is 16 GiB. This provides room for the operating system and several boot environments created by updates. More space provides room for more boot environments and 32 GiB or more is preferred.

- SSDs (Solid State Disks) are fast and reliable, and make very good FreeNAS® operating system devices. Their one disadvantage is that they require a disk connection which might be needed for storage disks.

 Even a relatively large SSD (120 or 128 GiB) is useful as a boot device. While it might appear that the unused space is wasted, that space is instead used internally by the SSD for wear leveling. This makes the SSD last longer and provides greater reliability.

- When planning to add your own boot environments, budget about 1 GiB of storage per boot environment. Consider deleting older boot environments after making sure they are no longer needed. Boot environments can be created and deleted using **System → Boot**.

- Use quality, name-brand USB sticks, as ZFS will quickly reveal errors on cheap, poorly-made sticks.

- For a more reliable boot disk, use two identical devices and select them both during the installation. This will create a mirrored boot device.

Note: Current versions of FreeNAS® run directly from the operating system device. Early versions of FreeNAS® ran from RAM, but that has not been the case for years.

1.4.3 Storage Disks and Controllers

The **Disk section** (https://www.freebsd.org/releases/11.2R/hardware.html#disk) of the FreeBSD Hardware List lists the supported disk controllers. In addition, support for 3ware 6 Gbps RAID controllers has been added along with the CLI utility `tw_cli` for managing 3ware RAID controllers.

FreeNAS® supports hot pluggable drives. Using this feature requires enabling AHCI in the BIOS.

Reliable disk alerting and immediate reporting of a failed drive can be obtained by using an HBA such as an Broadcom MegaRAID controller or a 3Ware twa-compatible controller.
FreeNAS® 11.2-U8 User Guide, Release 11.2

Note: Upgrading the firmware of Broadcom SAS HBAs to the latest version is recommended.

Some Highpoint RAID controllers do not support pass-through of S.M.A.R.T. data or other disk information, potentially including disk serial numbers. It is best to use a different disk controller with FreeNAS®.

Note: The system is configured to prefer the mrsas(4) driver for controller cards like the Dell PERC H330 and H730 which are supported by several drivers. Although not recommended, the mfi(4) driver can be used instead by removing the loader Tunable (page 82): hw.mfi.mrsas_enable or setting the Value to 0.

Suggestions for testing disks before adding them to a RAID array can be found in this forum post. Additionally, badblocks is installed with FreeNAS® for testing disks.

If the budget allows optimization of the disk subsystem, consider the read/write needs and RAID requirements:

- For steady, non-contiguous writes, use disks with low seek times. Examples are 10K or 15K SAS drives which cost about $1/GiB. An example configuration would be six 600 GiB 15K SAS drives in a RAID 10 which would yield 1.8 TiB of usable space, or eight 600 GiB 15K SAS drives in a RAID 10 which would yield 2.4 TiB of usable space.

For ZFS, Disk Space Requirements for ZFS Storage Pools recommends a minimum of 16 GiB of disk space. FreeNAS® allocates 2 GiB of swap space on each drive. Combined with ZFS space requirements, this means that it is not possible to format drives smaller than 3 GiB. Drives larger than 3 GiB but smaller than the minimum recommended capacity might be usable but lose a significant portion of storage space to swap allocation. For example, a 4 GiB drive only has 2 GiB of available space after swap allocation.

New ZFS users who are purchasing hardware should read through ZFS Storage Pools Recommendations first.

ZFS vdevs, groups of disks that act like a single device, can be created using disks of different sizes. However, the capacity available on each disk is limited to the same capacity as the smallest disk in the group. For example, a vdev with one 2 TiB and two 4 TiB disks will only be able to use 2 TiB of space on each disk. In general, use disks that are the same size for the best space usage and performance.

The ZFS Drive Size and Cost Comparison spreadsheet is available to compare usable space provided by different quantities and sizes of disks.

1.4.4 Network Interfaces

The Ethernet section of the FreeBSD Hardware Notes indicates which interfaces are supported by each driver. While many interfaces are supported, FreeNAS® users have seen the best performance from Intel and Chelsio interfaces, so consider these brands when purchasing a new NIC. Realtek cards often perform poorly under CPU load as interfaces with these chipsets do not provide their own processors.

At a minimum, a GigE interface is recommended. While GigE interfaces and switches are affordable for home use, modern disks can easily saturate their 110 MiB/s throughput. For higher network throughput, multiple GigE cards can be bonded together using the LACP type of Link Aggregations. The Ethernet switch must support LACP, which means a more expensive managed switch is required.

When network performance is a requirement and there is some money to spend, use 10 GigE interfaces and a managed switch. Managed switches with support for LACP and jumbo frames are preferred, as both can be used to increase network throughput. Refer to the 10 Gig Networking Primer for more information.
Both hardware and the type of shares can affect network performance. On the same hardware, SMB is slower than FTP or NFS because Samba is single-threaded (https://www.samba.org/samba/docs/old/Samba3-Developers-Guide/architecture.html). So a fast CPU can help with SMB performance.

Wake on LAN (WOL) support depends on the FreeBSD driver for the interface. If the driver supports WOL, it can be enabled using `ifconfig(8)` (https://www.freebsd.org/cgi/man.cgi?query=ifconfig). To determine if WOL is supported on a particular interface, use the interface name with the following command. In this example, the capabilities line indicates that WOL is supported for the `igb0` interface:

```
[root@freenas ~]# ifconfig -m igb0
igb0: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> metric 0 mtu 1500
       options=6403bb<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,JUMBO_MTU,VLAN_HWCUM,TSO4,TSO6,VLAN_HWTSO,RXCSUM_IPV6,TXCSUM_IPV6>
       capabilities=653fbb<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,JUMBO_MTU,VLAN_HWCUM,TSO4,TSO6,LRO,WOL_UCAST,WOL_MCAST,WOL_MAGIC,VLAN_HWFILTER,VLAN_HWSO,RXCSUM_IPV6,TXCSUM_IPV6>
```

If WOL support is shown but not working for a particular interface, create a bug report using the instructions in Support (page 98).

1.5 Getting Started with ZFS

Readers new to ZFS should take a moment to read the ZFS Primer (page 336).
2.1 Getting FreeNAS®

The latest STABLE version of FreeNAS® 11.2 can be downloaded from https://download.freenas.org/11.2/STABLE/latest/.

Note: FreeNAS® requires 64-bit hardware.

The download page contains an .iso file. This is a bootable installer that can be written to either a CD or USB stick as described in Preparing the Media (page 22).

The .iso file has an associated sha256.txt file which is used to verify the integrity of the downloaded file. The command to verify the checksum varies by operating system:

- on a BSD system use the command `sha256 name_of_file`
- on a Linux system use the command `sha256sum name_of_file`
- on a Mac system use the command `shasum -a 256 name_of_file`
- Windows or Mac users can install additional utilities like HashCalc (http://www.slavasoft.com/hashcalc/) or HashTab (http://implbits.com/products/hashtab/)

The value produced by running the command must match the value shown in the sha256.txt file. Checksum values that do not match indicate a corrupted installer file that should not be used.

2.2 Preparing the Media

The FreeNAS® installer can run from either a CD or a USB stick.
A CD burning utility is needed to write the .iso file to a CD. The .iso file can be written directly to a USB stick. The method used to write the file depends on the operating system. Examples for several common operating systems are shown below.

Note: To install from a USB stick to another USB stick, two USB ports are needed, each with an inserted USB device. One USB stick contains the installer. The other USB stick is the destination for the FreeNAS® installation. Take care to select the correct USB device for the FreeNAS® installation. It is not possible to install FreeNAS® onto the same USB stick containing the installer. After installation, remove the installer USB stick. It might also be necessary to adjust the BIOS configuration to boot from the new FreeNAS® USB stick.

Ensure the operating system device order in the BIOS is set to boot from the device containing the FreeNAS® installer media, then boot the system to start the installation.

2.2.1 On FreeBSD or Linux

On a FreeBSD or Linux system, the **dd** command is used to write the .iso file to an inserted USB stick.

Warning: The **dd** command is very powerful and can destroy any existing data on the specified device. Make absolutely sure of the device name to write to and do not mistype the device name when using **dd**! The use of this command can be avoided by writing the .iso file to a CD instead.

This example demonstrates writing the image to the first USB device connected to a FreeBSD system. This first device usually reports as /dev/da0. Replace FreeNAS-RELEASE.iso with the filename of the downloaded FreeNAS® ISO file. Replace /dev/da0 with the device name of the device to write.

```bash
dd if=FreeNAS-RELEASE.iso of=/dev/da0 bs=64k
```

6117+0 records in
6117+0 records out
400883712 bytes transferred in 88.706398 secs (4519220 bytes/sec)

When using the **dd** command:

- **if** refers to the input file, or the name of the file to write to the device.
- **of** refers to the output file; in this case, the device name of the flash card or removable USB stick. Note that USB device numbers are dynamic, and the target device might be da1 or da2 or another name depending on which devices are attached. Before attaching the target USB stick, use **ls /dev/da***. Then attach the target USB stick, wait ten seconds, and run **ls /dev/da*** again to see the new device name and number of the target USB stick. On Linux, use /dev/sdX, where X refers to the letter of the USB device.
- **bs** refers to the block size, the amount of data to write at a time. The larger 64K block size shown here helps speed up writes to the USB stick.

2.2.2 On Windows

2.2.3 macOS

Insert the USB stick. In the Finder, go to **Applications → Utilities → Disk Utility**. Unmount any mounted partitions on the USB stick. Check that the USB stick has only one partition, or partition table errors will be shown on boot. If needed, use Disk Utility to set up one partition on the USB stick. Selecting **Free space** when creating the partition works fine.
Determine the device name of the inserted USB stick. From TERMINAL, navigate to the Desktop, then type this command:

```
diskutil list /dev/disk0
```

<table>
<thead>
<tr>
<th>#: TYPE</th>
<th>NAME</th>
<th>SIZE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: GUID_partition_scheme</td>
<td>*500.1 GB disk0</td>
<td></td>
<td>disk0</td>
</tr>
<tr>
<td>1: EFI</td>
<td></td>
<td>209.7 MB</td>
<td>disk0s1</td>
</tr>
<tr>
<td>2: Apple_HFS Macintosh HD</td>
<td>499.2 GB disk0s2</td>
<td></td>
<td>disk0s2</td>
</tr>
<tr>
<td>3: Apple_Boot Recovery HD</td>
<td>650.0 MB disk0s3</td>
<td></td>
<td>disk0s3</td>
</tr>
</tbody>
</table>

```
diskutil list /dev/disk1
```

<table>
<thead>
<tr>
<th>#: TYPE</th>
<th>NAME</th>
<th>SIZE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: FDisk_partition_scheme</td>
<td>*8.0 GB disk1</td>
<td></td>
<td>disk1</td>
</tr>
<tr>
<td>1: DOS_FAT_32 UNTITLED</td>
<td>8.0 GB disk1s1</td>
<td></td>
<td>disk1s1</td>
</tr>
</tbody>
</table>

This shows which devices are available to the system. Locate the target USB stick and record the path. To determine the correct path for the USB stick, remove the device, run the command again, and compare the difference. Once sure of the device name, navigate to the Desktop from TERMINAL, unmount the USB stick, and use the `dd` command to write the image to the USB stick. In this example, the USB stick is `/dev/disk1`. It is first unmounted. The `dd` command is used to write the image to the faster "raw" version of the device (note the extra `r` in `/dev/rdisk1`).

When running these commands, replace FreeNAS-RELEASE.iso with the name of the FreeNAS® ISO. Replace `/dev/rdisk1` with the correct path to the USB stick:

```
diskutil unmountDisk /dev/disk1
Unmount of all volumes on disk1 was successful
```

```
dd if=FreeNAS-RELEASE.iso of=/dev/rdisk1 bs=64k
```

Note: If the error “Resource busy” is shown when the `dd` command is run, go to Applications → Utilities → Disk Utility, find the USB stick, and click on its partitions to make sure all of them are unmounted. If a “Permission denied” is shown, use `sudo` for elevated rights: `sudo dd if=FreeNAS-RELEASE.iso of=/dev/rdisk1 bs=64k`. This will prompt for the password.

The `dd` command can take some minutes to complete. Wait until the prompt returns and a message is displayed with information about how long it took to write the image to the USB stick.

2.3 Performing the Installation

With the installation media inserted, boot the system from that media. The FreeNAS® installer boot menu is displayed as is shown in Figure 2.1.
The FreeNAS® installer automatically boots into the default option after ten seconds. If needed, choose another boot option by pressing the Spacebar to stop the timer and then enter the number of the desired option.

Tip: The Serial Console option is useful on systems which do not have a keyboard or monitor, but are accessed through a serial port, Serial over LAN, or IPMI (page 124).

Note: If the installer does not boot, verify that the installation device is listed first in the boot order in the BIOS. When booting from a CD, some motherboards may require connecting the CD device to SATA0 (the first connector) to boot from CD. If the installer stalls during bootup, double-check the SHA256 hash of the .iso file. If the hash does not match, re-download the file. If the hash is correct, burn the CD again at a lower speed or write the file to a different USB stick.

Once the installer has finished booting, the installer menu is displayed as shown in Figure 2.2.
Press Enter to select the default option, 1 Install/Upgrade. The next menu, shown in Figure 2.3, lists all available drives. This includes any inserted operating system devices, which have names beginning with da.

Note: A minimum of 8 GiB of RAM is required and the installer will present a warning message if less than 8 GiB is detected.

In this example, the user is performing a test installation using VirtualBox and has created a 16 GiB virtual disk to hold the operating system.
Use the arrow keys to highlight the destination SSD, hard drive, USB stick, or virtual disk. Press the spacebar to select it. To mirror the operating system device, move to the second device and press spacebar to select it also. After making these selections, press Enter. The warning shown in Figure 2.4 is displayed, a reminder not to install the operating system on a drive that is meant for storage. Press Enter to continue on to the screen shown in Figure 2.6.
See the operating system device (page 19) section to ensure the minimum requirements are met.

The installer recognizes existing installations of previous versions of FreeNAS®. When an existing installation is present, the menu shown in Figure 2.5 is displayed. To overwrite an existing installation, use the arrows to move to Fresh Install and press Enter twice to continue to the screen shown in Figure 2.6.
The screen shown in Figure 2.6 prompts for the root password which is used to log in to the administrative graphical interface.
Setting a password is mandatory and the password cannot be blank. Since this password provides access to the administrative GUI, it should be hard to guess. Enter the password, press the down arrow key, and confirm the password. Then press Enter to continue with the installation. Choosing Cancel skips setting a root password during the installation, but the administrative GUI will require setting a root password when logging in for the first time.

Note: For security reasons, the SSH service and root SSH logins are disabled by default. Unless these are set, the only way to access a shell as root is to gain physical access to the console menu or to access the web shell within the administrative GUI. This means that the FreeNAS® system should be kept physically secure and that the administrative GUI should be behind a properly configured firewall and protected by a secure password.

FreeNAS® can be configured to boot with the standard BIOS boot mechanism or UEFI booting as shown Figure 2.7. BIOS booting is recommended for legacy and enterprise hardware. UEFI is used on newer consumer motherboards.

![FreeNAS Boot Mode](image)

Fig. 2.7: Choose UEFI or BIOS Booting

Note: Most UEFI systems can also boot in BIOS mode if CSM (Compatibility Support Module) is enabled in the UEFI setup screens.

The message in **Figure 2.8** is shown after the installation is complete.
Press **Enter** to return to **Installer Menu** (page 26). Highlight **3 Reboot System** and press **Enter**. If booting from CD, remove the CDROM. As the system reboots, make sure that the device where FreeNAS® was installed is listed as the first boot entry in the BIOS so the system will boot from it.

FreeNAS® boots into the **Console Setup** menu described in **Booting** (page 57) after waiting five seconds in the **boot menu** (page 37). Press the **Spacebar** to stop the timer and use the boot menu.

2.4 Installation Troubleshooting

If the system does not boot into FreeNAS®, there are several things that can be checked to resolve the situation.

- Check the system BIOS and see if there is an option to change the USB emulation from CD/DVD/floppy to hard drive. If it still will not boot, check to see if the card/drive is UDMA compliant.
- If the system BIOS does not support EFI with BIOS emulation, see if it has an option to boot using legacy BIOS mode.
- When the system starts to boot but hangs with this repeated error message:

  ```
  run_interrupt_driven_hooks: still waiting after 60 seconds for xpt_config
  ```

 Go into the system BIOS and look for an onboard device configuration for a 1394 Controller. If present, disable that device and try booting again.

 If the system starts to boot but hangs at a `mountroot>` prompt, follow the instructions in **Workaround/Semi-Fix for Mountroot Issues with 9.3** (https://forums.freenas.org/index.php?threads/workaround-semi-fix-for-mountroot-issues-with-9-3.26071/).

 If the burned image fails to boot and the image was burned using a Windows system, wipe the USB stick before trying a second burn using a utility such as **Active@ KillDisk** (http://how-to-erase-hard-drive.com/). Otherwise, the second burn attempt will fail as Windows does not understand the partition which was written from the image file. Be very careful to specify the correct USB stick when using a wipe utility!
2.5 Upgrading

FreeNAS® provides flexibility for keeping the operating system up-to-date:

1. Upgrades to major releases, for example from version 9.3 to 9.10, can still be performed using either an ISO or the graphical administrative interface. Unless the Release Notes for the new major release indicate that the current version requires an ISO upgrade, either upgrade method can be used.

2. Minor releases have been replaced with signed updates. This means that it is not necessary to wait for a minor release to update the system with a system update or newer versions of drivers and features. It is also no longer necessary to manually download an upgrade file and its associated checksum to update the system.

3. The updater automatically creates a boot environment, making updates a low-risk operation. Boot environments provide the option to return to the previous version of the operating system by rebooting the system and selecting the previous boot environment from the boot menu.

This section describes how to perform an upgrade from an earlier version of FreeNAS® to 11.2. After 11.2 has been installed, use the instructions in Update (page 88) to keep the system updated.

2.5.1 Caveats

Be aware of these caveats before attempting an upgrade to 11.2:

- **Warning: upgrading the ZFS pool can make it impossible to go back to a previous version.** For this reason, the update process does not automatically upgrade the ZFS pool, though the Alert (page 311) system shows when newer ZFS Feature Flags (page 339) are available for a pool. Unless a new feature flag is needed, it is safe to leave the pool at the current version and uncheck the alert. If the pool is upgraded, it will not be possible to boot into a previous version that does not support the newer feature flags.

- The Wizard (page 296) does not recognize an encrypted ZFS pool. If the ZFS pool is GELI-encrypted and the Wizard (page 296) starts after the upgrade, cancel the Wizard (page 296) and use the instructions in Importing an Encrypted Volume (page 147) to import the encrypted volume. The Wizard (page 296) can be run afterward for post-configuration. It will then recognize that the volume has been imported and not prompt to reformat the disks.

- Upgrading the firmware of Broadcom SAS HBAs to the latest version is recommended.

- **Upgrades from FreeNAS® 0.7x are not supported.** The system has no way to import configuration settings from 0.7x versions of FreeNAS®. The configuration must be manually recreated. If supported, the FreeNAS® 0.7x volumes or disks must be manually imported.

- **Upgrades on 32-bit hardware are not supported.** However, if the system is currently running a 32-bit version of FreeNAS® and the hardware supports 64-bit, the system can be upgraded. Any archived reporting graphs will be lost during the upgrade.

- **UFS is not supported.** If the data currently resides on one UFS-formatted disk, create a ZFS volume using other disks after the upgrade, then use the instructions in Import Disk (page 145) to mount the UFS-formatted disk and copy the data to the ZFS volume. With only one disk, back up its data to another system or media before the upgrade, format the disk as ZFS after the upgrade, then restore the backup. If the data currently resides on a UFS RAID of disks, it is not possible to directly import that data to the ZFS volume. Instead, back up the data before the upgrade, create a ZFS volume after the upgrade, then restore the data from the backup.

- **The VMware Tools VMXNET3 drivers are no longer supported.** Configure and use the vmx(4) (https://www.freebsd.org/cgi/man.cgi?query=vmx) driver instead.

2.5.2 Initial Preparation

Before upgrading the operating system, perform the following steps:
1. **Back up the** FreeNAS® configuration in **System → General → Save Config**.

2. If any volumes are encrypted, **remember** to set the passphrase and download a copy of the encryption key and the latest recovery key. After the upgrade is complete, use the instructions in *Importing an Encrypted Volume* (page 147) to import the encrypted volume.

3. Warn users that the FreeNAS® shares will be unavailable during the upgrade; scheduling the upgrade for a time that will least impact users is recommended.

4. Stop all services in **Services → Control Services**.

2.5.3 Upgrading Using the ISO

To perform an upgrade using this method, [download](http://download.freenas.org/latest/) the .iso to the computer that will be used to prepare the installation media. Burn the downloaded .iso file to a CD or USB stick using the instructions in *Preparing the Media* (page 22).

Insert the prepared media into the system and boot from it. The installer waits ten seconds in the installer boot menu (page 25) before booting the default option. If needed, press the **Spacebar** to stop the timer and choose another boot option. After the media finishes booting into the installation menu, press **Enter** to select the default option of 1 Install/Upgrade. The installer presents a screen showing all available drives.

Warning: *All drives are shown, including boot drives and storage drives. Only choose boot drives when upgrading. Choosing the wrong drives to upgrade or install will cause loss of data. If unsure about which drives contain the FreeNAS® operating system, reboot and remove the install media. In the FreeNAS® GUI, use System → Boot to identify the boot drives. More than one drive is shown when a mirror has been used.*

Move to the drive where FreeNAS® is installed and press the **Spacebar** to mark it with a star. If a mirror has been used for the operating system, mark all of the drives where the FreeNAS® operating system is installed. Press **Enter** when done.

The installer recognizes earlier versions of FreeNAS® installed on the boot drive or drives and presents the message shown in Figure 2.9.
Note: If Fresh Install is chosen, the backup of the configuration data must be restored using System → General → Upload Config after booting into the new operating system.

To perform an upgrade, press Enter to accept the default of Upgrade Install. The installer recommends installing the operating system on a disk not used for storage.
The updated system can be installed in a new boot environment, or the entire operating system device can be formatted to start fresh. Installing into a new boot environment preserves the old code, allowing a roll-back to previous versions if necessary. Formatting the boot device is usually not necessary but can reclaim space. User data and settings are preserved when installing to a new boot environment and also when formatting the operating system device. Move the highlight to one of the options and press Enter to start the upgrade.

The installer unpacks the new image and displays the menu shown in Figure 2.11. The database file that is preserved and migrated contains the FreeNAS® configuration settings.
Press Enter. FreeNAS® indicates that the upgrade is complete and a reboot is required. Press OK, highlight 3 Reboot System, then press Enter to reboot the system. If the upgrade installer was booted from CD, remove the CD.

During the reboot there can be a conversion of the previous configuration database to the new version of the database. This happens during the “Applying database schema changes” line in the reboot cycle. This conversion can take a long time to finish, sometimes fifteen minutes or more, and can cause the system to reboot again. The system will start normally afterwards. If database errors are shown but the graphical administrative interface is accessible, go to Settings → General and use the Upload Config button to upload the configuration that was saved before starting the upgrade.

2.5.4 Upgrading From the GUI

To perform an upgrade using this method, go to System → Update. See Update (page 88) for more information on upgrading the system.

After the update is complete, the connection will be lost temporarily as the FreeNAS® system reboots into the new version of the operating system. The FreeNAS® system will normally receive the same IP address from the DHCP server. Refresh the browser after a moment to see if the system is accessible.

2.5.5 If Something Goes Wrong

If an update fails, an alert is issued and the details are written to /data/update.failed.

To return to a previous version of the operating system, physical or IPMI access to the FreeNAS® console is needed. Reboot the system and watch for the boot menu:
FreeNAS® waits five seconds before booting into the default boot environment. Press the Spacebar to stop the automatic boot timer. Press 4 to display the available boot environments and press 3 as needed to scroll through multiple pages.
In the example shown in Figure 2.13, the first entry in Boot Environments is 11.2-MASTER-201807250900. This is the current version of the operating system, after the update was applied. Since it is the first entry, it is the default selection.

The next entry is Initial-Install. This is the original boot environment created when FreeNAS® was first installed. Since there are no other entries between the initial installation and the first entry, only one update has been applied to this system since its initial installation.

To boot into another version of the operating system, enter the number of the boot environment to set it as Active. Press Backspace to return to the Boot Menu (page 37) and press Enter to boot into the chosen Active boot environment.

If an operating system device fails and the system no longer boots, don't panic. The data is still on the disks and there is still a copy of the saved configuration. The system can be recovered with a few steps:

1. Perform a fresh installation on a new operating system device.
2. Import the volumes in Storage → Auto Import Volume.
3. Restore the configuration in System → General → Upload Config.

Note: It is not possible to restore a saved configuration that is newer than the installed version. For example, if a reboot into an older version of the operating system is performed, a configuration that was created in a later version cannot be restored.

2.5.6 Upgrading a ZFS Pool

In FreeNAS®, ZFS pools can be upgraded from the graphical administrative interface.

Before upgrading an existing ZFS pool, be aware of these caveats first:

• the pool upgrade is a one-way street, meaning that if you change your mind you cannot go back to an earlier ZFS version or downgrade to an earlier version of the software that does not support those ZFS features.

• before performing any operation that may affect the data on a storage disk, always back up all data first and verify the integrity of the backup. While it is unlikely that the pool upgrade will affect the data, it is always better to be safe than sorry.

• upgrading a ZFS pool is optional. Do not upgrade the pool if the the possibility of reverting to an earlier version of FreeNAS® or repurposing the disks in another operating system that supports ZFS is desired. It is not necessary to upgrade the pool unless the end user has a specific need for the newer ZFS Feature Flags (page 339). If a pool is upgraded to the latest feature flags, it will not be possible to import that pool into another operating system that does not yet support those feature flags.

To perform the ZFS pool upgrade, go to Storage → Volumes → View Volumes and highlight the volume (ZFS pool) to upgrade. Click the “Up Arrow” (Upgrade) button as shown in Figure 2.14.

Note: If the “Up Arrow” (Upgrade) button does not appear, the pool is already at the latest feature flags and does not need to be upgraded.
The warning serves as a reminder that a pool upgrade is not reversible. Click OK to proceed with the upgrade. The upgrade itself only takes a few seconds and is non-disruptive. It is not necessary to stop any sharing services to upgrade the pool. However, it is best to upgrade when the pool is not being heavily used. The upgrade process will suspend I/O for a short period, but is nearly instantaneous on a quiet pool.

2.6 Virtualization

To install or run FreeNAS® within a virtual environment, create a virtual machine that meets these minimum requirements:

- at least 8192 MB (8 GiB) base memory size
- a virtual disk at least 8 GiB in size to hold the operating system and boot environments
- at least one additional virtual disk at least 4 GiB in size to be used as data storage
- a bridged network adapter

This section demonstrates how to create and access a virtual machine within VirtualBox and VMware ESXi environments.

2.6.1 VirtualBox

VirtualBox (https://www.virtualbox.org/) is an open source virtualization program originally created by Sun Microsystems. VirtualBox runs on Windows, BSD, Linux, Macintosh, and OpenSolaris. It can be configured to use a downloaded
FreeNAS® .iso file, and makes a good testing environment for practicing configurations or learning how to use the features provided by FreeNAS®.

To create the virtual machine, start VirtualBox and click the New button, shown in Figure 2.15, to start the new virtual machine wizard.

![Fig. 2.15: Initial VirtualBox Screen](image)

Click the Next button to see the screen in Figure 2.16. Enter a name for the virtual machine, click the Operating System drop-down menu and select BSD, and select FreeBSD (64-bit) from the Version dropdown.
Fig. 2.16: Type in a Name and Select the Operating System for the New Virtual Machine

Click Next to see the screen in Figure 2.17. The base memory size must be changed to at least 8192 MB. When finished, click Next to see the screen in Figure 2.18.
Fig. 2.17: Select the Amount of Memory Reserved for the Virtual Machine
Click Create to launch the *Create Virtual Hard Drive Wizard* shown in Figure 2.19.
Select VDI and click the Next button to see the screen in Figure 2.20.
Choose either *Dynamically allocated* or *Fixed-size* storage. The first option uses disk space as needed until it reaches the maximum size that is set in the next screen. The second option creates a disk the full amount of disk space, whether it is used or not. Choose the first option to conserve disk space; otherwise, choose the second option, as it allows VirtualBox to run slightly faster. After selecting *Next*, the screen in Figure 2.21 is shown.
Fig. 2.21: Select File Name and Size of Virtual Disk

This screen is used to set the size (or upper limit) of the virtual disk. **Set the default size to a minimum of 8 GiB.** Use the folder icon to browse to a directory on disk with sufficient space to hold the virtual disk files. Remember that there will be a system disk of at least 8 GiB and at least one data storage disk of at least 4 GiB.

Use the Back button to return to a previous screen if any values need to be modified. After making a selection and pressing Create, the new VM is created. The new virtual machine is listed in the left frame, as shown in the example in Figure 2.22. Open the Machine Tools drop-down menu and select Details to see extra information about the VM.
Create the virtual disks to be used for storage. Highlight the VM and click Settings to open the menu. Click the Storage option in the left frame to access the storage screen seen in Figure 2.23.
Click the **Add Attachment** button, select **Add Hard Disk** from the pop-up menu, then click the **Create new disk** button. This launches the **Create Virtual Hard Disk Wizard** seen in Figure 2.19 and 2.20.

This disk will be used for storage, so create a size appropriate to your needs, making sure that it is **at least 4 GiB**.

To practice with RAID configurations, create as many virtual disks as needed. Two disks can be created on each IDE controller. For additional disks, click the **Add Controller** button to create another controller for attaching additional disks.

Create a device for the installation media. Highlight the word “Empty”, then click the **CD** icon as shown in Figure 2.24.
Click *Choose Virtual Optical disk file...* to browse to the location of the `.iso` file. If the `.iso` was burned to CD, select the detected *Host Drive*.

Depending on the extensions available in the host CPU, it might not be possible to boot the VM from an `.iso`. If "your CPU does not support long mode" is shown when trying to boot the `.iso`, the host CPU either does not have the required extension or AMD-V/VT-x is disabled in the system BIOS.

Note: If there is a kernel panic when booting into the ISO, stop the virtual machine. Then, go to *System* and check the box *Enable I/O APIC*.

To configure the network adapter, go to *Settings → Network → Adapter 1*. In the *Attached to* drop-down menu select *Bridged Adapter*, then choose the name of the physical interface from the *Name* drop-down menu. In the example shown in Figure 2.25, the Intel Pro/1000 Ethernet card is attached to the network and has a device name of `em0`.
After configuration is complete, click the Start arrow and install FreeNAS® as described in Performing the Installation (page 24). Once FreeNAS® is installed, press F12 when the VM starts to boot to access the boot menu. Select the primary hard disk as the boot option. To permanently boot from disk, remove the Optical device in Storage or uncheck Optical in the Boot Order section of System.

2.6.2 VMware ESXi

ESXi is a bare-metal hypervisor architecture created by VMware Inc. Commercial and free versions of the VMware vSphere Hypervisor operating system (ESXi) are available from the VMware website (https://www.vmware.com/products/esxi-and-esx.html).

Install and use the VMware vSphere client to connect to the ESXi server. Enter the username and password created when installing ESXi to log in to the interface. After logging in, go to Storage to upload the FreeNAS®.iso. Click Datastore browser and select a datastore for the FreeNAS®.iso. Click Upload and choose the FreeNAS®.iso from the host system.

Click Create/Register VM to create a new VM. The New virtual machine wizard opens:

1. **Select creation type**: Select Create a new virtual machine and click Next.
2. **Select a name and guest OS**: Enter a name for the VM. Leave ESXi compatibility version at the default. Select **Other** as the Guest OS family. Select **FreeBSD12 or later versions (64-bit)** as the Guest OS version. Click Next.
3. **Select storage**: Select a datastore for the VM. The datastore must be at least 32 GiB.
4. **Customize settings**: Enter the recommended minimums of at least 8 GiB of memory and 32 GiB of storage. Select Datastore ISO file from the CD/DVD Drive 1 drop-down. Use the Datastore browser to select the uploaded FreeNAS® .iso. Click Next.
5. **Ready to complete**: Review the VM settings. Click *Finish* to create the new VM.
To add more disks to a VM, right-click the VM and click *Edit Settings*. Click *Add hard disk* → *New standard hard disk*. Enter the desired capacity and click *Save*.
Virtual HPET hardware can prevent the virtual machine from booting on some older versions of VMware. If the virtual machine does not boot, remove the virtual HPET hardware:

- On ESXi, right-click the VM and click **Edit Settings**. Click **VM Options → Advanced → Edit Configuration...**. Change `hpet0.present` from `TRUE` to `FALSE` and click **OK**. Click **Save** to save the new settings.
- On Workstation or Player, while in **Edit Settings**, click **Options → Advanced → File Locations**. Locate the path for the Configuration file named `filename.vmx`. Open the file in a text editor and change `hpet0.present` from `true` to `false`, then save the change.

Network connection errors for plugins or jails inside the FreeNAS® VM can be caused by a misconfigured virtual switch (https://pubs.vmware.com/vsphere-51/index.jsp?topic=%2Fcom.vmware.wssdk.pg.doc%2FHPG_Networking.11.4.html) or VMware port group (https://pubs.vmware.com/vsphere-4-esx-vcenter/index.jsp?topic=%2Fcom.vmware.vsphere.server_configclassic.doc_40/esx_server_configclassic_40.htm). Make sure MAC spoofing and promiscuous mode are enabled on the switch first, and then the port group the VM is using.
The Console Setup menu, shown in Figure 3.1, appears at the end of the boot process. If the FreeNAS® system has a keyboard and monitor, this Console Setup menu can be used to administer the system.

Note: When connecting to the FreeNAS® system with SSH or the web Shell (page 304), the Console Setup menu is not shown by default. It can be started by the root user or another user with root permissions by typing `/etc/netcli`.

![Console setup menu](image)

Fig. 3.1: Console Setup Menu

The menu provides these options:

1) **Configure Network Interfaces** provides a configuration wizard to set up the system's network interfaces.
2) **Configure Link Aggregation** is for creating or deleting link aggregations.
3) **Configure VLAN Interface** is used to create or delete VLAN interfaces.
4) **Configure Default Route** is used to set the IPv4 or IPv6 default gateway. When prompted, enter the IP address of the default gateway.
5) **Configure Static Routes** prompts for the destination network and gateway IP address. Re-enter this option for each static route needed.
6) **Configure DNS** prompts for the name of the DNS domain and the IP address of the first DNS server. When adding multiple DNS servers, press *Enter* to enter the next one. Press *Enter* twice to leave this option.
7) **Reset Root Password** is used to reset a lost or forgotten root password. Select this option and follow the prompts to set the password.

8) **Reset Configuration to Defaults Caution!** This option deletes all of the configuration settings made in the administrative GUI and is used to reset a FreeNAS® system back to defaults. **Before selecting this option, make a full backup of all data and make sure all encryption keys and passphrases are known!** After this option is selected, the configuration is reset to defaults and the system reboots. Storage → Volumes → Import Volume can be used to re-import volumes.

9) **Shell** starts a shell for running FreeBSD commands. To leave the shell, type `exit`.

10) **Reboot** reboots the system.

11) **Shut Down** shuts down the system.

Note: The numbering and quantity of options on this menu can change due to software updates, service agreements, or other factors. Please carefully check the menu before selecting an option, and keep this in mind when writing local procedures.

3.1 Obtaining an IP Address

During boot, FreeNAS® automatically attempts to connect to a DHCP server from all live network interfaces. If it successfully receives an IP address, the address is displayed so it can be used to access the graphical user interface.

The example in Figure 3.1 shows a FreeNAS® system that is accessible at http://192.168.1.119.

Some FreeNAS® systems are set up without a monitor, making it challenging to determine which IP address has been assigned. On networks that support Multicast DNS (mDNS), the hostname and domain can be entered into the address bar of a browser. By default, this value is `freenas.local`.

If the FreeNAS® server is not connected to a network with a DHCP server, use the console network configuration menu to manually configure the interface as shown here. In this example, the FreeNAS® system has one network interface, `em0`.

```text
Enter an option from 1-12: 1
1) em0
Select an interface (q to quit): 1
Remove the current settings of this interface? (This causes a momentary disconnection of the network.) (y/n) n
Configure interface for DHCP? (y/n) n
Configure IPv4? (y/n) y
Interface name: (press enter, the name can be blank)
Several input formats are supported
Example 1 CIDR Notation:
    192.168.1.1/24
Example 2 IP and Netmask separate:
    IP: 192.168.1.1
    Netmask: 255.255.255.0, or /24 or 24
IPv4 Address: 192.168.1.108/24
Saving interface configuration: Ok
Configure IPv6? (y/n) n
Restarting network: ok

... 

The web user interface is at
http://192.168.1.108
```

After the system has an IP address, enter that address into a graphical web browser from a computer connected to the same network as the FreeNAS® system.
3.2 Logging In

By default, the login screen shown in Figure 3.2 prompts to log into the new UI.

![Figure 3.2: Enter the Root Password](image)

To instead log into the legacy web interface, click **LEGACY WEB INTERFACE**. A prompt appears to confirm the choice. Enter the password for the root user that was chosen during the installation. There is a prompt to set a root password if this was not set during the installation. The administrative GUI is displayed as shown in Figure 3.3.
Note: The rest of this Guide describes the legacy UI. To access the Guide for the new UI, log into the new UI and click Guide or access it online at doc.freenas.org/11.2/freenas.html.

If the FreeNAS® system does not respond to the IP address or mDNS name entered in a browser:

- If proxy settings are enabled in the browser configuration, disable them and try connecting again.
- If the page does not load, check whether the FreeNAS® system's IP address responds to a ping from another computer on the same network. If the FreeNAS® IP address is in a private IP address range, it can only be accessed from within that private network.
- If the user interface loads but is unresponsive or seems to be missing menu items, try a different web browser. IE9 has known issues and does not display the graphical administrative interface correctly if compatibility mode is turned on. Firefox (https://www.mozilla.org/en-US/firefox/all/) is recommended.
- If An error occurred! messages are shown when attempting to configure an item in the GUI, make sure that the browser is set to allow cookies from the FreeNAS® system.

This blog post (http://fortysomethinggeek.blogspot.com/2012/10/ipad-iphone-connect-with-freenas-or-any.html) describes some applications which can be used to access the FreeNAS® system from an iPad or iPhone.

3.3 Initial Configuration

The first time the FreeNAS® GUI is accessed, the Wizard (page 296) starts automatically to help configure the FreeNAS® device quickly and easily.
The Account Configuration section of the web interface describes how to manually create and manage users and groups. This section contains these entries:

- **Groups** (page 61): used to manage UNIX-style groups on the FreeNAS® system.
- **Users** (page 64): used to manage UNIX-style accounts on the FreeNAS® system.

Each entry is described in more detail in this section.

4.1 Groups

The Groups interface provides management of UNIX-style groups on the FreeNAS® system.

Note: It is unnecessary to recreate the network users or groups when a directory service is running on the same network. Instead, import the existing account information into FreeNAS®. Refer to *Directory Services* (page 178) for details.

This section describes how to create a group and assign user accounts to it. The next section, *Users* (page 64), describes creating user accounts.

Click *Groups* → *View Groups* to see a screen like *Figure 4.1*.
Fig. 4.1: Group Management

The *Groups* page lists all groups, including those built-in and used by the operating system. The table displays group names, group IDs (GID), built-in groups, and if *sudo* is permitted. Clicking a group entry causes a *Members* button to appear. Click the button to view and modify the group membership.

The *Add Group* button opens the screen shown in Figure 4.2. Table 4.1 summarizes the available options when creating a group.
Table 4.1: Group Creation Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group ID</td>
<td>string</td>
<td>The next available group ID is suggested. UNIX groups containing user accounts typically have an ID greater than 1000 and groups required by a service have an ID equal to the default port number used by the service. Example: the sshd group has an ID of 22.</td>
</tr>
<tr>
<td>Group Name</td>
<td>string</td>
<td>Enter an alphanumeric name for the new group. The period (.), hyphen (−), and underscore (_) characters are allowed as long as the group name does not begin with a period (.) or hyphen (−).</td>
</tr>
<tr>
<td>Permit Sudo</td>
<td>checkbox</td>
<td>Set to allow group members to use sudo (https://www.sudo.ws/). When using sudo, a user is prompted for their own password.</td>
</tr>
<tr>
<td>Allow repeated GIDs</td>
<td>checkbox</td>
<td>Set to allow multiple groups to share the same group id (GID). This is useful when a GID is already associated with the UNIX permissions for existing data, but is generally not recommended.</td>
</tr>
</tbody>
</table>

After a group and users are created, users can be added to a group. Highlight the group where users will be assigned, then click the Members button. Highlight the user in the Member users list. This shows all user accounts on the system. Click >> to move that user to the right frame. The user accounts which appear in the right frame are added as members of the group.

Figure 4.3, shows user1 added as a member of group data1.

![Fig. 4.3: Assigning a User to a Group](image)

The Delete Group button deletes a group. The pop-up message asks whether all members of that group should also be deleted. Note that the built-in groups do not provide a Delete Group button.
4.2 Users

FreeNAS® supports users, groups, and permissions, allowing flexibility in configuring which users have access to the data stored on FreeNAS®. To assign permissions to shares, one of these options must be done:

1. Create a guest account for all users, or create a user account for every user in the network where the name of each account is the same as a login name used on a computer. For example, if a Windows system has a login name of `bobsmith`, create a user account with the name `bobsmith` on FreeNAS®. A common strategy is to create groups with different sets of permissions on shares, then assign users to those groups.

2. If the network uses a directory service, import the existing account information using the instructions in `Directory Services` (page 178).

Account → Users lists all system accounts installed with the FreeNAS® operating system, as shown in Figure 4.4.

![Fig. 4.4: Managing User Accounts](image)

Each account entry indicates the user ID, username, primary group ID, home directory, default shell, full name, whether it is a built-in user that came with the FreeNAS® installation, the email address, if logins are disabled, if the user account is locked, whether the user is allowed to use `sudo`, and if the user connects from a Windows 8 or newer
system. To reorder the list, click the desired column name. An arrow indicates which column controls the view sort order. Click the arrow to reverse the sort order.

Click a user account to cause these buttons to appear:

- **Modify User**: used to modify the account’s settings, as listed in Table 4.2.
- **Change E-mail**: used to change the email address associated with the account.

Note: Setting the email address for the built-in root user account is recommended as important system messages are sent to the root user. For security reasons, password logins are disabled for the root account and changing this setting is discouraged.

Except for the root user, the accounts that come with FreeNAS® are system accounts. Each system account is used by a service and should not be used as a login account. For this reason, the default shell on system accounts is `nologin(8)` (https://www.freebsd.org/cgi/man.cgi?query=nologin). For security reasons and to prevent breakage of system services, do not modify the system accounts.

The Add User button opens the screen shown in Figure 4.5. Some settings are only available in Advanced Mode. To see these settings, either click Advanced Mode or configure the system to always display these settings by setting Show advanced fields by default in System → Advanced. Table 4.2 summarizes the options which are available when user accounts are created or modified.

Warning: When using Active Directory (page 178), Windows user passwords must be set from within Windows.
Table 4.2: User Account Configuration

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User ID</td>
<td>integer</td>
<td></td>
<td>Grayed out if the user already exists. When creating an account, the next numeric ID is suggested. User accounts typically have an ID greater than 1000 and system accounts have an ID equal to the default port number used by the service.</td>
</tr>
<tr>
<td>Username</td>
<td>string</td>
<td></td>
<td>Usernames can be up to 16 characters long. When using NIS or other legacy software with limited username lengths, keep usernames to eight characters or less for compatibility. Usernames cannot begin with a hyphen (-) or contain a space, tab, or these characters: ; , + & # % ^ () ! @ ~ * < > = . $ can only be used as the last character of the username.</td>
</tr>
<tr>
<td>Create a new primary group</td>
<td>checkbox</td>
<td></td>
<td>A primary group with the same name as the user is created automatically. Unset to select a different primary group name.</td>
</tr>
<tr>
<td>Primary Group</td>
<td>drop-down menu</td>
<td></td>
<td>Unset Create a new primary group to access this menu. For security reasons, FreeBSD does not give a user su permissions if wheel is their primary group. To give a user su access, add them to the wheel group in Auxiliary groups.</td>
</tr>
<tr>
<td>Create Home Directory In</td>
<td>browse button</td>
<td></td>
<td>Choose a path to the user's home directory. If the directory exists and matches the username, it is set as the user's home directory. When the path does not end with a subdirectory matching the username, a new subdirectory is created. The full path to the user's home directory is shown here when editing a user.</td>
</tr>
<tr>
<td>Home Directory Mode</td>
<td>checkboxes</td>
<td>✓</td>
<td>Sets default Unix permissions of the user's home directory. This is read-only for built-in users.</td>
</tr>
<tr>
<td>Shell</td>
<td>drop-down menu</td>
<td></td>
<td>Select the shell to use for local and SSH logins. The root user shell is used for web interface Shell (page 304) sessions. See Table 4.3 for an overview of available shells.</td>
</tr>
<tr>
<td>Full Name</td>
<td>string</td>
<td></td>
<td>Required. This field may contain spaces.</td>
</tr>
<tr>
<td>E-mail</td>
<td>string</td>
<td></td>
<td>The email address associated with the account.</td>
</tr>
<tr>
<td>Password</td>
<td>string</td>
<td></td>
<td>Required unless Disable password login is set. Cannot contain a ?.</td>
</tr>
<tr>
<td>Password confirmation</td>
<td>string</td>
<td></td>
<td>This must match the value of Password.</td>
</tr>
<tr>
<td>Disable password login</td>
<td>checkbox</td>
<td></td>
<td>Set to disable password logins and authentication to SMB shares. To undo this setting, create a password for the user by clicking Modify User for the user in the View Users screen. Setting this grays out Lock user and Permit Sudo.</td>
</tr>
<tr>
<td>Lock user</td>
<td>checkbox</td>
<td></td>
<td>Set to prevent the user from logging in until this box is unset. Setting this grays out Disable password login.</td>
</tr>
<tr>
<td>Permit Sudo</td>
<td>checkbox</td>
<td></td>
<td>Set to give group members permission to use sudo (https://www.sudo.ws/). When using sudo, a user is prompted for their own password.</td>
</tr>
<tr>
<td>Microsoft Account</td>
<td>checkbox</td>
<td></td>
<td>Set this when the user is connecting from a Windows 8 or newer system or when using a Microsoft cloud service.</td>
</tr>
<tr>
<td>SSH Public Key</td>
<td>string</td>
<td></td>
<td>Enter or paste the user's public SSH key to be used for key-based authentication. Do not paste the private key!</td>
</tr>
<tr>
<td>Auxiliary groups</td>
<td>mouse selection</td>
<td></td>
<td>Highlight groups to add the user. Click the >> to add the user to the highlighted groups.</td>
</tr>
</tbody>
</table>
Table 4.3: Available Shells

<table>
<thead>
<tr>
<th>Shell</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>netcli.sh</td>
<td>User is shown the Console Setup menu (Figure 3.1) on connection, even if it is disabled in System → Advanced → Enable Console Menu. The user must be root or have root permissions (effective user ID 0, like toor).</td>
</tr>
<tr>
<td>csh</td>
<td>C shell (https://en.wikipedia.org/wiki/C_shell)</td>
</tr>
<tr>
<td>sh</td>
<td>Bourne shell (https://en.wikipedia.org/wiki/Bourne_shell)</td>
</tr>
<tr>
<td>tcsh</td>
<td>Enhanced C shell (https://en.wikipedia.org/wiki/Tcsh)</td>
</tr>
<tr>
<td>nologin</td>
<td>Use when creating a system account or to create a user account that can authenticate with shares but which cannot login to the FreeNAS system using ssh.</td>
</tr>
<tr>
<td>bash</td>
<td>Bourne Again shell (https://en.wikipedia.org/wiki/Bash_%28Unix_shell%29)</td>
</tr>
<tr>
<td>ksh93</td>
<td>Korn shell (http://www.kornshell.com/)</td>
</tr>
<tr>
<td>mksh</td>
<td>mirBSD Korn shell (https://www.mirbsd.org/mksh.htm)</td>
</tr>
<tr>
<td>scponly</td>
<td>Select scponly (https://github.com/scponly/scponly/wiki) to restrict the user's SSH usage to only the scp and sftp commands.</td>
</tr>
<tr>
<td>zsh</td>
<td>Z shell (http://www.zsh.org/)</td>
</tr>
<tr>
<td>git-shell</td>
<td>restricted git shell (https://git-scm.com/docs/git-shell)</td>
</tr>
</tbody>
</table>

Built-in user accounts needed by the system cannot be removed. A Remove User button appears for custom users that were added by the system administrator. If the user to be removed is the last user in a custom group, an option is offered to keep the user primary group after deleting the user.
The System section of the web interface contains these entries:

- **Information** (page 68) provides general FreeNAS® system information such as hostname, operating system version, platform, and uptime
- **General** (page 69) configures general settings such as HTTPS access, the language, and the timezone
- **Boot** (page 72) creates, renames, and deletes boot environments. It also shows the condition of the Boot Volume
- **Advanced** (page 75) configures advanced settings such as the serial console, swap space, and console messages
- **Email** (page 80) configures the email address to receive notifications
- **System Dataset** (page 81) configures the location where logs and reporting graphs are stored
- **Tunables** (page 82) provides a front-end for tuning in real-time and to load additional kernel modules at boot time
- **Cloud Credentials** (page 85) is used to enter connection credentials for remote cloud service providers
- **Update** (page 88) performs upgrades and checks for system updates
- **Alerts** (page 91) lists the available Alert (page 311) conditions and provides configuration of the notification frequency for each alert
- **Alert Services** (page 92) configures services used to notify the administrator about system events
- **CAs** (page 93): import or create internal or intermediate CAs (Certificate Authorities)
- **Certificates** (page 95): import existing certificates or create self-signed certificates
- **Support** (page 98): report a bug or request a new feature

Each of these is described in more detail in this section.

5.1 Information

System → Information displays general information about the FreeNAS® system. An example is seen in Figure 5.1.

The information includes hostname, build version, type of CPU (platform), amount of memory, current system time, system uptime, number of users connected at the console or by serial, telnet, or SSH connections, and current load average. On systems supplied or certified by iXsystems, an additional Serial Number field showing the hardware serial number is displayed.

To change the system hostname, click the Edit button, type in the new hostname, and click OK. The hostname must include the domain name. If the network does not use a domain name, add .local after the hostname.
5.2 General

System → General is shown in Figure 5.2.

Table 5.1 summarizes the configurable settings in the General tab:
Table 5.1: General Configuration Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>drop-down menu</td>
<td>Set the web protocol to use when connecting to the web interface from a browser. To change the default HTTP to HTTPS or to HTTP+HTTPS, select a certificate to use in Certificate. If there are no certificates, first create a CA (page 93) then a certificate (page 95).</td>
</tr>
<tr>
<td>Certificate</td>
<td>drop-down menu</td>
<td>Required for HTTPS. Select a certificate to use for encrypted connections.</td>
</tr>
<tr>
<td>WebGUI IPv4 Address</td>
<td>drop-down menu</td>
<td>Choose a recent IP address to limit the usage when accessing the web interface. The built-in HTTP server binds to the wildcard address of 0.0.0.0 (any address) and issues an alert if the specified address becomes unavailable.</td>
</tr>
<tr>
<td>WebGUI IPv6 Address</td>
<td>drop-down menu</td>
<td>Choose a recent IPv6 address to limit the usage when accessing the web interface. The built-in HTTP server binds to any address issues an alert if the specified address becomes unavailable.</td>
</tr>
<tr>
<td>WebGUI HTTP Port</td>
<td>integer</td>
<td>Allow configuring a non-standard port for accessing the web interface over HTTP. Changing this setting can also require changing a Firefox configuration setting (https://www.redbrick.dcu.ie/~d_fens/articles/Firefox:_This_Address_is_Restricted).</td>
</tr>
<tr>
<td>WebGUI HTTPS Port</td>
<td>integer</td>
<td>Allow configuring a non-standard port for accessing the web interface over HTTPS.</td>
</tr>
<tr>
<td>WebGUI HTTP -> HTTPS Redirect</td>
<td>checkbox</td>
<td>Set to redirect HTTP connections to HTTPS. HTTPS must be selected in Protocol.</td>
</tr>
<tr>
<td>Language</td>
<td>drop-down menu</td>
<td>Select a localization.</td>
</tr>
<tr>
<td>Console Keyboard Map</td>
<td>drop-down menu</td>
<td>Select a keyboard layout.</td>
</tr>
<tr>
<td>Timezone</td>
<td>drop-down menu</td>
<td>Select a timezone.</td>
</tr>
<tr>
<td>Syslog level</td>
<td>drop-down menu</td>
<td>When Syslog server is defined, only logs matching this level are sent.</td>
</tr>
<tr>
<td>Syslog server</td>
<td>string</td>
<td>Enter an IP address or hostname:optional_port_number to send logs to. Configure to write log entries to both the console and the remote server.</td>
</tr>
</tbody>
</table>

After making any changes, click the Save button.

This screen also contains these buttons:

Reset Configuration to Defaults: reset the configuration database to the default base version. This does not delete user SSH keys or any other data stored in a user home directory. Since configuration changes stored in the configuration database are erased, this option is useful when a mistake has been made or to return a test system to the original configuration.

Save Config: save a backup copy of the current configuration database in the format hostname-version-architecture to the computer accessing the administrative interface. Saving the configuration after making any configuration changes is highly recommended. FreeNAS® automatically backs up the configuration database to the system dataset every morning at 3:45. However, this backup does not occur if the system is shut down at that time. If the system dataset is stored on the boot pool and the boot pool becomes unavailable, the backup will also not be available. The location of the system dataset is viewed or set using System → System Dataset.

Note: SSH (page 259) keys are not stored in the configuration database and must be backed up separately. System
host keys are files with names beginning with `ssh_host_` in `/usr/local/etc/ssh/`. The root user keys are stored in `/root/.ssh`.

There are two types of passwords. User account passwords for the base operating system are stored as hashed values, do not need to be encrypted to be secure, and are saved in the system configuration backup. Other passwords, like iSCSI CHAP passwords, Active Directory bind credentials, and cloud credentials are stored in an encrypted form to prevent them from being visible as plain text in the saved system configuration. The key or seed for this encryption is normally stored only on the operating system device. When `Save Config` is chosen, a dialog gives the option to `Export Password Secret Seed` with the saved configuration, allowing the configuration file to be restored to a different operating system device where the decryption seed is not already present. Configuration backups containing the seed must be physically secured to prevent decryption of passwords and unauthorized access.

Warning: The `Export Password Secret Seed` option is off by default and should only be used when making a configuration backup that will be stored securely. After moving a configuration to new hardware, media containing a configuration backup with a decryption seed should be securely erased before reuse.

Upload Config: allows browsing to the location of a previously saved configuration file to restore that configuration. The screen turns red as an indication that the system will need to reboot to load the restored configuration.

NTP Servers: The network time protocol (NTP) is used to synchronize the time on the computers in a network. Accurate time is necessary for the successful operation of time sensitive applications such as Active Directory or other directory services. By default, FreeNAS® is pre-configured to use three public NTP servers. If the network is using a directory service, ensure that the FreeNAS® system and the server running the directory service have been configured to use the same NTP servers.

Available NTP servers can be found at https://support.ntp.org/bin/view/Servers/NTPPoolServers. For time accuracy, choose NTP servers that are geographically close to the physical location of the FreeNAS® system.

Click **NTP Servers → Add NTP Server** to add an NTP server. Figure 5.3 shows the screen that appears. Table 5.2 summarizes the options available when adding an NTP server. `ntp.conf(5)` (https://www.freebsd.org/cgi/man.cgi?query=ntp.conf) explains these options in more detail.

![Add NTP Server](Fig. 5.3: Add an NTP Server)
Table 5.2: NTP Servers Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>string</td>
<td>Enter the hostname or IP address of the NTP server.</td>
</tr>
<tr>
<td>Burst</td>
<td>checkbox</td>
<td>Recommended when Max. Poll is greater than 10. Only use on private servers. Do not use with a public NTP server.</td>
</tr>
<tr>
<td>IBurst</td>
<td>checkbox</td>
<td>Speed up the initial synchronization, taking seconds rather than minutes.</td>
</tr>
<tr>
<td>Prefer</td>
<td>checkbox</td>
<td>This option is only recommended for highly accurate NTP servers, such as those with time monitoring hardware.</td>
</tr>
<tr>
<td>Min. Poll</td>
<td>integer</td>
<td>Minimum polling time in seconds. Must be a power of 2, and cannot be lower than 4 or higher than Max. Poll.</td>
</tr>
<tr>
<td>Max. Poll</td>
<td>integer</td>
<td>Maximum polling time in seconds. Must be a power of 2, and cannot be higher than 17 or lower than Min. Poll.</td>
</tr>
<tr>
<td>Force</td>
<td>checkbox</td>
<td>Force the addition of the NTP server, even if it is currently unreachable.</td>
</tr>
</tbody>
</table>

5.3 Boot

FreeNAS® supports a ZFS feature known as multiple boot environments. With multiple boot environments, the process of updating the operating system becomes a low-risk operation. The updater automatically creates a snapshot of the current boot environment and adds it to the boot menu before applying the update.

If an update fails, reboot the system and select the previous boot environment, using the instructions in *If Something Goes Wrong* (page 36), to instruct the system to go back to that system state.

Note: Boot environments are separate from the configuration database. Boot environments are a snapshot of the **operating system** at a specified time. When a FreeNAS® system boots, it loads the specified boot environment, or operating system, then reads the configuration database to load the current configuration values. If the intent is to make configuration changes rather than operating system changes, make a backup of the configuration database first using **System → General → Save Config.**

As seen in **Figure 5.4**, FreeNAS® displays the condition and statistics of the **Boot Volume**. It also shows the two boot environments that are created when FreeNAS® is installed. The system will boot into the **default** boot environment and users can make their changes and update from this version. The **Initial-Install** boot environment can be booted into if the system needs to be returned to a non-configured version of the installation.

If the **Wizard** (page 296) was used, a third boot environment called **Wizard-date** is also created, indicating the date and time the **Wizard** (page 296) was run.

![Fig. 5.4: Viewing Boot Environments](image)

Each boot environment entry contains this information:

- **Name:** the name of the boot entry as it will appear in the boot menu.
• **Active**: indicates which entry will boot by default if the user does not select another entry in the boot menu.

• **Created**: indicates the date and time the boot entry was created.

• **Keep**: indicates whether or not this boot environment can be pruned if an update does not have enough space to proceed. Click *Keep* for an entry if that boot environment should not be automatically pruned.

Highlight an entry to view the configuration buttons for it. These configuration buttons are shown:

• **Clone**: makes a new boot environment from the selected boot environment.

• **Delete**: used to delete the highlighted entry, which also removes that entry from the boot menu. Since an activated entry cannot be deleted, this button does not appear for the active boot environment. To delete an entry that is currently activated, first activate another entry, which will clear the *On Reboot* field of the currently activated entry. Note that this button does not appear for the default boot environment as this entry is needed to return the system to the original installation state.

• **Activate**: only appears on entries which are not currently set to *Active*. Changes the selected entry to the default boot entry on next boot. The status changes to *On Reboot* and the current *Active* entry changes from *On Reboot, Now to Now*, indicating that it was used on the last boot but will not be used on the next boot.

• **Rename**: used to change the name of the boot environment.

• **Keep/Unkeep**: used to toggle whether or not the updater can prune (automatically delete) this boot environment if there is not enough space to proceed with the update.

The buttons above the boot entries can be used to:

• **Create**: makes a new boot environment from the active environment. The active boot environment contains the text *On Reboot, Now* in the *Active* column. Only alphanumeric characters, underscores, and dashes are allowed in the name.

• **Scrub Boot**: can be used to perform a manual scrub of the boot devices. By default, the operating system device is scrubbed every 7 days. To change the default interval, change the number in the *Automatic scrub interval (in days)* field. The date and results of the last scrub are also listed in this screen. The condition of the operating system device should be listed as *HEALTHY*.

• **Status**: click this button to see the status of the operating system device. Figure 5.5, shows only one operating system device, which is *ONLINE*.

Note: Using *Clone* to clone the active boot environment functions the same as using *Create*.
If the system has a mirrored boot pool, there will be a Detach button in addition to the Replace button. To remove a device from the boot pool, highlight the device and click its Detach button. Alternately, if one of the operating system devices has an OFFLINE Status, click the device to replace, then click Replace to rebuild the boot mirror.

Note that the |os-device| cannot be replaced if it is the only |os-device| because it contains the operating system itself.

5.3.1 Mirroring the Operating System Device

If the system is currently booting from a single operating system device, another device can be added to create a mirrored operating system device. If one device in a mirror fails, the remaining device can still be used to boot the system.

Note: When adding another operating system device for a mirror, the new device must have at least the same capacity as the existing operating system device. Larger capacity devices can be added, but the mirror will only have the capacity of the smallest device. Different models of devices which advertise the same nominal size are not necessarily the same actual size. For this reason, adding another of the same model of operating system device is recommended.

In the example shown in Figure 5.6, the user has clicked System → Boot → Status to display the current status of the operating system device. The example indicates that there is currently one device, ada0p2, its status is ONLINE, and it is currently the only operating system device as indicated by the word stripe. To create a mirrored operating system device, click either the entry called freenas-boot or stripe, then click the Attach button. If another device is available, it appears in the Member disk drop-down menu. Select the desired device.

The Use all disk space option gives control of how much of the new device is made available to ZFS. The new device is partitioned to the same size as the existing device by default. Select Use all disk space to use all available space on
the new device. If either device in the mirror fails, it can be replaced with another of the same size as the original operating system device.

When *Use all disk space* is enabled, the entire capacity of the new device is used. If the original operating system device fails and is removed, the boot mirror will consist of just the newer drive, and will grow to whatever capacity it provides. However, new devices added to this mirror must now be as large as the new capacity.

Click *Attach Disk* to attach the new disk to the mirror.

![Attach Disk](image)

Fig. 5.6: Mirroring a Operating System Device

After the mirror is created, the *Status* screen indicates that it is now a *mirror*. The number of devices in the mirror are shown as in **Figure 5.7**.

![Status Screen](image)

Fig. 5.7: Viewing the Status of a Mirrored Operating System Device

5.4 Advanced

System → Advanced is shown in **Figure 5.8**. The configurable settings are summarized in **Table 5.3**.
Table 5.3: Advanced Configuration Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show Text Console without Password Prompt</td>
<td>checkbox</td>
<td>Set for the system to immediately display the text console after booting. Unset to require logging into the system before the console menu is shown.</td>
</tr>
<tr>
<td>Use Serial Console</td>
<td>checkbox</td>
<td>Do not enable this option if the serial port is disabled.</td>
</tr>
<tr>
<td>Serial Port Address</td>
<td>string</td>
<td>Enter a serial port address in hex.</td>
</tr>
<tr>
<td>Serial Port Speed</td>
<td>drop-down menu</td>
<td>Select the speed used by the serial port.</td>
</tr>
<tr>
<td>Enable powerd (Power Saving Daemon)</td>
<td>checkbox</td>
<td>powerd(8) (https://www.freebsd.org/cgi/man.cgi?query=powerd) monitors the system state and sets the CPU frequency accordingly.</td>
</tr>
<tr>
<td>Swap size</td>
<td>non-zero integer representing GiB</td>
<td>By default, all data disks are created with this amount of swap. Log or cache devices do not create with swap and are unaffected. Setting to 0 disables swap creation completely. This is strongly discouraged.</td>
</tr>
<tr>
<td>Show console messages in the footer</td>
<td>checkbox</td>
<td>Set to display console messages in real time at the bottom of the browser. Click the console to bring up a scrollable screen. Set Stop refresh in the scrollable screen to pause updating, and deselect the option to continue to watch the messages as they occur.</td>
</tr>
<tr>
<td>Show tracebacks in case of fatal errors</td>
<td>checkbox</td>
<td>Open a pop-up of diagnostic information when a fatal error occurs.</td>
</tr>
<tr>
<td>Show advanced fields by default</td>
<td>checkbox</td>
<td>Show Advanced Mode fields by default.</td>
</tr>
<tr>
<td>Enable autotune</td>
<td>checkbox</td>
<td>Enable an Autotune (page 77) script which attempts to optimize the system based on the installed hardware. Warning: Autotuning is only used as a temporary measure and is not a permanent fix for system hardware issues.</td>
</tr>
<tr>
<td>Enable debug kernel</td>
<td>checkbox</td>
<td>Use a debug version of the kernel on the next boot.</td>
</tr>
</tbody>
</table>

Continued on next page
Setting	Value	Description
MOTD banner | string | This message is shown when a user logs in with SSH.
Periodic Notification User | dropdown menu | Choose a user to receive security output emails. This output runs nightly but only sends email when the system reboots or encounters an error.
Report CPU usage in percentage | checkbox | Display CPU usage as percentages in Reporting (page 294).
Remote Graphite Server hostname | string | IP address or hostname of a remote server running Graphite (http://graphiteapp.org/).
Use FQDN for logging | checkbox | Include the Fully-Qualified Domain Name in logs to precisely identify systems with similar hostnames.
ATA Security User | dropdown menu | User passed to camcontrol security -u for unlocking Self-Encrypting Drives (page 77). Values are User or Master.
SED Password | string | Global password used to unlock Self-Encrypting Drives (page 77).
Reset SED Password | checkbox | Select to clear the Password for SED column of Storage → View Disks.

Click the Save button after making any changes.

This tab also contains this button:

Save Debug: used to generate a text file of diagnostic information. After the debug data is collected, the system prompts for a location to save the compressed .tgz text file.

5.4.1 Autotune

FreeNAS® provides an autotune script which optimizes the system depending on the installed hardware. For example, if a ZFS volume exists on a system with limited RAM, the autotune script automatically adjusts some ZFS sysctl values in an attempt to minimize ZFS memory starvation issues. It should only be used as a temporary measure on a system that hangs until the underlying hardware issue is addressed by adding more RAM. Autotune will always slow such a system, as it caps the ARC.

The Enable autotune option in System → Advanced is off by default. Enable this option to run the autotuner at boot time. To run the script immediately, reboot the system.

If the autotune script adjusts any settings, the changed values appear in System → Tunables. These values can be modified and overridden. Note that deleting tunables that were created by autotune only affects the current session, as autotune-set tunables are recreated at boot.

When attempting to increase the performance of the FreeNAS® system, and particularly when the current hardware may be limiting performance, try enabling autotune.

For those who wish to see which checks are performed, the autotune script is located in `/usr/local/bin/autotune`.

5.4.2 Self-Encrypting Drives

FreeNAS® version 11.1-U5 introduced Self-Encrypting Drive (SED) support. These SED specifications are supported:

- Legacy interface for older ATA devices. **Not recommended for security-critical environments**
- TCG Opal 1 (https://trustedcomputinggroup.org/wp-content/uploads/Opal_SSC_1.00_rev3.00-Final.pdf) legacy specification
- TCG OPAL 2 (https://trustedcomputinggroup.org/wp-content/uploads/TCG_Storage-Opal_SSC_v2.01_rev1.00.pdf) standard for newer consumer-grade devices
• **TCG Opalite** (https://trustedcomputinggroup.org/wp-content/uploads/TCG_Storage-Opalite_SSC_FAQ.pdf) is a reduced form of OPAL 2

• **TCG Pyrite Version 1** (https://trustedcomputinggroup.org/wp-content/uploads/TCG_Storage-Pyrite_SSC_v1.00_r1.00.pdf) and **Version 2** (https://trustedcomputinggroup.org/wp-content/uploads/TCG_Storage-Pyrite_SSC_v2.00_r1.00_PUB.pdf) are similar to Opalite, but hardware encryption is removed. Pyrite provides a logical equivalent of the legacy ATA security for non-ATA devices. Only the drive firmware is used to protect the device.

Danger: Pyrite Version 1 SEDs do not have PSID support and **can become unusable if the password is lost.**

• **TCG Enterprise** (https://trustedcomputinggroup.org/wp-content/uploads/TCG_Storage-SSC_Enterprise-v1.01_r1.00.pdf) is designed for systems with many data disks. These SEDs do not have the functionality to be unlocked before the operating system boots.

See this [Trusted Computing Group® and NVM Express® joint white paper](https://nvmexpress.org/wp-content/uploads/TCGandNVMe_Joint_White_Paper-TCG_Storage_Opal_and_NVMe_FINAL.pdf) for more details about these specifications.

FreeNAS® implements the security capabilities of **camcontrol** (https://www.freebsd.org/cgi/man.cgi?query=camcontrol) for legacy devices and **sedutil-cli** (https://www.mankier.com/8/sedutil-cli) for TCG devices. When managing a SED from the command line, it is important to use **sedutil-cli** rather than camcontrol to access the full capabilities of the device. FreeNAS® provides the **sedhelper** wrapper script to ease SED administration from the command line.

By default, SEDs are not locked until the administrator takes ownership of them. Ownership is taken by explicitly configuring a global or per-device password in the FreeNAS® web interface and adding the password to the SEDs.

A password-protected SED protects the data stored on the device when the device is physically removed from the FreeNAS® system. This allows secure disposal of the device without having to first wipe the contents. Repurposing a SED on another system requires the SED password.

5.4.2.1 Deploying SEDs

Run **sedutil-cli --scan** in the **Shell** (page 304) to detect and list devices. The second column of the results identifies the drive type:

- **no** indicates a non-SED device
- **1** indicates a legacy TCG OPAL 1 device
- **2** indicates a modern TCG OPAL 2 device
- **L** indicates a TCG Opalite device
- **p** indicates a TCG Pyrite 1 device
- **P** indicates a TCG Pyrite 2 device
- **E** indicates a TCG Enterprise device

Example:

```
root@truenas1:~ # sedutil-cli --scan
Scanning for Opal compliant disks
/dev/ada0  No  32GB SATA Flash Drive SFDK003L
/dev/ada1  No  32GB SATA Flash Drive SFDK003L
/dev/da0   No  HGST HUS726020AL4210 A7J0
/dev/da1   No  HGST HUS726020AL4210 A7J0
/dev/da10  E  WDC WUSTR1519ASS201 B925
/dev/da11  E  WDC WUSTR1519ASS201 B925
```
FreeNAS® supports setting a global password for all detected SEDs or setting individual passwords for each SED. Using a global password for all SEDs is strongly recommended to simplify deployment and avoid maintaining separate passwords for each SED.

Setting a global password for SEDs

Go to *System → Advanced → SED Password* and enter the password. **Record this password and store it in a safe place!**

Now the SEDs must be configured with this password. Go to the *Shell* (page 304) and enter `sedhelper setup password`, where `password` is the global password entered in *System → Advanced → SED Password*.

`sedhelper` ensures that all detected SEDs are properly configured to use the provided password:

```
root@truenas1:~ # sedhelper setup abcd1234
da9      [OK]
da10     [OK]
da11      [OK]
```

Rerun `sedhelper setup password` every time a new SED is placed in the system to apply the global password to the new SED.

Creating separate passwords for each SED

Go to *Storage → Volumes → View Disks*. Click the confirmed SED, then *Edit*. Enter and confirm the password in the *Password for SED* and *Confirm SED Password* fields.

The *Storage → Volumes → View Disks*. screen shows which disks have a configured SED password. The *SED Password* column shows a mark when the disk has a password. Disks that are not a SED or are unlocked using the global password are not marked in this column.

The SED must be configured to use the new password. Go to the *Shell* (page 304) and enter `sedhelper setup --disk da1 password`, where `da1` is the SED to configure and `password` is the created password from *Storage → Volumes → View Disks → Edit → Password for SED*.

This process must be repeated for each SED and any SEDs added to the system in the future.

Danger: Remember SED passwords! If the SED password is lost, SEDs cannot be unlocked and their data is unavailable. While it is possible to specify the PSID number on the label of the device with `sedutil-cli`, doing so erases the contents of the device rather than unlock it. Always record SED passwords whenever they are configured or modified and store them in a secure place!

5.4.2.2 Check SED Functionality

When SED devices are detected during system boot, FreeNAS® checks for configured global and device-specific passwords.

Unlocking SEDs allows a pool to contain a mix of SED and non-SED devices. Devices with individual passwords are unlocked with their password. Devices without a device-specific password are unlocked using the global password.

To verify SED locking is working correctly, go to the *Shell* (page 304). Enter `sedutil-cli --listLockingRange 0 password dev/da1`, where `da1` is the SED and `password` is the global or individual password for that SED. The command returns `ReadLockEnabled: 1, WriteLockEnabled: 1, and LockOnReset: 1` for drives with locking enabled:

```
root@truenas1:~ # sedutil-cli --listLockingRange 0 abcd1234 /dev/da9
Band[0]:
   Name:       Global_Range
```

79
5.5 Email

An automatic script sends a nightly email to the root user account containing important information such as the health of the disks. Alert (page 311) events are also emailed to the root user account. Problems with Scrubs (page 171) are reported separately in an email sent at 03:00AM.

Note: S.M.A.R.T. (page 252) reports are mailed separately to the address configured in that service.

The administrator typically does not read email directly on the FreeNAS® system. Instead, these emails are usually sent to an external email address where they can be read more conveniently. It is important to configure the system so it can send these emails to the administrator’s remote email account so they are aware of problems or status changes.

The first step is to set the remote address where email will be sent. Select Account → Users, click on root to highlight that user, then click Modify User. In the E-mail field, enter the email address on the remote system where email is to be sent, like admin@example.com. Click OK to save the settings.

Additional configuration is performed with System → Email, shown in Figure 5.9.

![Fig. 5.9: Email Screen](image)
Table 5.4: Email Configuration Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>From email</td>
<td>string</td>
<td>The envelope From address shown in the email. This can be set to make filtering mail on the receiving system easier. The friendly name is set like this: Friendly Name address@example.com</td>
</tr>
<tr>
<td>Outgoing mail server</td>
<td>string or IP address</td>
<td>Hostname or IP address of SMTP server used for sending this email.</td>
</tr>
<tr>
<td>Port to connect to</td>
<td>integer</td>
<td>SMTP port number. Typically 25, 465 (secure SMTP), or 587 (submission).</td>
</tr>
<tr>
<td>TLS/SSL</td>
<td>drop-down menu</td>
<td>Choose an encryption type. Choices are Plain, SSL, or TLS</td>
</tr>
<tr>
<td>Use SMTP Authentication</td>
<td>checkbox</td>
<td>Enable or disable SMTP AUTH (https://en.wikipedia.org/wiki/SMTP_Authentication) using PLAIN SASL. If enabled, enter the required Username and Password.</td>
</tr>
<tr>
<td>Username</td>
<td>string</td>
<td>Enter the SMTP username if the SMTP server requires authentication.</td>
</tr>
<tr>
<td>Password</td>
<td>string</td>
<td>Enter the SMTP password if the SMTP server requires authentication. Only plain text characters (7-bit ASCII) are allowed in passwords. UTF or composed characters are not allowed.</td>
</tr>
<tr>
<td>Password Confirmation</td>
<td>string</td>
<td>Confirm the SMTP password.</td>
</tr>
</tbody>
</table>

Click the Send Test Mail button to verify that the configured email settings are working. If the test email fails, double-check that the E-mail field of the root user is correctly configured by clicking the Modify User button for the root account in Account → Users → View Users.

Configuring email for TLS/SSL email providers is described in Are you having trouble getting FreeNAS to email you in Gmail? (https://forums.freenas.org/index.php?threads/are-you-having-trouble-getting-freenas-to-email-you-in-gmail.22517/).

Note: The FreeNAS® user who receives periodic email is set in the Periodic Notification User field in System → Advanced.

5.6 System Dataset

System → System Dataset, shown in Figure 5.10, is used to select the pool which contains the persistent system dataset. The system dataset stores debugging core files and Samba4 metadata such as the user or group cache and share level permissions. If the FreeNAS® system is configured to be a Domain Controller, all of the domain controller state is stored there as well, including domain controller users and groups.

Note: When the system dataset is moved, a new dataset is created and set active. The old dataset is intentionally not deleted by the system because the move might be transient or the information in the old dataset might be useful for later recovery.
Use the System dataset pool drop-down menu to select the volume (pool) to contain the system dataset. The system dataset can be moved to unencrypted volumes (pools) or encrypted volumes which do not have passphrases. If the system dataset is moved to an encrypted volume, that volume is no longer allowed to be locked or have a passphrase set.

Moving the system dataset also requires restarting the SMB (page 253) service. A dialog warns that the SMB service must be restarted, causing a temporary outage of any active SMB connections.

System logs can also be stored on the system dataset. Storing this information on the system dataset is recommended when large amounts of data is being generated and the system has limited memory or a limited capacity operating system device. Set Syslog to store system logs on the system dataset. Leave unset to store system logs in /var on the operating system device.

Set Reporting Database to store Reporting (page 294) data on the system dataset. Leave unset to create a /tmp disk in RAM to store the reporting database.

Click Save to save changes.

If the pool storing the system dataset is changed at a later time, FreeNAS® migrates the existing data in the system dataset to the new location.

Note: Depending on configuration, the system dataset can occupy a large amount of space and receive frequent writes. Do not put the system dataset on a flash drive or other media with limited space or write life.

5.7 Tunables

System → Tunables can be used to manage:

1. **FreeBSD sysctl:** a sysctl(8) (https://www.freebsd.org/cgi/man.cgi?query=sysctl) makes changes to the FreeBSD kernel running on a FreeNAS® system and can be used to tune the system.

2. **FreeBSD loaders:** a loader is only loaded when a FreeBSD-based system boots and can be used to pass a parameter to the kernel or to load an additional kernel module such as a FreeBSD hardware driver.

3. **FreeBSD rc.conf options:** rc.conf(5) (https://www.freebsd.org/cgi/man.cgi?query=rc.conf&manpath=FreeBSD+11.0-RELEASE) is used to pass system configuration options to the system startup scripts as the system boots. Since FreeNAS® has been optimized for storage, not all of the services mentioned in rc.conf(5) are available for configuration. Note that in FreeNAS®, customized rc.conf options are stored in /tmp/rc.conf.freenas.

Warning: Adding a sysctl, loader, or rc.conf option is an advanced feature. A sysctl immediately affects the kernel running the FreeNAS® system and a loader could adversely affect the ability of the FreeNAS® system to successfully boot. Do not create a tunable on a production system unless it is understood and ramifications have been tested for that change.
Since sysctl, loader, and rc.conf values are specific to the kernel parameter to be tuned, the driver to be loaded, or the service to configure, descriptions and suggested values can be found in the man page for the specific driver and in many sections of the FreeBSD Handbook (https://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/).

To add a loader, sysctl, or rc.conf option, go to System → Tunables → Add Tunable, to access the screen shown in Figure 5.11.

![Add Tunable](image)

Fig. 5.11: Adding a Tunable

Table 5.5 summarizes the options when adding a tunable.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>string</td>
<td>The name of the sysctl or driver to load.</td>
</tr>
<tr>
<td>Value</td>
<td>integer or string</td>
<td>Set a value for the Variable. Refer to the man page for the specific driver or the FreeBSD Handbook (https://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/) for suggested values.</td>
</tr>
<tr>
<td>Type</td>
<td>drop-down menu</td>
<td>Choices are Loader, rc.conf, or Sysctl.</td>
</tr>
<tr>
<td>Comment</td>
<td>string</td>
<td>Enter a userful description of this tunable.</td>
</tr>
<tr>
<td>Enabled</td>
<td>checkbox</td>
<td>Unset this option to disable the tunable without deleting it.</td>
</tr>
</tbody>
</table>

Note: As soon as a Sysctl is added or edited, the running kernel changes that variable to the value specified. However, when a Loader or rc.conf value is changed, it does not take effect until the system is rebooted. Regardless of the type of tunable, changes persist at each boot and across upgrades unless the tunable is deleted or the Enabled option is deselected.

Any added tunables are listed in System → Tunables. To change the value of an existing tunable, click its Edit button. To remove a tunable, click its Delete button.

Restarting the FreeNAS® system after making sysctl changes is recommended. Some sysctls only take effect at system startup, and restarting the system guarantees that the setting values correspond with what is being used by the running system.

The web interface does not display the sysctls that are pre-set when FreeNAS® is installed. FreeNAS® 11.2 ships with the sysctls set:
Do not add or edit these default sysctls as doing so may render the system unusable.

The web interface does not display the loaders that are pre-set when FreeNAS® is installed. FreeNAS® 11.2 ships with these loaders set:

```
product="FreeNAS"
autoboot_delay="5"
loader_logo="FreeNAS"
loader_menu_title="Welcome to FreeNAS"
loader_brand="FreeNAS"
loader_version=""
kern.cam.boot_delay="30000"
debug.debugger_on_panic=1
debug.ddb.textdump.pending=1
hw.hptrr.attach_generic=0
vfs.mountroot.timeout="30"
ispfw_load=YES
ipmi_load=YES
freenas_sysctl_load=YES
hint.isp.0.role=2
hint.isp.1.role=2
hint.isp.2.role=2
hint.isp.3.role=2
module_path="/boot/kernel;/boot/modules;/usr/local/modules"
net.inet6.ip6.auto_linklocal="0"
net.inet.tcp.reass.maxqueueulen=1448
vfs.zfs.vol.mode=2
kern.geom.label.disk_ident.enable=0
kern.geom.label.ufs.enable=0
kern.geom.label.ufsdir.enable=0
kern.geom.label.reiserfs.enable=0
kern.geom.label.ntfs.enable=0
kern.geom.label.msdosfs.enable=0
kern.geom.label.ext2fs.enable=0
hint.ahciem.0.disabled="1"
hint.ahciem.1.disabled="1"
kern.msgbufsize="524288"
hw.mfi.mrsas_enable="1"
hw.usb.no_shutdown_wait=1
vfs.nfsd.fha.write=0
vfs.nfsd.fha.max_nfsds_per_fh=32
vm.lowmem_period=0
```

Do not add or edit the default tunables. Changing the default tunables can make the system unusable.

The ZFS version used in 11.2 deprecates these tunables:

```
kvfs.zfs.write_limit_override
vfs.zfs.write_limit_inflated
vfs.zfs.write_limit_max
vfs.zfs.write_limit_min
vfs.zfs.write_limit_shift
```
After upgrading from an earlier version of FreeNAS®, these tunables are automatically deleted. Please do not manually add them back.

5.8 Cloud Credentials

FreeNAS® can use cloud services for features like **Cloud Sync** (page 101). The credentials to provide secure connections with cloud services are entered here. Amazon S3, Backblaze B2, Box, Dropbox, FTP, Google Cloud Storage, Google Drive, HTTP, hubiC, Mega, Microsoft Azure Blob Storage, Microsoft OneDrive, pCloud, SFTP, WebDAV, and Yandex are supported.

Note: The hubiC cloud service has suspended creation of new accounts (https://www.ovh.co.uk/subscriptions-hubic-ended/).

Warning: Cloud Credentials are stored in encrypted form. To be able to restore Cloud Credentials from a saved configuration (page 69), **Export Password Secret Seed** must be set when saving that configuration.

Select **System → Cloud Credentials** to see the screen shown in **Figure 5.12**.

![Fig. 5.12: Cloud Credentials List](image)

The list shows the **Account Name** and **Provider** for each credential. There are options to **Edit** and **Delete** a credential after selecting it. Click **Add Cloud Credential** to display the dialog shown in **Figure 5.13**.
Amazon S3 options are shown by default. Enter a descriptive and unique name for the cloud credential in the *Account Name* field, then select a *Provider*. The remaining options vary by provider, and are shown in Table 5.6.

Table 5.6: Cloud Credential Options

<table>
<thead>
<tr>
<th>Provider</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon S3</td>
<td>Access Key ID</td>
<td>Enter the Amazon Web Services Key ID. This is found on Amazon AWS (https://aws.amazon.com) by going through My account -> Security Credentials -> Access Keys.</td>
</tr>
<tr>
<td>Amazon S3</td>
<td>Secret Access Key</td>
<td>Enter the Amazon Web Services password. If the Secret Access Key cannot be found or remembered, go to My Account -> Security Credentials -> Access Keys and create a new key pair.</td>
</tr>
<tr>
<td>Amazon S3</td>
<td>Endpoint URL</td>
<td>Leave blank when using AWS as the available buckets are fetched dynamically. Only enter an Endpoint URL (https://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteEndpoints.html) if using custom S3 API. URL general format: bucket-name.s3website-region.amazonaws.com. Refer to the AWS Documentation for a list of Simple Storage Service Websites Endpoints (https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_website_region_endpoints).</td>
</tr>
<tr>
<td>Amazon S3</td>
<td>Endpoint does not support regions</td>
<td>Skip automatic detection of the Endpoint URL region. Set this when configuring a custom Endpoint URL.</td>
</tr>
<tr>
<td>Amazon S3</td>
<td>Use v2 signatures</td>
<td>Force using Signature Version 2 (https://docs.aws.amazon.com/general/latest/gr/signature-version-2.html) to sign API requests. Set this when configuring a custom Endpoint URL.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 5.6 – continued from previous page

<table>
<thead>
<tr>
<th>Provider</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backblaze B2</td>
<td>Account ID or Application Key ID, Application Key</td>
<td>Enter the Account ID and Master Application Key (https://help.backblaze.com/hc/en-us/articles/224991568-Where-can-I-find-my-Account-ID-and-Application-Key) for the Backblaze B2 account. These are visible after logging into the account, clicking Buckets, and clicking Show Account ID and Application Key. An Application Key with limited permissions can be used in place of the Account ID. Create a new Application Key, enter the key string in the Application Key field, and replace the Account ID with the keyID.</td>
</tr>
<tr>
<td>Box</td>
<td>Automatic config, OAuth Client ID, OAuth Client Secret, Access Token</td>
<td>Configured with Open Authentication (page 88).</td>
</tr>
<tr>
<td>Dropbox</td>
<td>Automatic config OAuth Client ID, OAuth Client Secret, Access Token</td>
<td>Configured with Open Authentication (page 88). The access token can be manually created by going to the Dropbox App Console (https://www.dropbox.com/developers/apps). After creating an app, go to Settings and click Generate under the Generated access token field.</td>
</tr>
<tr>
<td>FTP</td>
<td>Host, Port</td>
<td>Enter the FTP host and port.</td>
</tr>
<tr>
<td>FTP</td>
<td>Username, Password</td>
<td>Enter the FTP username and password.</td>
</tr>
<tr>
<td>Google Cloud Storage</td>
<td>Service Account</td>
<td>Browse to the location of the saved Google Cloud Storage key and select it.</td>
</tr>
<tr>
<td>Google Drive</td>
<td>Automatic config OAuth Client ID, OAuth Client Secret, Access Token, Team Drive ID</td>
<td>OAuth Client ID, OAuth Client Secret, and Access Token are configured with Open Authentication (page 88). The Team Drive ID is only used when connecting to a Team Drive (https://developers.google.com/drive/api/v3/reference/teamdrives). The ID is also the ID of the top level folder of the Team Drive.</td>
</tr>
<tr>
<td>HTTP</td>
<td>URL</td>
<td>Enter the URL.</td>
</tr>
<tr>
<td>hubiC</td>
<td>Access Token</td>
<td>Enter the access token. See the Hubic guide (https://api.hubic.com/sandbox) for instructions to obtain an access token.</td>
</tr>
<tr>
<td>Mega</td>
<td>Username, Password</td>
<td>Enter the Mega (https://mega.nz) username and password.</td>
</tr>
<tr>
<td>Microsoft Azure Blob Storage</td>
<td>Account Name, Account Key</td>
<td>Enter the Azure Blob Storage account name and key.</td>
</tr>
<tr>
<td>Microsoft OneDrive</td>
<td>Automatic config, OAuth Client ID, OAuth Client Secret, Access Token, Drive Account Type, Drive ID</td>
<td>OAuth Client ID, OAuth Client Secret, and Access Token are configured with Open Authentication (page 88). Choose the account type: PERSONAL, BUSINESS, or SharePoint (https://products.office.com/en-us/sharepoint/collaboration) DOCUMENT_LIBRARY. To find the Drive ID, log in to the OneDrive account (https://onedrive.live.com) and copy the string that appears in the browser address bar after cid=. Example: https://onedrive.live.com/?id=root&cid=12A34567B89C10D1, where 12A34567B89C10D1 is the drive ID.</td>
</tr>
<tr>
<td>SFTP</td>
<td>Host, Port</td>
<td>Enter the SFTP host and port.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 5.6 – continued from previous page

<table>
<thead>
<tr>
<th>Provider</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFTP</td>
<td>Username, Password, PEM-encoded private key file path</td>
<td>Enter the SFTP username, password, and PEM-encoded private key file path.</td>
</tr>
<tr>
<td>WebDAV</td>
<td>URL, WebDAV Service</td>
<td>Enter URL and use the dropdown to select the WebDAV service.</td>
</tr>
<tr>
<td>WebDAV</td>
<td>Username, Password</td>
<td>Enter the username and password.</td>
</tr>
<tr>
<td>Yandex</td>
<td>Automatic config, OAuth Client ID, OAuth Client Secret, Access Token</td>
<td>Configured with Open Authentication (page 88).</td>
</tr>
</tbody>
</table>

For Amazon S3, Access Key and Secret Key are shown. These values are found on the Amazon AWS website by clicking on the account name, then My Security Credentials and Access Keys (Access Key ID and Secret Access Key). Copy the Access Key value to the FreeNAS® Cloud Credential Access Key field, then enter the Secret Key value saved when the key pair was created. If the Secret Key value is unknown, a new key pair can be created on the same Amazon screen.

The Google Cloud Storage JSON Service Account Key is found on the Google Cloud Platform Console (https://console.cloud.google.com/apis/credentials). Open Authentication (OAuth) (https://openauthentication.org/) is used with some cloud providers. These providers have an Automatic config link that opens a dialog to log in to that provider and fill the FreeNAS® OAuth Client ID, OAuth Client Secret, and Access Token fields with valid credentials.

More details about individual Provider settings are available in the rclone documentation (https://rclone.org/about/).

5.9 Update

FreeNAS® has an integrated update system to make it easy to keep up to date.

5.9.1 Preparing for Updates

It is best to perform updates at times the FreeNAS® system is idle, with no clients connected and no scrubs or other disk activity going on. Most updates require a system reboot. Plan updates around scheduled maintenance times to avoid disrupting user activities.

The update process will not proceed unless there is enough free space in the boot pool for the new update files. If a space warning is shown, use Boot (page 72) to remove unneeded boot environments.

5.9.2 Updates and Trains

Cryptographically signed update files are used to update FreeNAS®. Update files provide flexibility in deciding when to upgrade the system. Boot environments (page 36) make it possible to test an update.

Figure 5.14 shows an example of the System → Update screen.
The system checks daily for updates and downloads an update if one is available. An alert is issued when a new update becomes available. The automatic check and download of updates can be disabled by unsetting `Check for Updates Daily and Download if Available`.

This screen lists the URL of the official update server in case that information is needed in a network with outbound firewall restrictions. It also shows which software branch, or `train`, is being tracked for updates.

Several trains are available for updates. Update trains are labeled with a numeric version and a short description. The current version of FreeNAS® receives regular bug fixes and new features. Supported older versions of FreeNAS® only receive maintenance updates. Several specific words are used to describe the type of train:

- **STABLE**: Bug fixes and new features are available from this train. Upgrades available from a STABLE train are tested and ready to apply to a production environment.
- **Nightlies**: Experimental train used for testing future versions of FreeNAS®.
- **SDK**: Software Developer Kit train. This has additional development tools for testing and debugging FreeNAS®.

Warning: Only STABLE trains are recommended for regular usage. Other trains are made available for pre-production testing and updates to legacy versions. Pre-production testing trains are provided only to permit testing of new versions before switching to a new branch. Before using a non-production train, be prepared to experience bugs or problems. Testers are encouraged to submit bug reports at https://bugs.ixsystems.com.

The train selector does not allow downgrades. For example, a FreeNAS® system using a Nightlies upgrade train is not allowed to switch to a STABLE train. A version 9.10 train cannot be selected while booted in a version 11 boot environment. To go back to an earlier version after testing or running a more recent version of FreeNAS®, reboot and select a boot environment (page 72) for that earlier version. System → Update can then be used to check for updates from the related train.

The Verify Install button verifies that the operating system files in the current installation do not have any inconsistencies. If any problems are found, a pop-up menu lists the files with checksum mismatches or permission errors.
5.9.3 Checking for Updates

Check for updates by making sure the desired train is selected and clicking the *Check Now* button. Any available updates are listed. An example is shown in Figure 5.15. Click the *ChangeLog* link to open the log of changes in a web browser. Click the *ReleaseNotes* link to open the Release Notes in the browser.

![Check Now dialog](image)

Fig. 5.15: Reviewing Updates

5.9.4 Applying Updates

Make sure the system is in a low-usage state as described above in *Preparing for Updates* (page 88).

Click the *OK* button to immediately download and install an update. Be aware that some updates automatically reboot the system after they are applied.

Warning: Each update creates a boot environment. If the update process needs more space, it attempts to remove old boot environments. Boot environments marked with the *Keep* attribute as shown in *Boot* (page 72) will not be removed. If space for a new boot environment is not available, the upgrade fails. Space on the boot device can be manually freed using *System → Boot*. Review the boot environments and remove the *Keep* attribute or delete any boot environments that are no longer needed.

During the update process a progress dialog appears. **Do not** interrupt the update until it completes.

Updates can also be downloaded and applied later. To do so, unset the *Apply updates after downloading* option before pressing *OK*. In this case, this screen closes after updates are downloaded. Downloaded updates are listed in the *Pending Updates* section of the screen shown in Figure 5.14. When ready to apply the previously downloaded updates, click the *Apply Pending Updates* button. Remember that the system reboots after the updates are applied.

Warning: After updates have completed, reboot the system. Configuration changes made after an update but before that final reboot will not be saved.

5.9.5 Manual Updates

Updates can be manually downloaded as a file with a name ending in `-manual-update-unsigned.tar`. Find a `.tar` file with the desired version at https://download.freenas.org/. After obtaining the update file, click *Manual Update* and choose a location to temporarily store the file on the FreeNAS® system. Use the file browser to locate the update file, then click *Apply Update*.
There is also an option to back up the system configuration before updating. Click Click here and select any options to export in the configuration file. Click OK to open a popup window to save the system configuration. A progress dialog is displayed during the update. **Do not** interrupt the update.

Tip: Manual updates cannot be used to upgrade from older major versions.

5.10 Alerts

`System → Alerts` displays the default notification frequency for each type of `Alert` (page 311). An example is seen in **Figure 5.16**.

![Fig. 5.16: Configure Alert Notification Frequency](image)

To change the notification frequency of an alert, click its drop-down menu and select **IMMEDIATELY, HOURLY, DAILY,** or **NEVER.**
To configure where to send alerts, use Alert Services (page 92).

5.11 Alert Services

FreeNAS® can use a number of methods to notify the administrator of system events that require attention. These events are system Alerts (page 311) marked WARN or CRITICAL.

Currently available alert services:

- AWS-SNS (https://aws.amazon.com/sns/)
- E-Mail
- Hipchat (https://www.atlassian.com/software/hipchat)
- InfluxDB (https://www.influxdata.com/)
- Mattermost (https://about.mattermost.com/)
- OpsGenie (https://www.opsgenie.com/)
- PagerDuty (https://www.pagerduty.com/)
- SNMP Trap (https://www.freebsd.org/cgi/man.cgi?query=snmptrap)
- Slack (https://slack.com/)
- VictorOps (https://victorops.com/)

Warning: These alert services might use a third party commercial vendor not directly affiliated with iXsystems. Please investigate and fully understand that vendor's pricing policies and services before using their alert service. iXsystems is not responsible for any charges incurred from the use of third party vendors with the Alert Services feature.

Select System → Alert Services to show the Alert Services screen. Click Add Service to display the dialog shown in Figure 5.17.

![Add Alert Service](image)

Fig. 5.17: Add Alert Service
Enter a specific Name for the new alert service. The Type drop-down menu is used to pick a specific alert service. The Settings area allows configuring when specific alerts will trigger. Options are to Inherit the setting from Alerts (page 91) or generate the alert Immediately, Hourly, Daily, or Never. The fields shown in the rest of the dialog change to those required by that service.

Click Send Test Alert to test the current selections. Click OK to save the new alert service. To send a test alert using an existing service, highlight an alert entry, click Edit, and click Send Test Alert.

System alerts marked WARN or CRITICAL are sent to each alert service that has been configured and enabled.

Alert services are deleted from this list by clicking them and then clicking Delete at the bottom of the window. To disable an alert service, click Edit and unset Enabled.

5.12 CAs

FreeNAS® can act as a Certificate Authority (CA). When encrypting SSL or TLS connections to the FreeNAS® system, either import an existing certificate, or create a CA on the FreeNAS® system, then create a certificate. This certificate will appear in the drop-down menus for services that support SSL or TLS.

For secure LDAP, the public key of an existing CA is imported with Import CA, or a new CA created on the FreeNAS® system and used on the LDAP server also.

Figure 5.18 shows the screen after clicking System → CAs.

![Fig. 5.18: Initial CA Screen](image)

If the organization already has a CA, the CA certificate and key can be imported. Click the Import CA button to open the configuration screen shown in Figure 5.19. The configurable options are summarized in Table 5.7.

![Fig. 5.19: Importing a CA](image)
Table 5.7: Importing a CA Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifier</td>
<td>string</td>
<td>Enter a descriptive name for the CA using only alphanumeric, underscore (_), and dash (-) characters.</td>
</tr>
<tr>
<td>Certificate</td>
<td>string</td>
<td>Paste in the certificate for the CA.</td>
</tr>
<tr>
<td>Private Key</td>
<td>string</td>
<td>If there is a private key associated with the Certificate, paste it here. Private keys must be at least 1024 bits long.</td>
</tr>
<tr>
<td>Passphrase</td>
<td>string</td>
<td>If the Private Key is protected by a passphrase, enter it here and repeat it in the Confirm Passphrase field.</td>
</tr>
</tbody>
</table>

To create a new CA, first decide if it will be the only CA which will sign certificates for internal use or if the CA will be part of a certificate chain (https://en.wikipedia.org/wiki/Root_certificate).

To create a CA for internal use only, click the Create Internal CA button which will open the screen shown in Figure 5.20.

![Create Internal CA](image)

Fig. 5.20: Creating an Internal CA

The configurable options are described in Table 5.8. When completing the fields for the certificate authority, supply the information for the organization.
Table 5.8: Internal CA Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifier</td>
<td>string</td>
<td>Enter a descriptive name for the CA using only alphanumeric, underscore (_), and dash (-) characters.</td>
</tr>
<tr>
<td>Key Length</td>
<td>drop-down menu</td>
<td>For security reasons, a minimum of 2048 is recommended.</td>
</tr>
<tr>
<td>Digest Algo-</td>
<td>drop-down menu</td>
<td>The default is acceptable unless the organization requires a different</td>
</tr>
<tr>
<td>rithm</td>
<td></td>
<td>algorithm.</td>
</tr>
<tr>
<td>Lifetime</td>
<td>integer</td>
<td>The lifetime of the CA is specified in days.</td>
</tr>
<tr>
<td>Country</td>
<td>drop-down menu</td>
<td>Select the country for the organization.</td>
</tr>
<tr>
<td>State</td>
<td>string</td>
<td>Enter the state or province of the organization.</td>
</tr>
<tr>
<td>Locality</td>
<td>string</td>
<td>Enter the location of the organization.</td>
</tr>
<tr>
<td>Organization</td>
<td>string</td>
<td>Enter the name of the company or organization.</td>
</tr>
<tr>
<td>Email Address</td>
<td>string</td>
<td>Enter the email address for the person responsible for the CA.</td>
</tr>
<tr>
<td>Common Name</td>
<td>string</td>
<td>Enter the fully-qualified hostname (FQDN) of the system. The Common Name must be unique within a certificate chain.</td>
</tr>
<tr>
<td>Subject Alter-</td>
<td>string</td>
<td>Multi-domain support. Enter additional domain names and separate them with a space.</td>
</tr>
<tr>
<td>nate Names</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To create an intermediate CA which is part of a certificate chain, click Create Intermediate CA. This screen adds one more option to the screen shown in Figure 5.20:

- **Signing Certificate Authority**: this drop-down menu is used to specify the root CA in the certificate chain. This CA must first be imported or created.

Imported or created CAs are added as entries in System → CAs. The columns in this screen indicate the name of the CA, whether it is an internal CA, whether the issuer is self-signed, the number of certificates that have been issued by the CA, the distinguished name of the CA, the date and time the CA was created, and the date and time the CA expires.

Clicking the entry for a CA causes these buttons to become available:

- **Sign CSR**: used to sign internal Certificate Signing Requests created using System → Certificates → Create Certificate Signing Request.

- **Export Certificate**: prompts to browse to the location to save a copy of the CA X.509 certificate on the computer being used to access the FreeNAS® system.

- **Export Private Key**: prompts to browse to the location to save a copy of the CA private key on the computer being used to access the FreeNAS® system. This option only appears if the CA has a private key.

- **Delete**: prompts for confirmation before deleting the CA.

5.13 Certificates

FreeNAS® can import existing certificates, create new certificates, and issue certificate signing requests so that created certificates can be signed by the CA which was previously imported or created in CAs (page 93). Figure 5.21 shows the initial screen after clicking System → Certificates.

![Initial Certificates Screen](image-url)

Fig. 5.21: Initial Certificates Screen
To import an existing certificate, click *Import Certificate* to open the configuration screen shown in Figure 5.22. When importing a certificate chain, paste the primary certificate, followed by any intermediate certificates, followed by the root CA certificate.

The configurable options are summarized in Table 5.9.

![Import Certificate](image)

Table 5.9: Certificate Import Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifier</td>
<td>string</td>
<td>Enter a descriptive name for the certificate using only alphanumeric, underscore (_), and dash (–) characters.</td>
</tr>
<tr>
<td>Certificate</td>
<td>string</td>
<td>Paste the contents of the certificate.</td>
</tr>
<tr>
<td>Private Key</td>
<td>string</td>
<td>Paste the private key associated with the certificate. Private keys must be at least 1024 bits long.</td>
</tr>
<tr>
<td>Passphrase</td>
<td>string</td>
<td>If the private key is protected by a passphrase, enter it here and repeat it in the Confirm Passphrase field.</td>
</tr>
</tbody>
</table>

To create a new self-signed certificate, click the *Create Internal Certificate* button to see the screen shown in Figure 5.23. The configurable options are summarized in Table 5.10. When completing the fields for the certificate authority, use the information for the organization. Since this is a self-signed certificate, use the CA that was imported or created with CAs (page 93) as the signing authority.
Table 5.10: Certificate Creation Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signing Certificate Authority</td>
<td>drop-down menu</td>
<td>Select the CA which was previously imported or created using CAs (page 93).</td>
</tr>
<tr>
<td>Identifier</td>
<td>string</td>
<td>Enter a descriptive name for the certificate using only alphanumeric, underscore (_), and dash (-) characters.</td>
</tr>
<tr>
<td>Key Length</td>
<td>drop-down menu</td>
<td>For security reasons, a minimum of 2048 is recommended.</td>
</tr>
<tr>
<td>Digest Algorithm</td>
<td>drop-down menu</td>
<td>The default is acceptable unless the organization requires a different algorithm.</td>
</tr>
<tr>
<td>Lifetime</td>
<td>integer</td>
<td>The lifetime of the certificate is specified in days.</td>
</tr>
<tr>
<td>Country</td>
<td>drop-down menu</td>
<td>Select the country for the organization.</td>
</tr>
<tr>
<td>State</td>
<td>string</td>
<td>State or province for the organization.</td>
</tr>
<tr>
<td>Locality</td>
<td>string</td>
<td>Location of the organization.</td>
</tr>
<tr>
<td>Organization</td>
<td>string</td>
<td>Name of the company or organization.</td>
</tr>
<tr>
<td>Email Address</td>
<td>string</td>
<td>Email address for the person responsible for the CA.</td>
</tr>
</tbody>
</table>

Fig. 5.23: Creating a New Certificate

Continued on next page
Table 5.10 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Name</td>
<td>string</td>
<td>Enter the fully-qualified hostname (FQDN) of the system. The Common Name must be unique within a certificate chain.</td>
</tr>
<tr>
<td>Subject Alternate Names</td>
<td>string</td>
<td>Multi-domain support. Enter additional domain names and separate them with a space.</td>
</tr>
</tbody>
</table>

If the certificate is signed by an external CA, such as Verisign, instead create a certificate signing request. To do so, **click Create Certificate Signing Request.** A screen like the one in **Figure 5.23** opens, but without the **Signing Certificate Authority** field.

Certificates that are imported, self-signed, or for which a certificate signing request is created are added as entries to **System → Certificates.** In the example shown in **Figure 5.24,** a self-signed certificate and a certificate signing request have been created for the fictional organization **My Company.** The self-signed certificate was issued by the internal CA named **My_Company** and the administrator has not yet sent the certificate signing request to Verisign so that it can be signed. Once that certificate is signed and returned by the external CA, it should be imported using **Import Certificate** so it is available as a configurable option for encrypting connections.

![Fig. 5.24: Managing Certificates](image)

Clicking an entry activates these configuration buttons:

- **View:** use this option to view the contents of an existing certificate or to edit the **Identifier.**
- **Export Certificate** saves a copy of the certificate or certificate signing request to the system being used to access the FreeNAS® system. For a certificate signing request, send the exported certificate to the external signing authority so that it can be signed.
- **Export Private Key** saves a copy of the private key associated with the certificate or certificate signing request to the system being used to access the FreeNAS® system.
- **Edit** shows the details for an existing certificate signing request and includes an area to paste a **Certificate.**
- **Delete** is used to delete a certificate or certificate signing request.

5.14 Support

The FreeNAS® **Support** tab, shown in **Figure 5.25,** provides a built-in ticketing system for generating bug reports and feature requests.
Fig. 5.25: Support Tab

This screen provides a built-in interface to the FreeNAS® issue tracker located at https://bugs.ixsystems.com. When using the FreeNAS® bug tracker for the first time, go to the website, click the Register link, fill out the form, and reply to the registration email. This will create a username and password which can be used to create bug reports and receive notifications as the reports are actioned.

Before creating a bug report or feature request, ensure that an existing report does not already exist at https://bugs.ixsystems.com. If a similar issue is already present and has not been marked as Closed or Resolved, comment on that issue, adding new information to help solve it. If similar issues have already been Closed or Resolved, create a new issue and refer to the previous issue.

Note: Update the system to the latest version of STABLE and retest before reporting an issue. Newer versions of the software might have already fixed the problem.

To generate a report using the built-in Support screen, complete these fields:

- **Username:** enter the login name created when registering at https://bugs.ixsystems.com.
- **Password:** enter the password associated with the registered login name.
- **Type:** select Bug when reporting an issue or Feature when requesting a new feature.
- **Category:** this drop-down menu is empty until a registered Username and Password are entered. An error message is displayed if either value is incorrect. After the Username and Password are validated, possible categories are populated to the drop-down menu. Select the one that best describes the bug or feature being reported.
- **Attach Debug Info:** enabling this option is recommended so an overview of the system hardware, build string, and configuration is automatically generated and included with the ticket. Generating and attaching a debug to the ticket can take some time. An error will occur if the debug is more than the file size limit of 20 MiB.
- **Subject:** enter a descriptive title for the ticket. A good Subject makes it easy to find similar reports.
• **Description:** enter a one- to three-paragraph summary of the issue that describes the problem, and if applicable, what steps can be taken to reproduce it.

• **Attachments:** this is the only optional field. It is useful for including configuration files or screenshots of any errors or tracebacks.

Click *Submit* to automatically generate and upload the report to https://bugs.ixsystems.com. This process can take several minutes while information is collected and sent.

After the new ticket is created, the URL is shown for updating with more information.
The Tasks section of the administrative GUI is used to configure repetitive tasks:

- **Cloud Sync** (page 101) schedules data synchronization to cloud providers
- **Cron Jobs** (page 107) schedules a command or script to automatically execute at a specified time
- **Init/Shutdown Scripts** (page 109) configures a command or script to automatically execute during system startup or shutdown
- **Rsync Tasks** (page 110) schedules data synchronization to another system
- **S.M.A.R.T. Tests** (page 117) schedules disk tests

Each of these tasks is described in more detail in this section.

Note: By default, **Scrubs** (page 171) are run once a month by an automatically-created task. **S.M.A.R.T. Tests** (page 117) and **Periodic Snapshot Tasks** (page 158) must be set up manually.

6.1 Cloud Sync

Files or directories can be synchronized to remote cloud storage providers with the **Cloud Sync** feature.

Warning: This Cloud Sync task might go to a third party commercial vendor not directly affiliated with iXsystems. Please investigate and fully understand that vendor’s pricing policies and services before creating any Cloud Sync task. iXsystems is not responsible for any charges incurred from the use of third party vendors with the Cloud Sync feature.

Cloud Credentials (page 85) must be pre-defined before a cloud sync is created. One set of credentials can be used for more than one cloud sync. For example, a single set of credentials for Amazon S3 can be used for separate cloud syncs that push different sets of files or directories.

A cloud storage area must also exist. With Amazon S3, these are called **buckets**. The bucket must be created before a sync task can be created.

After the credentials and receiving bucket have been configured, **Tasks → Cloud Syncs → Add Cloud Sync** is used to define the schedule for running a cloud sync task. An example is shown in Figure 6.1.
Table 6.1 shows the configuration options for Cloud Syncs.

Fig. 6.1: Adding a Cloud Sync
<table>
<thead>
<tr>
<th>Setting</th>
<th>Value Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>string</td>
<td>Enter a descriptive name for this Cloud Sync.</td>
</tr>
<tr>
<td>Direction</td>
<td>string</td>
<td>Push sends data to cloud storage. Pull receives data from cloud storage.</td>
</tr>
<tr>
<td>Provider</td>
<td>drop-down menu</td>
<td>Choose the cloud storage provider credentials from the list of entered Cloud Credentials (page 85). The UI tests the credential and displays an error if a connection cannot be made.</td>
</tr>
<tr>
<td>Amazon S3 Buckets</td>
<td>drop-down menu</td>
<td>Only appears when a valid S3 credential is the Provider. Select the pre-defined S3 bucket to use.</td>
</tr>
<tr>
<td>Folder</td>
<td>string</td>
<td>Only appears when an S3 credential is the Provider. Optionally enter the name of the folder within the selected bucket.</td>
</tr>
<tr>
<td>Server Side Encryption</td>
<td>drop-down menu</td>
<td>Only appears when an S3 credential is the Provider. Choices are None (no encryption) or AES-256 (encrypted).</td>
</tr>
<tr>
<td>Path</td>
<td>browse button</td>
<td>Select the directories or files to be sent to the cloud for Push syncs, or the destination to be written as the destinations for Pull syncs. Be cautious about the destination of Pull jobs to avoid overwriting existing files.</td>
</tr>
<tr>
<td>Transfer Mode</td>
<td>drop-down menu</td>
<td>Sync (default) makes files on destination system identical to those on the source. Files removed from the source are also removed from the destination, similar to rsync --delete. Copy copies files from the source to the destination and skips files that are identical, similar to rsync. Move copies files from the source to the destination and deletes the source files after the copy, similar to mv.</td>
</tr>
<tr>
<td>Remote encryption</td>
<td>checkbox</td>
<td>Use rclone crypt (https://rclone.org/crypt/) to manage data encryption during PUSH or PULL transfers: PUSH: Encrypt files before transfer and store the encrypted files on the remote system. Files are encrypted using the Encryption password and Encryption salt values. PULL: Decrypt files that are being stored on the remote system before the transfer. Transferring the encrypted files requires entering the same Encryption Password and Encryption salt that was used to encrypt the files. Adds the Filename encryption, Encryption password, and Encryption salt options. Additional details about the encryption algorithm and key derivation are available in the rclone crypt File formats documentation (https://rclone.org/crypt/#file-formats).</td>
</tr>
<tr>
<td>Filename encryption</td>
<td>checkbox</td>
<td>Encrypt (PUSH) or decrypt (PULL) file names with the rclone "Standard" file name encryption mode (https://rclone.org/crypt/#filename-encryption-modes). The original directory structure is preserved. A filename with the same name always has the same encrypted filename. PULL tasks that have Filename encryption enabled and an incorrect Encryption password or Encryption salt will not transfer any files but still report that the task was successful. To verify that files were transferred successfully, click the finished task status (page 105) to see a list of transferred files.</td>
</tr>
<tr>
<td>Encryption password</td>
<td>string</td>
<td>Password to encrypt and decrypt remote data. Warning: Always securely back up this password! Losing the encryption password will result in data loss.</td>
</tr>
</tbody>
</table>
Table 6.1 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value Type</th>
<th>Description</th>
</tr>
</thead>
</table>
| Encryption salt | string | Enter a long string of random characters for use as salt
(https://searchsecurity.techtarget.com/definition/salt) for the encryption password. **Warning:** Always securely back up the encryption salt value! Losing the salt value will result in data loss. |
| Minute | slider or minute selections | Select *Every N minutes* and use the slider to choose a value, or select *Each selected minute* and choose specific minutes to run the task. |
| Hour | slider or hour selections | Select *Every N hours* and use the slider to choose a value, or select *Each selected hour* and choose specific hours to run the task. |
| Day of month | slider or day of month selections | Select *Every N days of month* and use the slider to choose a value, or select *Each selected day of month* and choose specific days to run the task. |
| Month | checkboxes | Months when the task runs. |
| Day of week | checkboxes | Days of the week to run the task. |
| Enabled | checkbox | Unset to temporarily disable this Cloud Sync. |

The time selected is when the Cloud Sync task is allowed to begin. The cloud sync runs until finished, even after the time selected.

Note: Files that have completed the sync process are not deleted from the destination if the `rclone sync` (https://rclone.org/commands/rclone_sync/) is interrupted or encounters an error. This includes a common error when the Dropbox copyright detector (https://techcrunch.com/2014/03/30/how-dropbox-knows-when-youre-sharing-copyrighted-stuff-without-actually-looking-at-your-stuff/) identifies a copyrighted file.

Figure 6.2 shows a cloud sync called `backup-acctg` that “pushes” a file to cloud storage. The last run finished with a status of `SUCCESS`.
To modify an existing cloud sync, click the entry to access the Edit, and Delete, and Run Now buttons. The cloud sync Status indicates the state of most recent cloud sync. Clicking the Status entry shows the task logs and includes an option to download them.

6.1.1 Cloud Sync Example

This example shows a Push cloud sync which writes an accounting department backup file from the FreeNAS® system to Amazon S3 storage.

Before the new cloud sync was added, a bucket called `cloudsync-bucket` was created with the Amazon S3 web console for storing data from the FreeNAS® system.

System → Cloud Credentials → Add Cloud Credential is used to enter the credentials for storage on an Amazon AWS account. The credential is given the name `S3 Storage`, as shown in Figure 6.3:
The local data to be sent to the cloud is in a dataset called acctg-backups. The cloud sync task is created by going to Tasks → Cloud Sync → Add Cloud Sync. The Description is set to backup-acctg to describe the job. This data is being sent to cloud storage, so this is a Push. The Provider comes from the cloud credentials defined in the previous step, and the destination bucket cloudsync-bucket is selected.

The Path to the data file is selected.

The remaining fields are for setting a schedule. The default is to send the data to cloud storage once an hour, every day. The options provide great versatility in configuring when a cloud sync runs, anywhere from once a minute to once a year.

The Enabled option is set by default, so this cloud sync will run at the next scheduled time.

The completed dialog is shown in Figure 6.4:
6.2 Cron Jobs

cron(8) (https://www.freebsd.org/cgi/man.cgi?query=cr on) is a daemon that runs a command or script on a regular schedule as a specified user.

Figure 6.5 shows the screen that opens after clicking Tasks → Cron Jobs → Add Cron Job.

Fig. 6.4: Example: Adding a Cloud Sync
Fig. 6.5: Creating a Cron Job
Table 6.2 lists the configurable options for a cron job.

Table 6.2: Cron Job Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>drop-down menu</td>
<td>Choose a user account to run the command or script. The user must have permissions to run the command.</td>
</tr>
<tr>
<td>Command</td>
<td>string</td>
<td>Enter the full path to the command or script to be run. Test a script at the command line first to make sure it works as expected.</td>
</tr>
<tr>
<td>Short description</td>
<td>string</td>
<td>Optional. Describe the new cron job.</td>
</tr>
<tr>
<td>Minute</td>
<td>slider or minute selections</td>
<td>With the slider, the cron job occurs every N minutes. With minute selections, the cron job occurs at the highlighted minutes.</td>
</tr>
<tr>
<td>Hour</td>
<td>slider or hour selections</td>
<td>With the slider, the cron job occurs every N hours. With hour selections, the cron job occurs at the highlighted hours.</td>
</tr>
<tr>
<td>Day of month</td>
<td>slider or month selections</td>
<td>With the slider, the cron job occurs every N days. With day selections, the cron job occurs on the highlighted days each month.</td>
</tr>
<tr>
<td>Month</td>
<td>checkboxes</td>
<td>Cron job occurs on the selected months.</td>
</tr>
<tr>
<td>Day of week</td>
<td>checkboxes</td>
<td>Cron job occurs on the selected days.</td>
</tr>
<tr>
<td>Redirect Stdout</td>
<td>checkbox</td>
<td>Disables emailing standard output to the root user account.</td>
</tr>
<tr>
<td>Redirect Stderr</td>
<td>checkbox</td>
<td>Disables emailing errors to the root user account.</td>
</tr>
<tr>
<td>Enabled</td>
<td>checkbox</td>
<td>Deselect disable the cron job without deleting it.</td>
</tr>
</tbody>
</table>

Cron jobs are shown in View Cron Jobs. Highlight a cron job entry to display buttons to Edit, Delete, or Run Now.

Note: % symbols are automatically escaped and should not be prefixed with backslashes. For example, use `date '+%Y-%m-%d'` in a cron job to generate a filename based on the date.

6.3 Init/Shutdown Scripts

FreeNAS® provides the ability to schedule commands or scripts to run at system startup or shutdown.

Go to Tasks → Init/Shutdown Scripts and click Add Init/Shutdown Script.

![Add Init/Shutdown Script](image)

Fig. 6.6: Add an Init/Shutdown Command or Script
Table 6.3: Init/Shutdown Command or Script Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>drop-down menu</td>
<td>Select Command for an executable or Script for an executable script.</td>
</tr>
<tr>
<td>Command or Script</td>
<td>string</td>
<td>If Command is selected, enter the command with any options. When Script is selected, click Browse to select the script from an existing pool.</td>
</tr>
</tbody>
</table>
| When | drop-down menu | Select when the **Command** or **Script** runs:
| | | • **Pre Init**: early in the boot process, after mounting filesystems and starting networking
| | | • **Post Init**: at the end of the boot process, before FreeNAS® services start
| | | • **Shutdown**: during the system power off process. |
| Enabled | checkbox | Enable this task. Unset to disable the task without deleting it. |

Scheduled commands must be in the default path. The full path to the command can also be included in the entry. The path can be tested with `which {commandname}` in the **Shell** (page 304). When available, the path to the command is shown:

```
[root@freenas ~]# which ls
/bin/ls
```

When scheduling a script, test the script first to verify it is executable and achieves the desired results.

Note: Init/shutdown scripts are run with `sh`.

Init/Shutdown tasks are shown in **Tasks** → **Init/Shutdown Scripts**. Click a task to **Edit** or **Delete** that task.

6.4 Rsync Tasks

Rsync (https://www.samba.org/ftp/rsync/rsync.html) is a utility that copies specified data from one system to another over a network. Once the initial data is copied, rsync reduces the amount of data sent over the network by sending only the differences between the source and destination files. Rsync is used for backups, mirroring data on multiple systems, or for copying files between systems.

Rsync is most effective when only a relatively small amount of the data has changed. There are also some limitations when using Rsync with Windows files (https://forums.freenas.org/index.php?threads/impaired-rsync-permissions-support-for-windows-datasets.43973/). For large amounts of data, data that has many changes from the previous copy, or Windows files, **Replication Tasks** (page 160) are often the faster and better solution.

Rsync is single-threaded and gains little from multiple processor cores. To see whether rsync is currently running, use `pgrep rsync` from the **Shell** (page 304).

Both ends of an rsync connection must be configured:

- **the rsync server**: this system pulls (receives) the data. This system is referred to as **PULL** in the configuration examples.
- **the rsync client**: this system pushes (sends) the data. This system is referred to as **PUSH** in the configuration examples.

FreeNAS® can be configured as either an **rsync client** or an **rsync server**. The opposite end of the connection can be another FreeNAS® system or any other system running rsync. In FreeNAS® terminology, an **rsync task** defines which data is synchronized between the two systems. To synchronize data between two FreeNAS® systems, create the **rsync task** on the **rsync client**.

FreeNAS® supports two modes of rsync operation:

110
• **rsync module mode:** exports a directory tree, and the configured settings of the tree as a symbolic name over an unencrypted connection. This mode requires that at least one module be defined on the rsync server. It can be defined in the FreeNAS® GUI under Services → Rsync → Rsync Modules. In other operating systems, the module is defined in `rsyncd.conf(5)` (https://www.samba.org/ftp/rsync/rsyncd.conf.html).

• **rsync over SSH:** synchronizes over an encrypted connection. Requires the configuration of SSH user and host public keys.

This section summarizes the options when creating an rsync task. It then provides a configuration example between two FreeNAS® systems for each mode of rsync operation.

Note: If there is a firewall between the two systems or if the other system has a built-in firewall, make sure that TCP port 873 is allowed.

Figure 6.7 shows the screen that appears after selecting **Tasks → Rsync Tasks → Add Rsync Task.** **Table 6.4** summarizes the options that can be configured when creating an rsync task.
Add Rsync Task

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path:</td>
<td></td>
</tr>
<tr>
<td>User:</td>
<td></td>
</tr>
<tr>
<td>Remote Host:</td>
<td></td>
</tr>
<tr>
<td>Rsync mode:</td>
<td>Rsync module</td>
</tr>
<tr>
<td>Remote Module Name:</td>
<td></td>
</tr>
<tr>
<td>Direction:</td>
<td>Push</td>
</tr>
<tr>
<td>Short description:</td>
<td></td>
</tr>
</tbody>
</table>

Schedule Options

Minute:

- **Every N minute**
- **Each selected minute**

Hour:

- **Every N hour**
- **Each selected hour**

Day of month:

- **Every N day of month**
- **Each selected day of month**

Fig. 6.7: Adding an Rsync Task
Table 6.4: Rsync Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path</td>
<td>browse button</td>
<td>Browse to the path to be copied. Path lengths cannot be greater than 255 characters.</td>
</tr>
<tr>
<td>User</td>
<td>drop-down menu</td>
<td>The chosen user must have write permissions for the specified remote directory. The user name cannot contain spaces or exceed 17 characters.</td>
</tr>
<tr>
<td>Remote Host</td>
<td>string</td>
<td>Enter the IP address or hostname of the remote system that will store the copy. Use the format <code>username@remote_host</code> if the username differs on the remote host.</td>
</tr>
<tr>
<td>Remote SSH Port</td>
<td>integer</td>
<td>Only available in Rsync over SSH mode. Allows specifying an SSH port other than the default of 22.</td>
</tr>
<tr>
<td>Rsync mode</td>
<td>drop-down menu</td>
<td>Choices are Rsync module or Rsync over SSH.</td>
</tr>
<tr>
<td>Remote Module Name</td>
<td>string</td>
<td>At least one module must be defined in rsyncd.conf (https://www.samba.org/ftp/rsync/rsyncd.conf.html) of the rsync server or in the Rsync Modules of another system.</td>
</tr>
<tr>
<td>Remote Path</td>
<td>string</td>
<td>Only appears when using Rsync over SSH mode. Enter the existing path on the remote host to sync with. Example: <code>/mnt/volume</code>. Note that maximum path length is 255 characters.</td>
</tr>
<tr>
<td>Validate Remote Path</td>
<td>checkbox</td>
<td>Verifies the existence of the Remote Path.</td>
</tr>
<tr>
<td>Direction</td>
<td>drop-down menu</td>
<td>Direct the flow of the data to the remote host. Choices are Push or Pull. Default is to Push to a remote host.</td>
</tr>
<tr>
<td>Short Description</td>
<td>string</td>
<td>Enter an optional description of the new rsync task.</td>
</tr>
<tr>
<td>Minute</td>
<td>slider or minute selections</td>
<td>When the slider is used the sync occurs every N minutes. Use Each selected minute for the sync to occur at the highlighted minutes.</td>
</tr>
<tr>
<td>Hour</td>
<td>slider or hour selections</td>
<td>When the slider is used the sync occurs every N hours. Use Each selected hour for the sync to occur at the highlighted hours.</td>
</tr>
<tr>
<td>Day of month</td>
<td>slider or day selections</td>
<td>When the slider is used the sync occurs every N days. Use Each selected day of the month for the sync to occur on the highlighted days.</td>
</tr>
<tr>
<td>Month</td>
<td>checkboxes</td>
<td>Define which months to run the task.</td>
</tr>
<tr>
<td>Day of week</td>
<td>checkboxes</td>
<td>Define which days of the week to run the task.</td>
</tr>
<tr>
<td>Recursive</td>
<td>checkbox</td>
<td>Set to include all subdirectories of the specified volume during the rsync task.</td>
</tr>
<tr>
<td>Times</td>
<td>checkbox</td>
<td>Set to preserve the modification times of the files.</td>
</tr>
<tr>
<td>Compress</td>
<td>checkbox</td>
<td>Set to reduce the size of data to transmit. Recommended for slower connections.</td>
</tr>
<tr>
<td>Archive</td>
<td>checkbox</td>
<td>Equivalent to <code>-rlptgoD</code>. This will run the task as recursive, copy symlinks as symlinks, preserve permissions, preserve modification times, preserve group, preserve owner (root only), and preserve device and special files.</td>
</tr>
<tr>
<td>Delete</td>
<td>checkbox</td>
<td>Set to delete files in the destination directory that do not exist in the sending directory.</td>
</tr>
<tr>
<td>Quiet</td>
<td>checkbox</td>
<td>Set to suppresses informational messages from the remote server.</td>
</tr>
<tr>
<td>Preserve permissions</td>
<td>checkbox</td>
<td>Set to preserve original file permissions. Useful if User is set to root.</td>
</tr>
<tr>
<td>Delay Updates</td>
<td>checkbox</td>
<td>Set to save the temporary file from each updated file to a holding directory. At the end of the transfer, all transferred files are renamed into place and temporary files deleted.</td>
</tr>
</tbody>
</table>
Table 6.4 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extra options</td>
<td>string</td>
<td>Add any other rsync(1) (http://rsync.samba.org/ftp/rsync/rsync.html) options. The <code>*</code> character must be escaped with a backslash (<code>*</code> or used inside single quotes (<code>'*.*.txt'</code>).</td>
</tr>
<tr>
<td>Enabled</td>
<td>checkbox</td>
<td>Unset to disable the rsync task without deleting it.</td>
</tr>
</tbody>
</table>

If the rsync server requires password authentication, enter `--password-file=/PATHTO/Filename` in the *Extra options* option, replacing `/PATHTO/Filename` with the appropriate path to the file containing the password.

Created rsync tasks will be listed in *View Rsync Tasks*. Highlight the entry for an rsync task to display buttons for *Edit*, *Delete*, or *Run Now*.

6.4.1 Rsync Module Mode

This configuration example configures rsync module mode between these two FreeNAS*®* systems:

- **192.168.2.2** has existing data in `/mnt/local/images`. It will be the rsync client, meaning that an rsync task needs to be defined. It will be referred to as **PUSH**.
- **192.168.2.6** has an existing volume named `/mnt/remote`. It will be the rsync server, meaning that it will receive the contents of `/mnt/local/images`. An rsync module needs to be defined on this system and the rsyncd service needs to be started. It will be referred to as **PULL**.

On **PUSH**, an rsync task is defined in Tasks → RsyncTasks → Add Rsync Task. In this example:

- the *Path* points to `/usr/local/images`, the directory to be copied
- the *User* is set to *root* so it has permission to write anywhere
- the *Remote Host* points to 192.168.2.6, the IP address of the rsync server
- the *Rsync mode* is **Rsync module**
- the *Remote Module Name is backups*; this will need to be defined on the rsync server
- the *Direction* is **Push**
- the rsync is scheduled to occur every 15 minutes
- the *Preserve permissions* option is enabled so that the original permissions are not overwritten by the *root* user

On **PULL**, an rsync module is defined in Services → Rsync Modules → Add Rsync Module. In this example:

- the *ModuleName* is *backups*; this needs to match the setting on the rsync client
- the *Path* is `/mnt/remote`; a directory called *images* will be created to hold the contents of `/usr/local/images`
- the *User* is set to *root* so it has permission to write anywhere
- *Hosts allow* is set to 192.168.2.2, the IP address of the rsync client

Descriptions of the configurable options can be found in *Rsync Modules* (page 249).

To finish the configuration, start the rsync service on **PULL** in Services → Control Services. If the rsync is successful, the contents of `/mnt/local/images/` will be mirrored to `/mnt/remote/images/`.

6.4.2 Rsync over SSH Mode

SSH replication mode does not require the creation of an rsync module or for the rsync service to be running on the rsync server. It does require SSH to be configured before creating the rsync task:

- a public/private key pair for the rsync user account (typically *root*) must be generated on **PUSH** and the public key copied to the same user account on **PULL**
- to mitigate the risk of man-in-the-middle attacks, the public host key of **PULL** must be copied to **PUSH**
To create the public/private key pair for the rsync user account, open Shell (page 304) on PUSH and run ssh-keygen. This example generates an RSA type public/private key pair for the root user. When creating the key pair, do not enter the passphrase as the key is meant to be used for an automated task.

```
ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/root/.ssh/id_rsa):
Created directory '/root/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /root/.ssh/id_rsa.
Your public key has been saved in /root/.ssh/id_rsa.pub.
The key fingerprint is:
The key's randomart image is:
+--[ RSA 2048]----+
<p>| .o. oo |
| o+o. . |
| . =o + |
| + + o |
| S o . |
| .o |
| o oo |</p>
<table>
<thead>
<tr>
<th>**oE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>-----------------</td>
</tr>
</tbody>
</table>
```

FreeNAS® supports RSA keys for SSH. When creating the key, use -t rsa to specify this type of key. Refer to Key-based Authentication (https://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/openssh.html#security-ssh-keygen) for more information.

Note: If a different user account is used for the rsync task, use the su command after mounting the filesystem but before generating the key. For example, if the rsync task is configured to use the user1 user account, use this command to become that user:

```
su user1
```

Next, view and copy the contents of the generated public key:

```
more .ssh/id_rsa.pub
```

Go to PULL and paste (or append) the copied key into the SSH Public Key field of Account → Users → View Users → root → Modify User, or the username of the specified rsync user account. The paste for the above example is shown in Figure 6.8. When pasting the key, ensure that it is pasted as one long line and, if necessary, remove any extra spaces representing line breaks.
Fig. 6.8: Pasting the User SSH Public Key
While on **PULL**, verify that the SSH service is running in **Services → Control Services** and start it if it is not.

Next, copy the host key of **PULL** using Shell on **PUSH**. The command below copies the RSA host key of the **PULL** server used in our previous example. Be sure to include the double bracket `>>` to prevent overwriting any existing entries in the `known_hosts` file:

```bash
ssh-keyscan -t rsa 192.168.2.6 >> /root/.ssh/known_hosts
```

Note: If **PUSH** is a Linux system, use this command to copy the RSA key to the Linux system:

```bash
cat ~/.ssh/id_rsa.pub | ssh user@192.168.2.6 'cat >> .ssh/authorized_keys'
```

The rsync task can now be created on **PUSH**. To configure rsync SSH mode using the systems in the previous example, use this configuration:

- the **Path** points to `/mnt/local/images`, the directory to be copied
- the **User** is set to `root` so it has permission to write anywhere; the public key for this user must be generated on **PUSH** and copied to **PULL**
- the **Remote Host** points to `192.168.2.6`, the IP address of the rsync server
- the **Rsync Mode** is `Rsync over SSH`
- the rsync is scheduled to occur every 15 minutes
- the **Preserve Permissions** option is enabled so that the original permissions are not overwritten by the `root` user

Save the rsync task and the rsync will automatically occur according to the schedule. In this example, the contents of `/mnt/local/images/` will automatically appear in `/mnt/remote/images/` after 15 minutes. If the content does not appear, use Shell on **PULL** to read `/var/log/messages`. If the message indicates a `n` (newline character) in the key, remove the space in the pasted key—it will be after the character that appears just before the `n` in the error message.

6.5 S.M.A.R.T. Tests

Figure 6.9 shows the configuration screen that appears after selecting **Tasks → S.M.A.R.T. Tests → Add S.M.A.R.T. Test**. Tests are listed under **View S.M.A.R.T. Tests**. After creating tests, check the configuration in **Services → S.M.A.R.T.**, then click the slider to **ON** for the S.M.A.R.T. service in **Services → Control Services**. The S.M.A.R.T. service will not start if there are no volumes.

Note: To prevent problems, do not enable the S.M.A.R.T. service if the disks are controlled by a RAID controller. It is the job of the controller to monitor S.M.A.R.T. and mark drives as Predictive Failure when they trip.
Add S.M.A.R.T. Test

Disks:
- ada0
- ada1
- ada2
- ada3

Type:

Short description:

Hour:
- Every N hour
- Each selected hour

Day of month:
- Every N day of month
- Each selected day of month

Month:
- January
- February
- March
- April
- May
- June
- July
- August
- September
- October
- November
- December

Fig. 6.9: Adding a S.M.A.R.T. Test
Table 6.5 summarizes the configurable options when creating a S.M.A.R.T. test.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disks</td>
<td>list</td>
<td>Select the disks to monitor.</td>
</tr>
<tr>
<td>Type</td>
<td>drop-down menu</td>
<td>Choose the test type. See smartctl(8) (https://www.smartmontools.org/browser/trunk/smartmontools/smartctl.8.in) for descriptions of each type of test. Some test types will degrade performance or take disks offline. Avoid scheduling S.M.A.R.T. tests simultaneously with scrub or resilver operations.</td>
</tr>
<tr>
<td>Short descrip-</td>
<td>string</td>
<td>Optional. Enter a short description of this test.</td>
</tr>
<tr>
<td>Hour</td>
<td>slider or hour selec-</td>
<td>When the slider is used the sync occurs every N hours. Use Each selected hour for the test to occur at the highlighted hours.</td>
</tr>
<tr>
<td>Day of month</td>
<td>slider or day selec-</td>
<td>When the slider is used the sync occurs every N days. Use Each selected day of the month for the sync to occur on the highlighted days.</td>
</tr>
<tr>
<td>Month</td>
<td>checkboxes</td>
<td>Select which months to run the test.</td>
</tr>
<tr>
<td>Day of week</td>
<td>checkboxes</td>
<td>Select which days of the week to run the test.</td>
</tr>
</tbody>
</table>

Note: Scrub tasks are run if and only if the threshold is met or exceeded and the task is scheduled to run on the date marked.

An example configuration is to schedule a Short Self-Test once a week and a Long Self-Test once a month. These tests do not have a performance impact, as the disks prioritize normal I/O over the tests. If a disk fails a test, even if the overall status is Passed, start to think about replacing that disk.

Warning: Some S.M.A.R.T. tests cause heavy disk activity and can drastically reduce disk performance. Do not schedule S.M.A.R.T. tests to run at the same time as scrub or resilver operations or during other periods of intense disk activity.

Which tests will run and when can be verified by typing smartd -q showtests within Shell (page 304).

The results of a test can be checked from Shell (page 304) by specifying the name of the drive. For example, to see the results for disk ada0, type:

```
smartctl -l selftest /dev/ada0
```

If an email address is entered in the Email to report field of Services → S.M.A.R.T., the system will send an email to that address when a test fails. Logging information for S.M.A.R.T. tests can be found in /var/log/daemon.log.
The Network section of the administrative GUI contains these components for viewing and configuring network settings on the FreeNAS® system:

- **Global Configuration** (page 120): general network settings.
- **Interfaces** (page 122): settings for each network interface.
- **IPMI** (page 124): settings controlling connection to the appliance through the hardware side-band management interface if the graphical user interface becomes unavailable.
- **Link Aggregations** (page 126): settings for network link aggregation and link failover.
- **Network Summary** (page 130): display an overview of the current network settings.
- **Static Routes** (page 130): add static routes.
- **VLANs** (page 130): configure IEEE 802.1q tagging for virtual LANs.

Each of these is described in more detail in this section.

Warning: Making changes to the network interface the web interface uses can result in losing connection to the FreeNAS® system! Misconfiguring network settings might require command line knowledge or physical access to the FreeNAS® system to fix. Be very careful when configuring Interfaces (page 122) and Link Aggregations (page 126).

7.1 Global Configuration

Network → Global Configuration, shown in Figure 7.1, is for general network settings that are not unique to any particular network interface.
Table 7.1 summarizes the settings on the Global Configuration tab. Hostname and Domain fields are pre-filled as shown in Figure 7.1, but can be changed to meet requirements of the local network.

Table 7.1: Global Configuration Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname</td>
<td>string</td>
<td>System host name. Upper and lower case alphanumeric, , and – characters are allowed.</td>
</tr>
<tr>
<td>Domain</td>
<td>string</td>
<td>System domain name.</td>
</tr>
<tr>
<td>Additional domains</td>
<td>string</td>
<td>Can enter up to 6 space delimited search domains. Adding multiple domains may result in slower DNS lookups.</td>
</tr>
<tr>
<td>IPv4 Default Gateway</td>
<td>IP address</td>
<td>Typically not set. See this note about Gateways (page 122). If set, used instead of default gateway provided by DHCP.</td>
</tr>
</tbody>
</table>
Table 7.1 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 Default Gateway</td>
<td>IP address</td>
<td>Typically not set. See this note about Gateways (page 122).</td>
</tr>
<tr>
<td>Nameserver 1</td>
<td>IP address</td>
<td>Primary DNS server.</td>
</tr>
<tr>
<td>Nameserver 2</td>
<td>IP address</td>
<td>Secondary DNS server.</td>
</tr>
<tr>
<td>Nameserver 3</td>
<td>IP address</td>
<td>Tertiary DNS server.</td>
</tr>
<tr>
<td>HTTP Proxy</td>
<td>string</td>
<td>Enter the proxy information for the network in the format <code>http://my.proxy.server:3128</code> or <code>http://user:password@my.proxy.server:3128</code>.</td>
</tr>
<tr>
<td>Enable netwait feature</td>
<td>checkbox</td>
<td>If enabled, network services do not start at boot until the interface is able to ping the addresses listed in the Netwait IP list.</td>
</tr>
<tr>
<td>Netwait IP list</td>
<td>string</td>
<td>If Enable netwait feature is unset, list of IP addresses to ping. Otherwise, ping the default gateway.</td>
</tr>
<tr>
<td>Host name database</td>
<td>string</td>
<td>Used to add one entry per line which will be appended to <code>/etc/hosts</code>. Use the format <code>IP_address space hostname</code> where multiple hostnames can be used if separated by a space.</td>
</tr>
</tbody>
</table>

When using Active Directory, set the IP address of the realm’s DNS server in the Nameserver 1 field.

If the network does not have a DNS server, or NFS, SSH, or FTP users are receiving “reverse DNS” or timeout errors, add an entry for the IP address of the FreeNAS® system in the Host name database field.

Note: In many cases, a FreeNAS® configuration does not include default gateway information as a way to make it more difficult for a remote attacker to communicate with the server. While this is a reasonable precaution, such a configuration does not restrict inbound traffic from sources within the local network. However, omitting a default gateway will prevent the FreeNAS® system from communicating with DNS servers, time servers, and mail servers that are located outside of the local network. In this case, it is recommended to add Static Routes (page 130) to be able to reach external DNS, NTP, and mail servers which are configured with static IP addresses. When a gateway to the Internet is added, make sure the FreeNAS® system is protected by a properly configured firewall.

7.2 Interfaces

Network → Interfaces shows which interfaces have been manually configured and allows adding or editing a manually configured interface.

Note: Typically, the interface used to access the FreeNAS® administrative GUI is configured by DHCP. This interface does not appear in this screen, even though it is already dynamically configured and in use.

Creating a Link Aggregation (page 127) that does not include the NIC used to access the FreeNAS® administrative GUI may require adding an Interfaces entry for this interface with DHCP enabled. See this warning (page 120) about changing the interface that the web interface uses.

Figure 7.2 shows the screen that opens on clicking Interfaces → Add Interface. Table 7.2 summarizes the configuration options shown when adding an interface or editing an already configured interface. Note that if any changes to this screen require a network restart, the screen will turn red when the OK button is clicked and a pop-up message will point out that network connectivity to the FreeNAS® system will be interrupted while the changes are applied.
Table 7.2: Interface Configuration Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC</td>
<td>drop-down menu</td>
<td>The FreeBSD device name of the interface. This is a read-only field when editing an interface.</td>
</tr>
<tr>
<td>Interface Name</td>
<td>string</td>
<td>Description of interface.</td>
</tr>
<tr>
<td>DHCP</td>
<td>checkbox</td>
<td>Requires static IPv4 or IPv6 configuration if unselected. Only one interface can be configured for DHCP.</td>
</tr>
<tr>
<td>IPv4 Address</td>
<td>IP address</td>
<td>Enter a static IP address if DHCP is unset.</td>
</tr>
<tr>
<td>IPv4 Netmask</td>
<td>drop-down menu</td>
<td>Enter a netmask if DHCP is unset.</td>
</tr>
<tr>
<td>Auto configure IPv6</td>
<td>checkbox</td>
<td>Only one interface can be configured for this option. If unset, manual configuration is required to use IPv6.</td>
</tr>
<tr>
<td>IPv6 Address</td>
<td>IPv6 address</td>
<td>Must be unique on the network.</td>
</tr>
<tr>
<td>IPv6 Prefix Length</td>
<td>drop-down menu</td>
<td>Match the prefix used on the network.</td>
</tr>
<tr>
<td>Options</td>
<td>string</td>
<td>Additional parameters from <code>ifconfig(8)</code> (https://www.freebsd.org/cgi/man.cgi?query=ifconfig). Separate multiple parameters with a space. For example: <code>mtu 9000</code> increases the MTU for interfaces which support jumbo frames (but see this note (page 129) about MTU and lagg interfaces).</td>
</tr>
</tbody>
</table>

This screen also provides for the configuration of IP aliases, making it possible for a single interface to have multiple IP addresses. To set multiple aliases, click the Add extra alias link for each alias. Aliases are deleted by clicking the interface in the tree, clicking the Edit button, checking the Delete checkbox below the alias, then clicking the OK button.
Warning: Aliases are deleted by checking the *Delete* checkbox in the alias area, then clicking *OK* for the interface. **Do not** click the *Delete* button at the bottom of this screen, which deletes the entire interface.

Multiple interfaces *cannot* be members of the same subnet. See [Multiple network interfaces on a single subnet](https://forums.freenas.org/index.php?threads/multiple-network-interfaces-on-a-single-subnet.20204/) for more information. Check the subnet mask if an error is shown when setting the IP addresses on multiple interfaces.

This screen will not allow an interface's IPv4 and IPv6 addresses to both be set as primary addresses. An error is shown if both the *IPv4 address* and *IPv6 address* fields are filled in. Instead, set only one of these address fields and create an alias for the other address.

7.3 IPMI

Beginning with version 9.2.1, FreeNAS® provides a graphical screen for configuring an IPMI interface. This screen will only appear if the system hardware includes a Baseboard Management Controller (BMC).

IPMI provides side-band management if the graphical administrative interface becomes unresponsive. This allows for a few vital functions, such as checking the log, accessing the BIOS setup, and powering on the system without requiring physical access to the system. IPMI is also used to give another person remote access to the system to assist with a configuration or troubleshooting issue. Before configuring IPMI, ensure that the management interface is physically connected to the network. The IPMI device may share the primary Ethernet interface, or it may be a dedicated separate IPMI interface.

Warning: It is recommended to first ensure that the IPMI has been patched against the Remote Management Vulnerability before enabling IPMI. This [article](https://www.ixsystems.com/blog/how-to-fix-the-ipmi-remote-management-vulnerability/) provides more information about the vulnerability and how to fix it.

Note: Some IPMI implementations require updates to work with newer versions of Java. See [PSA: Java 8 Update 131 breaks ASRock's IPMI Virtual console](https://forums.freenas.org/index.php?threads/psa-java-8-update-131-breaks-asrocks-ipmi-virtual-console.53911/) for more information.

IPMI is configured from *Network → IPMI*. The IPMI configuration screen, shown in Figure 7.3, provides a shortcut to the most basic IPMI configuration. Those already familiar with IPMI management tools can use them instead. Table 7.3 summarizes the options available when configuring IPMI with the FreeNAS® GUI.
The Identify Light button can be used to identify a system in a multi-system rack by flashing its IPMI LED light. Clicking this button will present a pop-up with a menu of times, ranging from 15 seconds to 4 minutes, to flash the LED light.

After configuration, the IPMI interface is accessed using a web browser and the IP address specified in the configuration. The management interface prompts for a username and the configured password. Refer to the IPMI device's documentation to determine the default administrative username.

After logging in to the management interface, the default administrative username can be changed, and additional users created. The appearance of the IPMI utility and the functions that are available vary depending on the hardware.
7.4 Link Aggregations

FreeNAS® uses the FreeBSD lagg(4) (https://www.freebsd.org/cgi/man.cgi?query=lagg) interface to provide link aggregation and link failover support. A lagg interface allows combining multiple network interfaces into a single virtual interface. This provides fault-tolerance and high-speed multi-link throughput. The aggregation protocols supported by lagg both determine the ports to use for outgoing traffic and if a specific port accepts incoming traffic. The link state of the lagg interface is used to validate whether the port is active.

Aggregation works best on switches supporting LACP, which distributes traffic bi-directionally while responding to failure of individual links. FreeNAS® also supports active/passive failover between pairs of links. The LACP and load-balance modes select the output interface using a hash that includes the Ethernet source and destination address, VLAN tag (if available), IP source and destination address, and flow label (IPv6 only). The benefit can only be observed when multiple clients are transferring files from the NAS. The flow entering into the NAS depends on the Ethernet switch load-balance algorithm.

The lagg driver currently supports several aggregation protocols, although only Failover is recommended on network switches that do not support LACP:

- **Failover**: the default protocol. Sends traffic only through the active port. If the master port becomes unavailable, the next active port is used. The first interface added is the master port. Any interfaces added later are used as failover devices. By default, received traffic is only accepted when received through the active port. This constraint can be relaxed, which is useful for certain bridged network setups, by creating a tunable with a `Variable of net.link.lagg.failover_rx_all`, a `Value` of a non-zero integer, and a `Type` of `Sysctl` in `System → Tunables → AddTunable`.

- **LACP**: supports the IEEE 802.3ad Link Aggregation Control Protocol (LACP) and the Marker Protocol. LACP negotiates a set of aggregable links with the peer into one or more link aggregated groups (LAGs). Each LAG is composed of ports of the same speed, set to full-duplex operation. Traffic is balanced across the ports in the LAG with the greatest total speed; in most cases there will only be one LAG which contains all ports. In the event of changes in physical connectivity, link aggregation will quickly converge to a new configuration. LACP must be configured on the switch, and LACP does not support mixing interfaces of different speeds. Only interfaces that use the same driver, like two igb ports, are recommended for LACP. Using LACP for iSCSI is not recommended, as iSCSI has built-in multipath features which are more efficient.

 Note: When using LACP, verify the switch is configured for active LACP. Passive LACP is not supported.

- **Load Balance**: balances outgoing traffic across the active ports based on hashed protocol header information and accepts incoming traffic from any active port. This is a static setup and does not negotiate aggregation with the peer or exchange frames to monitor the link. The hash includes the Ethernet source and destination address, VLAN tag (if available), and IP source and destination address. Requires a switch which supports IEEE 802.3ad static link aggregation.

- **Round Robin**: distributes outgoing traffic using a round-robin scheduler through all active ports and accepts incoming traffic from any active port. This mode can cause unordered packet arrival at the client. This has a side effect of limiting throughput as reordering packets can be CPU intensive on the client. Requires a switch which supports IEEE 802.3ad static link aggregation.

- **None**: this protocol disables any traffic without disabling the lagg interface itself.

7.4.1 LACP, MPIO, NFS, and ESXi

LACP bonds Ethernet connections to improve bandwidth. For example, four physical interfaces can be used to create one mega interface. However, it cannot increase the bandwidth for a single conversation. It is designed to increase bandwidth when multiple clients are simultaneously accessing the same system. It also assumes that quality Ethernet hardware is used and it will not make much difference when using inferior Ethernet chipsets such as a Realtek.

LACP reads the sender and receiver IP addresses and, if they are deemed to belong to the same TCP connection, always sends the packet over the same interface to ensure that TCP does not need to reorder packets. This makes
LACP ideal for load balancing many simultaneous TCP connections, but does nothing for increasing the speed over one TCP connection.

MPIO operates at the iSCSI protocol level. For example, if four IP addresses are created and there are four simultaneous TCP connections, MPIO will send the data over all available links. When configuring MPIO, make sure that the IP addresses on the interfaces are configured to be on separate subnets with non-overlapping netmasks, or configure static routes to do point-to-point communication. Otherwise, all packets will pass through one interface.

LACP and other forms of link aggregation generally do not work well with virtualization solutions. In a virtualized environment, consider the use of iSCSI MPIO through the creation of an iSCSI Portal with at least two network cards on different networks. This allows an iSCSI initiator to recognize multiple links to a target, using them for increased bandwidth or redundancy. This how-to (https://fojta.wordpress.com/2010/04/13/iscsi-and-esxi-multipathing-and-jumbo-frames/) contains instructions for configuring MPIO on ESXi.

NFS does not understand MPIO. Therefore, one fast interface is needed, since creating an iSCSI portal will not improve bandwidth when using NFS. LACP does not work well to increase the bandwidth for point-to-point NFS (one server and one client). LACP is a good solution for link redundancy or for one server and many clients.

7.4.2 Creating a Link Aggregation

Before creating a link aggregation, make sure that all interfaces to use in the lagg are not manually configured in Network → Interfaces.

Lagg creation fails if any of the included interfaces are manually configured. See this warning (page 120) about changing the interface that the web interface uses.

Figure 7.4 shows the configuration options when adding a lagg interface using Network → Link Aggregations → Add Link Aggregation.

![Add Link Aggregation](image)

Fig. 7.4: Creating a lagg Interface

Note: If interfaces are installed but do not appear in the Physical NICs list, check that a FreeBSD driver for the interface exists here (https://www.freebsd.org/releases/11.1R/hardware.html#ethernet).

To create a link aggregation, select the desired Protocol Type. **LACP is preferred.** If the network switch does not support LACP, choose Failover. Highlight the interfaces to associate with the lagg device, and click the OK button. Once the lagg device has been created, click its entry to enable its Edit, Delete, and Edit Members buttons.
Clicking the *Edit* button for a lagg opens the configuration screen shown in Figure 7.5. Table 7.4 describes the options in this screen.

![Editing a lagg](image)

Fig. 7.5: Editing a lagg

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC</td>
<td>string</td>
<td>Read-only. Automatically assigned the next available numeric ID.</td>
</tr>
<tr>
<td>Interface Name</td>
<td>string</td>
<td>By default, this is the same as device (NIC) name. This can be changed to a more descriptive value.</td>
</tr>
<tr>
<td>DHCP</td>
<td>checkbox</td>
<td>Enable if the lagg device will get IP address info from DHCP server. The IP address of the new lagg can be set to DHCP only if no other interface uses DHCP.</td>
</tr>
<tr>
<td>IPv4 Address</td>
<td>string</td>
<td>Enter a static IP address if DHCP is unset.</td>
</tr>
<tr>
<td>IPv4 Netmask</td>
<td>drop-down menu</td>
<td>Enter a netmask if DHCP is unset.</td>
</tr>
<tr>
<td>Auto configure IPv6</td>
<td>checkbox</td>
<td>Set only if DHCP server available to provide IPv6 address info</td>
</tr>
<tr>
<td>IPv6 Address</td>
<td>string</td>
<td>This is optional.</td>
</tr>
<tr>
<td>IPv6 Prefix Length</td>
<td>drop-down menu</td>
<td>Required if an IPv6 address is entered.</td>
</tr>
</tbody>
</table>

This screen also allows the configuration of an alias for the lagg interface. Multiple aliases can be added with the *Add extra Alias* link.
Click the *Edit Members* button, click the entry for a member, then click its *Edit* button to see the configuration screen shown in Figure 7.6. The configurable options are summarized in Table 7.5.

![Fig. 7.6: Editing a Member Interface](image)

Table 7.5: Configuring a Member Interface

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAGG Interface Group</td>
<td>drop-down menu</td>
<td>Select the member interface to configure.</td>
</tr>
<tr>
<td>LAGG Priority Number</td>
<td>integer</td>
<td>Order of selected interface within the lagg. Configure a failover to set the master interface to 0 and the other interfaces to 1, 2, etc.</td>
</tr>
<tr>
<td>LAGG Physical NIC</td>
<td>drop-down menu</td>
<td>Physical interface of the selected member. The drop-down is empty when no NICs are available.</td>
</tr>
<tr>
<td>Options</td>
<td>string</td>
<td>Additional parameters from ifconfig(8) (https://www.freebsd.org/cgi/man.cgi?query=ifconfig).</td>
</tr>
</tbody>
</table>

Click *Add Link Aggregation Member* to see the same options. Click *OK* to add the new member to the list.

Options can be set at the lagg level using the *Edit* button, or at the individual parent interface level using the *Edit Members* button. Changes are typically made at the lagg level (Figure 7.5) as each interface member will inherit from the lagg. To configure at the interface level (Figure 7.6) instead, repeat the configuration for each interface within the lagg. Some options can only be set on the parent interfaces and are inherited by the lagg interface. For example, to set the MTU on a lagg, use *Edit Members* to set the MTU for each parent interface.

If the MTU settings on the lagg member interfaces are not identical, the smallest value is used for the MTU of the entire lagg.
Note: A reboot is required after changing the MTU to create a jumbo frame lagg.

Link aggregation load balancing can be tested with:

```
systat -ifstat
```

More information about this command can be found at systat(1) (https://www.freebsd.org/cgi/man.cgi?query=systat).

7.5 Network Summary

Network → Network Summary shows a quick summary of the addressing information of every configured interface. For each interface name, the configured IPv4 and IPv6 addresses, DNS servers, and default gateway are displayed.

7.6 Static Routes

No static routes are defined on a default FreeNAS® system. If a static route is required to reach portions of the network, add the route with Network → Static Routes → Add Static Route, shown in Figure 7.7.

![Fig. 7.7: Adding a Static Route](image)

The available options are summarized in Table 7.6.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination network</td>
<td>integer</td>
<td>Use the format A.B.C.D/E where E is the CIDR mask.</td>
</tr>
<tr>
<td>Gateway</td>
<td>integer</td>
<td>Enter the IP address of the gateway.</td>
</tr>
<tr>
<td>Description</td>
<td>string</td>
<td>Optional. Add any notes about the route.</td>
</tr>
</tbody>
</table>

Added static routes are shown in View Static Routes. Click a route's entry to access the Edit and Delete buttons.

7.7 VLANs

FreeNAS® uses FreeBSD's vlan(4) (https://www.freebsd.org/cgi/man.cgi?query=vlan) interface to demultiplex frames with IEEE 802.1q tags. This allows nodes on different VLANs to communicate through a layer 3 switch or router. A vlan interface must be assigned a parent interface and a numeric VLAN tag. A single parent can be assigned to multiple vlan interfaces provided they have different tags.
Note: VLAN tagging is the only 802.1q feature that is implemented. Additionally, not all Ethernet interfaces support full VLAN processing. See the HARDWARE section of `vlan(4)` (https://www.freebsd.org/cgi/man.cgi?query=vlan) for details.

Click **Network → VLANs → Add VLAN**, to see the screen shown in Figure 7.8.

![Add VLAN](image)

Fig. 7.8: Adding a VLAN

Table 7.7 summarizes the configurable fields.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Interface</td>
<td>string</td>
<td>Use the format <code>vlanX</code> where <code>X</code> is a number representing a vlan interface not currently being used as a parent.</td>
</tr>
<tr>
<td>Parent Interface</td>
<td>drop-down menu</td>
<td>Usually an Ethernet card connected to a properly configured switch port. Newly created Link Aggregations (page 126) do not appear in the drop-down until the system is rebooted.</td>
</tr>
<tr>
<td>VLAN Tag</td>
<td>integer</td>
<td>Enter a number between 1 and 4095 which matches a numeric tag set up in the switched network.</td>
</tr>
<tr>
<td>Priority Code Point</td>
<td>drop-down menu</td>
<td>Available 802.1p Class of Service ranges from Best Effort (default) to Network Control (highest).</td>
</tr>
<tr>
<td>Description</td>
<td>string</td>
<td>Optional. Enter any notes about this VLAN.</td>
</tr>
</tbody>
</table>

The parent interface of a VLAN must be up, but it can either have an IP address or be unconfigured, depending upon the requirements of the VLAN configuration. This makes it difficult for the GUI to do the right thing without trampling the configuration. To remedy this, add the VLAN, then select **Network → Interfaces → Add Interface**. Choose the parent interface from the NIC drop-down menu and in the Options field, type `up`. This will bring up the parent interface. If an IP address is required, it can be configured using the rest of the options in the Add Interface screen.

Warning: Creating a VLAN causes an interruption to network connectivity. The GUI provides a warning and an opportunity to cancel the VLAN creation.
The Storage section of the graphical interface allows configuration of these options:

- **Volumes** (page 132) create and manage storage volumes.
- **Periodic Snapshot Tasks** (page 158) schedule automatic creation of filesystem snapshots.
- **Replication Tasks** (page 160) automate the replication of snapshots to a remote system.
- **Resilver Priority** (page 170) control the priority of resilvers.
- **Scrubs** (page 171) schedule scrubs as part of ongoing disk maintenance.
- **Snapshots** (page 174) manage local snapshots.
- **VMware-Snapshot** (page 176) coordinate OpenZFS snapshots with a VMware datastore.

8.1 Swap Space

Swap is space on a disk set aside to be used as memory. When the FreeNAS® system runs low on memory, less-used data can be “swapped” onto the disk, freeing up main memory.

For reliability, FreeNAS® creates swap space as mirrors of swap partitions on pairs of individual disks. For example, if the system has three hard disks, a swap mirror is created from the swap partitions on two of the drives. The third drive is not used, because it does not have redundancy. On a system with four drives, two swap mirrors are created.

Swap space is allocated when drives are partitioned before being added to a vdev (page 336). A 2 GiB partition for swap space is created on each data drive by default. The size of space to allocate can be changed in **System → Advanced** in the **Swap size on each drive in Gib, affects new disks only. Setting this to 0 disables swap creation completely (STRONGLY DISCOURAGED) field. Changing the value does not affect the amount of swap on existing disks, only disks added after the change. This does not affect log or cache devices, which are created without swap. Swap can be disabled by entering 0, but that is strongly discouraged.**

8.2 Volumes

The *Volumes* section of the FreeNAS® graphical interface is used to format volumes, attach a disk to copy data onto an existing volume, or import a ZFS volume. It is also used to create ZFS datasets and zvols and to manage their permissions.

Note: In ZFS terminology, groups of storage devices managed by ZFS are referred to as a *pool*. The FreeNAS® graphical interface uses the term *volume* to refer to a ZFS pool.

Proper storage design is important for any NAS. **Please read through this entire chapter before configuring storage disks. Features are described to help make it clear which are beneficial for particular uses, and caveats or hardware restrictions which limit usefulness.**
8.2.1 Volume Manager

Before creating a volume, determine the level of required redundancy, how many disks will be added, and if any data exists on those disks. Creating a volume overwrites disk data, so save any required data to different media before adding disks to a pool. Refer to the ZFS Primer (page 336) for information on ZFS redundancy with multiple disks before using Volume Manager. It is important to realize that different layouts of virtual devices (vdevs) affect which operations can be performed on that volume later. For example, drives can be added to a mirror to increase redundancy, but that is not possible with RAIDZ arrays.

To create a volume, click Storage → Volumes → Volume Manager. This opens a screen like the example shown in Figure 8.1.

Table 8.1 summarizes the configuration options of this screen.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume name</td>
<td>string</td>
<td>ZFS volumes must conform to these naming conventions (link) Choose a memorable name that sticks out in the logs and avoid generic names.</td>
</tr>
<tr>
<td>Volume to extend</td>
<td>drop-down</td>
<td>Extend an existing ZFS pool. See Extending a ZFS Volume (page 137) for more details.</td>
</tr>
<tr>
<td>Encryption</td>
<td>checkbox</td>
<td>See the warnings in Encryption (page 135) before enabling encryption.</td>
</tr>
</tbody>
</table>
Table 8.1 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available disks</td>
<td>display</td>
<td>Display the number and size of available disks. Hover over show to list the available device names, and click the + to add all of the disks to the pool.</td>
</tr>
<tr>
<td>Volume layout</td>
<td>drag and drop</td>
<td>Click and drag the icon to select the desired number of disks for a vdev. When at least one disk is selected, the layouts supported by the selected number of disks are added to the drop-down menu.</td>
</tr>
<tr>
<td>Add Extra Device</td>
<td>button</td>
<td>Configure multiple vdevs or add log or cache devices during pool creation.</td>
</tr>
<tr>
<td>Manual setup</td>
<td>button</td>
<td>Create a pool manually, which is not recommended. See Manual Setup (page 136) for more details.</td>
</tr>
</tbody>
</table>

Click the Volume name field and enter a name for the pool. Ensure that the chosen name conforms to these naming conventions (http://docs.oracle.com/cd/E23824_01/html/821-1448/gbcpt.html).

If the underlying disks need to be encrypted as a protection against physical theft, enable the Encryption option.

Warning: Refer to the warnings in Encryption (page 135) before enabling encryption! Be aware that this form of encryption will be replaced by OpenZFS native encryption in a future version. Volumes created with the current encryption mechanism will have to be backed up and destroyed to be recreated with native encryption when it becomes available.

Drag the slider to select the desired number of disks. Volume Manager displays the resulting storage capacity, taking reserved swap space into account. To change the layout or the number of disks, drag the slider to the desired volume layout. The Volume layout drop-down menu can also be clicked if a different level of redundancy is required.

Note: For performance and capacity reasons, this screen does not allow creating a volume from disks of differing sizes. While it is not recommended, it is possible to create a volume of differently-sized disks with the Manual setup button. Follow the instructions in Manual Setup (page 136).

Volume Manager only allows choosing a configuration if enough disks have been selected to create that configuration. These layouts are supported:

- **Stripe:** requires at least one disk
- **Mirror:** requires at least two disks
- **RAIDZ1:** requires at least three disks
- **RAIDZ2:** requires at least four disks
- **RAIDZ3:** requires at least five disks
- **log device:** requires at least one dedicated device, a fast, low-latency, power-protected SSD is recommended
- **cache device:** requires at least one dedicated device, SSD is recommended

When more than five disks are used, consideration must be given to the optimal layout for the best performance and scalability. An overview of the recommended disk group sizes as well as more information about log and cache devices can be found in the ZFS Primer (page 336).

The Add Volume button warns that existing data will be cleared. In other words, creating a new volume reformatsthe selected disks. To preserve existing data, click the Cancel button and refer to Import Disk (page 145) and Import Volume (page 146) to see if the existing format is supported. If so, perform that action instead. If the current storage format is not supported, it is necessary to back up the data to external media, format the disks, then restore the data to the new volume.

Depending on the size and number of disks, the type of controller, and whether encryption is selected, creating the volume may take some time. After the volume is created, the screen refreshes and the new volume is listed in the...
tree under Storage → Volumes. Click the + next to the volume name to access Change Permissions (page 138), Create Dataset (page 140), and Create zvol (page 143) options for that volume.

8.2.1.1 Encryption

Note: FreeNAS® uses GELI (https://www.freebsd.org/cgi/man.cgi?query=geli) full disk encryption for ZFS volumes. This type of encryption is primarily intended to protect data against the risks of data being read or copied when the system is powered down, when the volume is locked, or when disks are physically stolen.

Because data cannot be read without the key, encrypted disks containing sensitive data can be safely removed, reused, or discarded without secure wiping or physical destruction of the media.

This encryption method is **not** designed to protect against unauthorized access when the volume is already unlocked. Before sensitive data is stored on the system, ensure that only authorized users have access to the web interface and that permissions with appropriate restrictions are set on shares.

FreeNAS® encrypts disks and volumes, not individual filesystems. The partition table on each disk is not encrypted, but only identifies the location of partitions on the disk. On an encrypted volume, the data in each partition is encrypted.

Encrypted volumes which do not have a passphrase are unlocked at startup. Volumes with a passphrase remain locked until the user enters the passphrase to unlock them.

Encrypted volumes can be locked on demand by the user. They are automatically locked when the system is shut down.

Understanding the details of FreeNAS® encryption is required to be able to use it effectively:

- FreeNAS® encryption differs from the encryption used in Oracle's proprietary version of ZFS. To convert between these formats, both volumes must be unlocked, and the data copied between them.

- When discarding disks that still contain encrypted sensitive data, the encryption key must also be destroyed or securely deleted. If the encryption key is not destroyed, it must be stored securely and kept physically separate from the discarded disks. If the encryption key is present on or with the discarded disks, or can be obtained by the same person who gains access to the disks, the data will be vulnerable to decryption.

- Protect the key with a strong passphrase and store all key backups securely. If the encryption key is lost, the data on the disks is inaccessible. Always back up the key!

- Encryption keys are per ZFS volume. Each volume has a separate encryption key. Technical details about how encryption key use, storage, and management are described in this forum post (https://forums.freenas.org/index.php?threads/recover-encryption-key.16593/#post-85497).

- All drives in an encrypted volume are encrypted, including L2ARC (read cache) and SLOG (write intent log). Drives added to an existing encrypted volume are encrypted with the same method specified when the volume was created. Swap data on disk is always encrypted. Data in memory (RAM), including ARC, is not encrypted.

- At present, there is no one-step way to encrypt an existing volume. The data must be copied to an existing or new encrypted volume. After that, the original volume and any unencrypted backup should be destroyed to prevent unauthorized access and any disks that contained unencrypted data should be wiped.

- Hybrid volumes are not supported. Added vdevs must match the existing encryption scheme. Volume Manager (page 133) automatically encrypts new vdevs added to an existing encrypted volume.

To create an encrypted volume, enable the Encryption option shown in Figure 8.1. A pop-up message shows a reminder that **it is extremely important to back up the key**. Without the key, the data on the disks is inaccessible. See Managing Encrypted Volumes (page 152) for instructions.

8.2.1.2 Encryption Performance

Encryption performance depends upon the number of disks encrypted. The more drives in an encrypted volume, the more encryption and decryption overhead, and the greater the impact on performance. Encryption volumes
composed of more than eight drives can suffer severe performance penalties. If encryption is desired, please benchmark such volumes before using them in production.

Note: Processors with support for the AES-NI ([AES_instruction_set#Supporting_x86_CPUs](https://en.wikipedia.org/wiki/AES_instruction_set#Supporting_x86_CPUs)) instruction set are strongly recommended. These processors can handle encryption of a small number of disks with negligible performance impact. They also retain performance better as the number of disks increases. Older processors without the AES-NI instructions see significant performance impact with even a single encrypted disk. This [forum post](https://forums.freenas.org/index.php?threads/encryption-performance-benchmarks.12157/) compares the performance of various processors.

8.2.1.3 Manual Setup

The *Manual Setup* button shown in Figure 8.1 can be used to create a ZFS volume manually. While this is **not** recommended, it can, for example, be used to create a non-optimal volume containing disks of different sizes.

Note: The usable space of each disk in a volume is limited to the size of the smallest disk in the volume. Because of this, creating volumes with disks of the same size through the *Volume Manager* is recommended.

Figure 8.2 shows the *Manual Setup* screen. Table 8.2 shows the available options.

![Manual Setup](image)

Fig. 8.2: Manually Creating a ZFS Volume
Note: Because of the disadvantages of creating volumes with disks of different sizes, the displayed list of disks is sorted by size.

Table 8.2: Manual Setup Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume name</td>
<td>string</td>
<td>ZFS volumes must conform to these naming conventions (https://docs.oracle.com/cd/E53394_01/index.html). Choosing a unique, memorable name is recommended.</td>
</tr>
<tr>
<td>Volume to extend</td>
<td>drop-down menu</td>
<td>Extend an existing ZFS pool. See Extending a ZFS Volume (page 137) for more details.</td>
</tr>
<tr>
<td>Encryption</td>
<td>checkbox</td>
<td>See the warnings in Encryption (page 135) before using encryption.</td>
</tr>
<tr>
<td>Member disks</td>
<td>list</td>
<td>Highlight desired number of disks from list of available disks. Hold Ctrl and click a highlighted item to de-select it. Selecting a member disk removes it from the ZFS Extra list.</td>
</tr>
<tr>
<td>Deduplication</td>
<td>drop-down menu</td>
<td>Choices are Off, Verify, and On. Carefully consider the section on Deduplication (page 142) before changing this setting.</td>
</tr>
<tr>
<td>ZFS Extra</td>
<td>bullet selection</td>
<td>Specify disk usage: storage (None), a log device, a cache device, or a spare. Choosing a value other than None removes the disk from the Member disks list.</td>
</tr>
</tbody>
</table>

8.2.1.4 Extending a ZFS Volume

The Volume to extend drop-down menu in Storage → Volumes → Volume Manager, shown in Figure 8.1, is used to add disks to an existing ZFS volume to increase capacity. This menu is empty if there are no ZFS volumes yet.

If more than one disk is added, the arrangement of the new disks into stripes, mirrors, or RAIDZ vdevs can be specified. Mirrors and RAIDZ arrays provide redundancy for data protection if an individual drive fails.

Note: If the existing volume is encrypted, a warning message shows a reminder that extending a volume resets the passphrase and recovery key. After extending the volume, immediately recreate both using the instructions in Managing Encrypted Volumes (page 152).

After an existing volume has been selected from the drop-down menu, drag and drop the desired disks and select the desired volume layout. For example, disks can be added to increase the capacity of the volume.

When adding disks to increase the capacity of a volume, ZFS supports the addition of virtual devices, or vdevs, to an existing ZFS pool. A vdev can be a single disk, a stripe, a mirror, a RAIDZ1, RAIDZ2, or a RAIDZ3. After a vdev is created, more drives cannot be added to that vdev. However, a new vdev can be striped with another of the same type of existing vdev to increase the overall size of the volume. Extending a volume often involves striping similar vdevs. Here are some examples:

- to extend a ZFS stripe, add one or more disks. Since there is no redundancy, disks do not have to be added in the same quantity as the existing stripe.
- to extend a ZFS mirror, add the same number of drives. The resulting striped mirror is a RAID 10. For example, if ten new drives are available, a mirror of two drives could be created initially, then extended by creating another mirror of two drives, and repeating three more times until all ten drives have been added.
- to extend a three drive RAIDZ1, add three additional drives. The result is a RAIDZ+0, similar to RAID 50 on a hardware controller.
- to extend a RAIDZ2 requires a minimum of four additional drives. The result is a RAIDZ2+0, similar to RAID 60 on a hardware controller.
If an attempt is made to add a non-matching number of disks to the existing vdev, an error message appears, indicating the number of disks that are required. Select the correct number of disks to continue.

Adding L2ARC or SLOG Devices

Storage → Volumes → Volume Manager (see Figure 8.1) is also used to add L2ARC or SLOG SSDs to improve volume performance for specific use cases. Refer to the ZFS Primer (page 336) to determine if the system will benefit or suffer from the addition of the device.

Once the SSD has been physically installed, click the Volume Manager button and choose the volume from the Volume to extend drop-down menu. Click the + next to the SSD in the Available disks list. In the Volume layout drop-down menu, select Cache (L2ARC) to add a cache device, or Log (ZIL) to add a log device. Finally, click Extend Volume to add the SSD.

Removing L2ARC or SLOG Devices

Cache or log devices can be removed by going to Storage → Volumes. Choose the desired pool and click Volume Status. Choose the log or cache device to remove, then click Remove.

8.2.2 Change Permissions

Setting permissions is an important aspect of managing data access. The graphical administrative interface is meant to set the initial permissions for a volume or dataset to make it available as a share. After a share has been created, the client operating system is used to fine-tune the permissions of the files and directories that are created by the client.

Sharing (page 190) contains configuration examples for several types of permission scenarios. This section provides an overview of the options available for configuring the initial set of permissions.

Note: For users and groups to be available, they must either be first created using the instructions in Account (page 61) or imported from a directory service using the instructions in Directory Services (page 178). If more than 50 users or groups are available, the drop-down menus described in this section will automatically truncate their display to 50 for performance reasons. In this case, start to type in the desired user or group name so that the display narrows its search to matching results.

After a volume or dataset is created, it is listed by its mount point name in Storage → Volumes. Clicking the Change Permissions icon for a specific volume or dataset displays the screen shown in Figure 8.3. Table 8.3 summarizes the options in this screen.
Table 8.3: Options When Changing Permissions

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply Owner (user)</td>
<td>checkbox</td>
<td>Deselect to prevent new permission change from being applied to Owner (user), see Note below.</td>
</tr>
<tr>
<td>Owner (user)</td>
<td>dropdown menu</td>
<td>Select the user to control the volume or dataset. Users manually created or imported from a directory service will appear in the dropdown menu.</td>
</tr>
<tr>
<td>Apply Owner (group)</td>
<td>checkbox</td>
<td>Deselect to prevent new permission change from being applied to Owner (group), see Note below for more information.</td>
</tr>
<tr>
<td>Owner (group)</td>
<td>dropdown menu</td>
<td>Select the group to control the volume or dataset. Groups manually created or imported from a directory service will appear in the dropdown menu.</td>
</tr>
<tr>
<td>Apply Mode</td>
<td>checkbox</td>
<td>Deselect to prevent new permission change from being applied to Mode, see Note below.</td>
</tr>
<tr>
<td>Mode</td>
<td>checkboxes</td>
<td>Only applies to the Unix or Mac “Permission Type”. Will be grayed out if Windows is selected.</td>
</tr>
<tr>
<td>Permission Type</td>
<td>bullet selection</td>
<td>Select the type which matches the type of client accessing the volume or dataset. Choices are Unix, Mac, or Windows.</td>
</tr>
<tr>
<td>Set permission recursively</td>
<td>checkbox</td>
<td>If enabled, permissions will also apply to subdirectories of the volume or dataset. If data already exists on the volume or dataset, change the permissions on the client side to prevent a performance lag.</td>
</tr>
</tbody>
</table>

Note: The Apply Owner (user), Apply Owner (group), and Apply Mode options allow fine-tuning of the change permissions behavior. By default, all options are enabled and FreeNAS® resets the owner, group, and mode when the...
Change button is clicked. These options allow choosing which settings to change. For example, to change just the Owner (group) setting, deselect the Apply Owner (user) and Apply Mode options.

The Windows Permission Type is used for Windows (SMB) Shares (page 203) or when the FreeNAS® system is a member of an Active Directory domain. This type adds ACLs to traditional Unix permissions. When the Windows Permission Type is set, ACLs are set to the Windows defaults for new files and directories. A Windows client can be used to further fine-tune permissions as needed.

Warning: Changing a volume or dataset with Windows permissions back to Unix permissions will overwrite and destroy some of the extended permissions provided by Windows ACLs.

The Unix Permission Type is usually used with Unix (NFS) Shares (page 195). Unix permissions are compatible with most network clients and generally work well with a mix of operating systems or clients. However, Unix permissions do not support Windows ACLs. Do not use them with Windows (SMB) Shares (page 203).

The Mac Permission Type can be used with Apple (AFP) Shares (page 191).

8.2.3 Create Dataset

An existing ZFS volume can be divided into datasets. Permissions, compression, deduplication, and quotas can be set on a per-dataset basis, allowing more granular control over access to storage data. Like a folder or directory, permissions can be set on dataset. Datasets are also similar to filesystems in that properties such as quotas and compression can be set, and snapshots created.

Note: ZFS provides thick provisioning using quotas and thin provisioning using reserved space.

Selecting an existing ZFS volume in the tree and clicking Create Dataset shows the screen in Figure 8.4.
Table 8.4 shows the options available when creating a dataset. Some settings are only available in Advanced Mode. To see these settings, either click the Advanced Mode button, or configure the system to always display advanced settings by enabling the Show advanced fields by default option in System → Advanced. Most attributes, except for the Dataset Name, Case Sensitivity, and Record Size, can be changed after dataset creation by highlighting the dataset name and clicking the Edit Options button in Storage → Volumes.

Table 8.4: ZFS Dataset Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dataset Name</td>
<td>string</td>
<td>Enter a mandatory unique name for the dataset.</td>
</tr>
<tr>
<td>Comments</td>
<td>string</td>
<td>Enter optional comments or notes about this dataset.</td>
</tr>
<tr>
<td>Sync</td>
<td>drop-down menu</td>
<td>Sets the data write synchronization. Inherit inherits the sync settings from the parent dataset. Always always waits. Standard uses the sync settings that are requested by the client software for data writes to complete. Disabled never waits for writes to complete.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 8.4 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression Level</td>
<td>drop-down menu</td>
<td>Refer to the section on Compression (page 143) for a description of the available algorithms.</td>
</tr>
<tr>
<td>Share type</td>
<td>drop-down menu</td>
<td>Select the type of share that will be used on the dataset. Choices are UNIX for an NFS share, Windows for a SMB share, or Mac for an AFP share.</td>
</tr>
<tr>
<td>Enable atime</td>
<td>Inherit, On, or Off</td>
<td>Choose On to update the access time for files when they are read. Choose Off to prevent producing log traffic when reading files. This can result in significant performance gains.</td>
</tr>
<tr>
<td>Quota for this dataset</td>
<td>integer</td>
<td>Only available in Advanced Mode. Default of 0 disables quotas. Specifying a value uses no more than the specified size and is suitable for user datasets to prevent users from taking all available space.</td>
</tr>
<tr>
<td>Quota for this dataset and all children</td>
<td>integer</td>
<td>Only available in Advanced Mode. A specified value applies to both this dataset and any child datasets.</td>
</tr>
<tr>
<td>Reserved space for this dataset</td>
<td>integer</td>
<td>Only available in Advanced Mode. Default of 0 is unlimited. Specifying a value keeps at least this much space free and is suitable for datasets with logs that could take all free space.</td>
</tr>
<tr>
<td>Reserved space for this dataset and all children</td>
<td>integer</td>
<td>Only available in Advanced Mode. A specified value applies to both this dataset and any child datasets.</td>
</tr>
<tr>
<td>ZFS Deduplication</td>
<td>drop-down menu</td>
<td>Read the section on Deduplication (page 142) before making a change to this setting.</td>
</tr>
<tr>
<td>Read-Only</td>
<td>drop-down menu</td>
<td>Only available in Advanced Mode. Choices are Inherit (off), On, or Off.</td>
</tr>
<tr>
<td>Exec</td>
<td>drop-down menu</td>
<td>Only available in Advanced Mode. Choices are Inherit (on), On, or Off. Setting to Off prevents the installation of Plugins (page 268) or Jails (page 270).</td>
</tr>
<tr>
<td>Record Size</td>
<td>drop-down menu</td>
<td>Only available in Advanced Mode. While ZFS automatically adapts the record size dynamically to adapt to data, if the data has a fixed size, matching that size can result in better performance.</td>
</tr>
<tr>
<td>Case Sensitivity</td>
<td>drop-down menu</td>
<td>Sensitive is the default and assumes filenames are case sensitive. Insensitive assumes filenames are not case sensitive. Mixed understands both types of filenames.</td>
</tr>
</tbody>
</table>

Create a nested dataset by clicking on an existing dataset and selecting Create Dataset. A zvol can also be created within a dataset.

8.2.3.1 Deduplication

Deduplication is the process of ZFS transparently reusing a single copy of duplicated data to save space. Depending on the amount of duplicate data, deduplication can improve storage capacity, as less data is written and stored. However, deduplication is RAM intensive. A general rule of thumb is 5 GiB of RAM per terabyte of deduplicated storage. In most cases, compression provides storage gains comparable to deduplication with less impact on performance.

In FreeNAS®, deduplication can be enabled during dataset creation. Be forewarned that there is no way to undedup the data within a dataset once deduplication is enabled, as disabling deduplication has NO EFFECT on existing data. The more data written to a deduplicated dataset, the more RAM it requires. When the system starts storing the DDTs (dedup tables) on disk because they no longer fit into RAM, performance craters. Further, importing an unclean pool can require between 3-5 GiB of RAM per terabyte of deduped data, and if the system does not have the needed RAM, it will panic. The only solution is to add more RAM or recreate the pool. Think carefully before enabling dedup! This article (https://constantin.glez.de/2011/07/27/zfs-to-dedupe-or-not-dedupe/) provides a good description of the value versus cost considerations for deduplication.
Unless a lot of RAM and a lot of duplicate data is available, do not change the default deduplication setting of “Off”. For performance reasons, consider using compression rather than turning this option on.

If deduplication is changed to On, duplicate data blocks are removed synchronously. The result is that only unique data is stored and common components are shared among files. If deduplication is changed to Verify, ZFS will do a byte-to-byte comparison when two blocks have the same signature to make sure that the block contents are identical. Since hash collisions are extremely rare, Verify is usually not worth the performance hit.

Note: After deduplication is enabled, the only way to disable it is to use the `zfs set dedup=off dataset_name` command from Shell (page 304). However, any data that has already been deduplicated will not be un-deduplicated. Only newly stored data after the property change will not be deduplicated. The only way to remove existing deduplicated data is to copy all of the data off of the dataset, set the property to off, then copy the data back in again. Alternately, create a new dataset with ZFS Deduplication left disabled, copy the data to the new dataset, and destroy the original dataset.

Tip: Deduplication is often considered when using a group of very similar virtual machine images. However, other features of ZFS can provide dedup-like functionality more efficiently. For example, create a dataset for a standard VM, then clone a snapshot of that dataset for other VMs. Only the difference between each created VM and the main dataset are saved, giving the effect of deduplication without the overhead.

8.2.3.2 Compression

When selecting a compression type, try to balance performance with the amount of disk space saved by compression. Compression is transparent to the client and applications as ZFS automatically compresses data as it is written to a compressed dataset or zvol and automatically decompresses that data as it is read. These compression algorithms are supported:

- **lz4:** default and recommended compression method as it allows compressed datasets to operate at near real-time speed. This algorithm only compresses the files that will benefit from compression.
- **gzip:** varies from levels 1 to 9 where `gzip fastest` (level 1) gives the least compression and `gzip maximum` (level 9) provides the best compression but is discouraged due to its performance impact.
- **zle:** fast but simple algorithm which eliminates runs of zeroes.
- **lzjb:** provides decent data compression, but is considered deprecated as `lz4` provides much better performance.

If selecting Off as the Compression level when creating a dataset or zvol, compression will not be used on that dataset/zvol. This is not recommended as using lz4 has a negligible performance impact and allows for more storage capacity.

8.2.4 Create zvol

A zvol is a feature of ZFS that creates a raw block device over ZFS. The zvol can be used as an iSCSI (page 244) device extent.

To create a zvol, select an existing ZFS volume or dataset from the tree then click Create zvol to open the screen shown in Figure 8.5.
The configuration options are described in Table 8.5. Some settings are only available in Advanced Mode. To see these settings, either click the Advanced Mode button or configure the system to always display these settings by enabling Show advanced fields by default in System → Advanced.

![Image of Create zvol interface](image)

Table 8.5: zvol Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>zvol Name</td>
<td>string</td>
<td>Enter a short name for the zvol. Using a zvol name longer than 63-characters can prevent accessing zvols as devices. For example, a zvol with a 70-character filename or path cannot be used as an iSCSI extent. This setting is mandatory.</td>
</tr>
<tr>
<td>Comments</td>
<td>string</td>
<td>Enter any notes about this zvol.</td>
</tr>
<tr>
<td>Size for this zvol</td>
<td>integer</td>
<td>Specify size and value such as 70GiB. If the size is more than 80% of the available capacity, the creation will fail with an "out of space" error unless Force size is also enabled.</td>
</tr>
<tr>
<td>Force size</td>
<td>checkbox</td>
<td>By default, the system does not create a zvol when it brings the pool above 80% capacity. While NOT recommended, enabling this option will force the creation of the zvol.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 8.5 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression level</td>
<td>drop-down menu</td>
<td>Refer to the section on Compression (page 143) for a description of the available algorithms.</td>
</tr>
<tr>
<td>ZFS Deduplication</td>
<td>drop-down menu</td>
<td>Read the section on Deduplication (page 142) before making a change to this setting.</td>
</tr>
<tr>
<td>Sparse volume</td>
<td>checkbox</td>
<td>Used to provide thin provisioning. Caution: when this option is set, writes will fail when the pool is low on space.</td>
</tr>
<tr>
<td>Block size</td>
<td>drop-down menu</td>
<td>Only available in Advanced Mode. The default is based on the number of disks in the pool. Can be set to match the block size of the filesystem to be formatted onto the iSCSI target.</td>
</tr>
</tbody>
</table>

8.2.5 Import Disk

The Volume → Import Disk screen, shown in Figure 8.6, is used to import a single disk that has been formatted with the UFS (BSD Unix), FAT or NTFS (Windows), or EXT2 (Linux) filesystems. The import is meant to be a temporary measure to copy the data from a disk to an existing ZFS dataset. Only one disk can be imported at a time.

Note: Imports of EXT3 or EXT4 filesystems are possible in some cases, although neither is fully supported. EXT3 journaling is not supported, so those filesystems must have an external fsck utility, like the one provided by E2fsprogs utilities (http://e2fsprogs.sourceforge.net/), run on them before import. EXT4 filesystems with extended attributes or inodes greater than 128 bytes are not supported. EXT4 filesystems with EXT3 journaling must have an fsck run on them before import, as described above.

![Import Disk](image)

Fig. 8.6: Importing a Disk

Use the drop-down menu to select the disk to import, select the type of filesystem on the disk, and browse to the ZFS dataset that will hold the copied data. If the MSDOSFS filesystem is selected, the MSDOSFS locale drop-down menu
can be used to select the locale when non-ascii characters are present on the disk. Once Import Disk is clicked, the disk is mounted, its contents are copied to the specified ZFS dataset, and the disk is unmounted after the copy operation completes.

8.2.6 Import Volume

Click Storage → Volumes → Import Volume, to configure FreeNAS® to use an existing ZFS pool. This action is typically performed when an existing FreeNAS® system is re-installed. Since the operating system is separate from the storage disks, a new installation does not affect the data on the disks. However, the new operating system needs to be configured to use the existing volume.

Figure 8.7 shows the initial pop-up window that appears when a volume is imported.

![Fig. 8.7: Initial Import Volume Screen](image)

If importing an unencrypted ZFS pool, select No: Skip to import to open the screen shown in Figure 8.8.

![Fig. 8.8: Importing a Non-Encrypted Volume](image)

Existing volumes are available for selection from the drop-down menu. In the example shown in Figure 8.8, the FreeNAS® system has an existing, unencrypted ZFS pool. Once the volume is selected, click the OK button to import the volume.

If an existing ZFS pool does not show in the drop-down menu, run `zpool import` from Shell (page 304) to import the pool.

If physically installing ZFS formatted disks from another system, ensure to export the drives on that system to prevent an “in use by another machine” error during the import.

If the hardware is not being detected, run `camcontrol devlist` from Shell (page 304). If the disk does not appear in the output, check to see if the controller driver is supported or if it needs to be loaded using Tunables (page 82).
8.2.6.1 Importing an Encrypted Volume

Disks in existing GELI-encrypted volumes must be decrypted before importing the volume. In the Import Volume dialog shown in Figure 8.7, select Yes: Decrypt disks. The screen shown in Figure 8.9 is then displayed.

![Import Volume](image)

Fig. 8.9: Decrypting Disks Before Importing a Volume

Select the disks in the encrypted volume, browse to the location of the saved encryption key, enter the passphrase associated with the key, then click OK to decrypt the disks.

Note: The encryption key is required to decrypt the volume. If the volume cannot be decrypted, it cannot be re-imported after a failed upgrade or lost configuration. This means that it is **very important** to save a copy of the key and to remember the passphrase that was configured for the key. Refer to *Managing Encrypted Volumes* (page 152) for instructions on how to manage the keys for encrypted volumes.

After the volume is decrypted, it appears in the drop-down menu of Figure 8.8. Click the OK button to finish the volume import.

Note: For security reasons, GELI keys for encrypted volumes are not saved in a configuration backup file. When FreeNAS® has been installed to a new device and a saved configuration file restored to it, the GELI keys for encrypted disks will not be present, and the system will not request them. To correct this, export the encrypted volume with Detach Volume, making sure that the options *Mark the disks as new (destroy data)* or *Also delete the share’s configuration* are not selected. Then import the volume again. During the import, the GELI keys can be entered as described above.

8.2.7 View Disks

Storage → Volumes → View Disks shows all of the disks recognized by the FreeNAS® system. An example is shown in Figure 8.10.

<table>
<thead>
<tr>
<th>Name</th>
<th>Serial</th>
<th>Disk Size</th>
<th>Description</th>
<th>Transfer Mode</th>
<th>HDD Standby</th>
<th>Advanced Power Management</th>
<th>Acoustic Level</th>
<th>Enable S.M.A.R.T.</th>
<th>S.M.A.R.T. extras</th>
<th>Password for SED</th>
</tr>
</thead>
<tbody>
<tr>
<td>ada0</td>
<td>WD-40E4RSX0</td>
<td>3.0 TB</td>
<td>Auto</td>
<td>Always On</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>true</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ada1</td>
<td>WD-C4E6121253</td>
<td>3.0 TB</td>
<td>Auto</td>
<td>Always On</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>true</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ada2</td>
<td>WD-C4E6121253</td>
<td>3.0 TB</td>
<td>Auto</td>
<td>Always On</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>true</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ada3</td>
<td>WD-C4E6121253</td>
<td>3.0 TB</td>
<td>Auto</td>
<td>Always On</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>true</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ada4</td>
<td>WD-C4E6121253</td>
<td>3.0 TB</td>
<td>Auto</td>
<td>Always On</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>true</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 8.10: Viewing Disks
The current configuration of each device is displayed. Click a disk entry and the Edit button to change its configuration. The configurable options are described in Table 8.6.

To bulk edit disks, hold Shift and click each disk to edit. Edit changes to Edit In Bulk. Click it to open the Edit In Bulk window. This window displays which disks are being edited and a short list of configurable options. The Disk Options table (page 148) indicates the options available when editing multiple disks.

Table 8.6: Disk Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Bulk Edit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>string</td>
<td></td>
<td>This is the FreeBSD device name for the disk.</td>
</tr>
<tr>
<td>Serial</td>
<td>string</td>
<td></td>
<td>This is the serial number of the disk.</td>
</tr>
<tr>
<td>Description</td>
<td>string</td>
<td></td>
<td>Enter any notes about this disk.</td>
</tr>
<tr>
<td>HDD Standby</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Indicates the time of inactivity in minutes before the drive enters standby mode to conserve energy. This forum post (https://forums.freenas.org/index.php?threads/how-to-find-out-if-a-drive-is-spinning-down-properly.2068/) demonstrates how to determine if a drive has spun down.</td>
</tr>
<tr>
<td>Advanced Power Management</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Select a power management profile from the menu. The default value is Disabled.</td>
</tr>
<tr>
<td>Acoustic Level</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Default is Disabled. Other values can be selected for disks that understand AAM (https://en.wikipedia.org/wiki/Automatic_acoustic_management).</td>
</tr>
<tr>
<td>Enable S.M.A.R.T.</td>
<td>checkbox</td>
<td>✓</td>
<td>Enabled by default when the disk supports S.M.A.R.T. Disabling S.M.A.R.T. tests prevents collecting new temperature data for this disk. Historical temperature data is still displayed in Reporting (page 294).</td>
</tr>
<tr>
<td>Password for SED</td>
<td>string</td>
<td></td>
<td>Enter and confirm the password which will be used for this device instead of the global SED password. Refer to Self-Encrypting Drives (page 77) for more information.</td>
</tr>
<tr>
<td>Reset Password</td>
<td>checkbox</td>
<td></td>
<td>Set to clear the SED password.</td>
</tr>
</tbody>
</table>

Note: If the serial number of a disk is not displayed in this screen, use the smartctl command from Shell (page 304). For example, to determine the serial number of disk ada0, type smartctl -a /dev/ada0 | grep Serial.

The Wipe function is provided for when an unused disk is to be discarded.

Warning: Make certain that all data has been backed up and that the disk is no longer in use. Triple-check that the correct disk is being selected to be wiped, as recovering data from a wiped disk is usually impossible. If there is any doubt, physically remove the disk, verify that all data is still present on the FreeNAS® system, and wipe the disk in a separate computer.

Clicking Wipe offers several choices. Quick erases only the partitioning information on a disk, making it easy to reuse but without clearing other old data. For more security, Full with zeros overwrites the entire disk with zeros, while Full with random data overwrites the entire disk with random binary data.

Quick wipes take only a few seconds. A Full with zeros wipe of a large disk can take several hours, and a Full with random data takes longer. A progress bar is displayed during the wipe to track status.
8.2.8 Volumes

Storage → Volumes is used to view and further configure existing volumes, datasets, and zvols. The example shown in Figure 8.11 shows one ZFS pool (volume1) with two datasets (the one automatically created with the pool, volume1, and dataset1) and one zvol (zvol1).

Note that in this example, there are two datasets named volume1. The first represents the ZFS pool and its Used and Available entries reflect the total size of the pool, including disk parity. The second represents the implicit or root dataset and its Used and Available entries indicate the amount of disk space available for storage.

Buttons are provided for quick access to Volume Manager, Import Disk, Import Volume, and View Disks. If the system has multipath-capable hardware, a View Multipaths button is also shown. For each entry, the columns indicate the Name, how much disk space is Used, how much disk space is Available, the type of Compression, the Compression Ratio, the Status, whether it is mounted as read-only, and any Comments entered for the volume.

Clicking the entry for a pool causes several buttons to appear at the bottom of the screen.

Detach Volume: allows exporting the pool or deleting the contents of the pool, depending upon the choice made in the screen shown in Figure 8.12. The Detach Volume screen displays the current used space and indicates whether there are any shares. It provides options to Mark the disks as new (destroy data) and Also delete the share’s configuration. The browser window turns red to indicate that some choices will make the data inaccessible. **When the option to select the disks as new is left deselected, the volume is exported.** The data is not destroyed and the volume can be re-imported at a later time. When moving a ZFS pool from one system to another, perform this export action first as it flushes any unwritten data to disk, writes data to the disk indicating that the export was done, and removes all knowledge of the pool from the system.

When the option to mark the disks as new is selected, the pool and all the data in its datasets, zvols, and shares is destroyed and the individual disks are returned to their raw state. Desired data must be backed up to another disk or device before using this option.
Scrub Volume: scrubs and scheduling them are described in more detail in *Scrubs* (page 171). This button allows manually initiating a scrub. Scrubs are I/O intensive and can negatively impact performance. Avoid initiating a scrub when the system is busy.

A *Cancel* button is provided to cancel a scrub. When a scrub is cancelled, it is abandoned. The next scrub to run starts from the beginning, not where the cancelled scrub left off.

The status of a running scrub or the statistics from the last completed scrub can be seen by clicking the *Volume Status* button.

Volume Status: as shown in the example in Figure 8.13, this screen shows the device name and status of each disk in the ZFS pool as well as any read, write, or checksum errors. It also indicates the status of the latest ZFS scrub. Clicking the entry for a device causes buttons to appear to edit the device options (shown in Figure 8.14), offline or online the device, or replace the device (as described in *Replacing a Failed Drive* (page 155)).

Upgrade: used to upgrade the pool to the latest *ZFS Feature Flags* (page 339). See the warnings in *Upgrading a ZFS Pool* (page 38) before selecting this option. This button does not appear when the pool is running the latest version of the feature flags.

<table>
<thead>
<tr>
<th>Volume Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scrub</td>
</tr>
<tr>
<td>Status: Completed</td>
</tr>
<tr>
<td>Errors: 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Read</th>
<th>Write</th>
<th>Checksum</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>volume1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ONLINE</td>
</tr>
<tr>
<td>verl2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ONLINE</td>
</tr>
<tr>
<td>ad6lp2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ONLINE</td>
</tr>
<tr>
<td>ad6lp2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ONLINE</td>
</tr>
<tr>
<td>ad6lp2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ONLINE</td>
</tr>
</tbody>
</table>

Fig. 8.13: Volume Status

Selecting a disk in *Volume Status* and clicking its *Edit Disk* button shows the screen in Figure 8.14. Table 8.6 summarizes the configurable options.
Note: Versions of FreeNAS® prior to 8.3.1 required a reboot to apply changes to the HDD Standby, Advanced Power Management, and Acoustic Level settings. As of 8.3.1, changes to these settings are applied immediately.

Clicking a dataset in Storage → Volumes causes buttons to appear at the bottom of the screen, providing these options:

Change Permissions: edit the dataset permissions as described in Change Permissions (page 138).

Create Snapshot: create a one-time snapshot. To schedule the regular creation of snapshots, instead use Periodic Snapshot Tasks (page 158).

Promote Dataset: only applies to clones. When a clone is promoted, the origin filesystem becomes a clone of the clone making it possible to destroy the filesystem that the clone was created from. Otherwise, a clone cannot be deleted while the origin filesystem exists.

Destroy Dataset: clicking the Destroy Dataset button causes the browser window to turn red to indicate that this is a destructive action. Clicking Yes proceeds with the deletion.

Edit Options: edit the volume properties described in Table 8.4. Note that it will not allow changing the dataset name.

Create Dataset: used to create a child dataset within this dataset.

Create zvol: create a child zvol within this dataset.

Clicking a zvol in Storage → Volumes causes icons to appear at the bottom of the screen: Create Snapshot, Promote Dataset, Edit zvol, and Destroy zvol. Similar to datasets, a zvol name cannot be changed.

Choosing a zvol for deletion shows a warning that all snapshots of that zvol will also be deleted.
8.2.8.1 Managing Encrypted Volumes

FreeNAS® generates and stores a randomized encryption key whenever a new encrypted volume is created. This key is required to read and decrypt any data on the volume.

Encryption keys can also be downloaded as a safety measure, to allow decryption on a different system in the event of failure, or to allow the locally stored key to be deleted for extra security. Encryption keys can also be optionally protected with a passphrase for additional security. The combination of encryption key location and whether a passphrase is used provide several different security scenarios:

- **Key stored locally, no passphrase**: the encrypted volume is decrypted and accessible when the system running. Protects “data at rest” only.
- **Key stored locally, with passphrase**: the encrypted volume is not accessible until the passphrase is entered by the FreeNAS® administrator.
- **Key not stored locally**: the encrypted volume is not accessible until the FreeNAS® administrator provides the key. If a passphrase is set on the key, it must also be entered before the encrypted volume can be accessed (two factor authentication).

Encrypted data cannot be accessed when the disks are removed or the system has been shut down. On a running system, encrypted data cannot be accessed when the volume is locked (see below) and the key is not available. If the key is protected with a passphrase, both the key and passphrase are required for decryption.

Encryption applies to a volume, not individual users. When a volume is unlocked, data is accessible to all users with permissions to access it.

Note: GEI (https://www.freebsd.org/cgi/man.cgi?query=geli) uses two randomized encryption keys for each disk. The first has been discussed here. The second, the disk’s “master key”, is encrypted and stored in the on-disk GEI metadata. Loss of a disk master key due to disk corruption is equivalent to any other disk failure, and in a redundant pool, other disks will contain accessible copies of the uncorrupted data. While it is possible to separately back up disk master keys, it is usually not necessary or useful.

8.2.8.2 Additional Controls for Encrypted Volumes

If the Encryption option is enabled during the creation of a pool, additional buttons appear in the entry for the volume in Storage → Volumes. An example is shown in Figure 8.15.

![Fig. 8.15: Encryption Icons Associated with an Encrypted Volume](image)

These additional encryption buttons are used to:

- **Create/Change Passphrase**: set and confirm a passphrase associated with the GEI encryption key. The desired passphrase is entered and repeated for verification. A red warning is a reminder to **Remember to add a new recovery key as this action invalidates the previous recovery key**. Unlike a password, a passphrase can contain spaces and is typically a series of words. A good passphrase is easy to remember (like the line to a song or piece of literature) but hard to guess. **Remember this passphrase. An encrypted volume cannot be reimported without it.** In other words, if the passphrase is forgotten, the data on the volume can become inaccessible if it becomes necessary to...
reimport the pool. Protect this passphrase, as anyone who knows it could reimport the encrypted volume, thwarting
the reason for encrypting the disks in the first place.

![Create Passphrase](image)

Fig. 8.16: Add or Change a Passphrase to an Encrypted Volume

After the passphrase is set, the name of this button changes to *Change Passphrase*. After setting or changing the
passphrase, it is important to *immediately* create a new recovery key by clicking the *Add recovery key* button. This
way, if the passphrase is forgotten, the associated recovery key can be used instead.

Encrypted volumes with a passphrase display an additional lock button:

![Lock Button](image)

Fig. 8.17: Lock Button

These encrypted volumes can be *locked*. The data is not accessible until the volume is unlocked by supplying the
passphrase or encryption key, and the button changes to an unlock button:

![Unlock Button](image)

Fig. 8.18: Unlock Button

To unlock the volume, click the unlock button to display the Unlock dialog:
Fig. 8.19: Unlock Locked Volume

Unlock the volume by entering a passphrase or using the Browse button to load the recovery key. Only the passphrase is used when both a passphrase and a recovery key are entered. The services listed in Restart Services will restart when the pool is unlocked. This allows them to see the new volume and share or access data on it. Individual services can be prevented from restarting by deselecting them. However, a service that is not restarted might not be able to access the unlocked volume.

Download Key: download a backup copy of the GELI encryption key. The encryption key is saved to the client system, not on the FreeNAS® system. The FreeNAS® administrative password must be entered, then the directory in which to store the key is chosen. Since the GELI encryption key is separate from the FreeNAS® configuration database, it is highly recommended to make a backup of the key. If the key is ever lost or destroyed and there is no backup key, the data on the disks is inaccessible.

Encryption Re-key: generate a new GELI encryption key. Typically this is only performed when the administrator suspects that the current key may be compromised. This action also removes the current passphrase.

Add recovery key: generate a new recovery key. This screen prompts for the FreeNAS® administrative password and then the directory in which to save the key. Note that the recovery key is saved to the client system, not on the FreeNAS® system. This recovery key can be used if the passphrase is forgotten. Always immediately add a recovery key whenever the passphrase is changed.

Remove recovery key: Typically this is only performed when the administrator suspects that the current recovery key may be compromised. Immediately create a new passphrase and recovery key.

Note: The passphrase, recovery key, and encryption key must be protected. Do not reveal the passphrase to others. On the system containing the downloaded keys, take care that the system and its backups are protected. Anyone who has the keys has the ability to re-import the disks if they are discarded or stolen.

Warning: If a re-key fails on a multi-disk system, an alert is generated. Do not ignore this alert as doing so may result in the loss of data.
8.2.9 View Multipaths

This option is only displayed on systems that contain multipath-capable hardware like a chassis equipped with a dual SAS expander backplane or an external JBOD that is wired for multipath.

FreeNAS® uses `gmultipath(8)` (https://www.freebsd.org/cgi/man.cgi?query=gmultipath) to provide multipath I/O (https://en.wikipedia.org/wiki/Multipath_I/O) support on systems containing multipath-capable hardware.

Multipath hardware adds fault tolerance to a NAS as the data is still available even if one disk I/O path has a failure. FreeNAS® automatically detects active/active and active/passive multipath-capable hardware. Discovered multipath-capable devices are placed in multipath units with the parent devices hidden. The configuration is displayed in `Storage → Volumes → View Multipaths`.

8.2.10 Replacing a Failed Drive

With any form of redundant RAID, failed drives must be replaced as soon as possible to repair the degraded state of the RAID. Depending on the hardware capabilities, it might be necessary to reboot to replace the failed drive. Hardware that supports AHCI does not require a reboot.

Note: Striping (RAID0) does not provide redundancy. If a disk in a stripe fails, the volume will be destroyed and must be recreated and the data restored from backup.

Note: If the volume is encrypted with GELI, refer to `Replacing an Encrypted Drive` (page 157) before proceeding.

Before physically removing the failed device, go to `Storage → Volumes`. Select the volume name. At the bottom of the interface are several icons, one of which is `Volume Status`. Click the `Volume Status` icon and locate the failed disk. Then perform these steps:

1. Click the disk entry, then its `Offline` button to change the disk status to OFFLINE. This step removes the device from the ZFS pool and prevents swap issues. If the hardware supports hot-pluggable disks, click the disk `Offline` button and pull the disk, then skip to step 3. If there is no `Offline` button but only a `Replace` button, the disk is already offlined and this step can be skipped.

Note: If the process of changing the disk status to OFFLINE fails with a “disk offline failed - no valid replicas” message, the ZFS volume must be scrubbed first with the `Scrub Volume` button in `Storage → Volumes`. After the scrub completes, try to `Offline` the disk again before proceeding.

2. If the hardware is not AHCI capable, shut down the system to physically replace the disk. When finished, return to the GUI and locate the OFFLINE disk.

3. After the disk has been replaced and is showing as OFFLINE, click the disk again and then click its `Replace` button. Select the replacement disk from the drop-down menu and click the `Replace Disk` button. After clicking the `Replace Disk` button, the ZFS pool begins resilvering.

4. After the drive replacement process is complete, re-add the replaced disk in the `S.M.A.R.T. Tests` (page 117) screen.

In the example shown in Figure 8.20, a failed disk is being replaced by disk `ada5` in the volume named `volume1`.

In the example shown in Figure 8.20, a failed disk is being replaced by disk `ada5` in the volume named `volume1`.
After the resilver is complete, Volume Status shows a Completed resilver status and indicates any errors. Figure 8.21 indicates that the disk replacement was successful in this example.

Note: A disk that is failing but has not completely failed can be replaced in place, without first removing it. Whether this is a good idea depends on the overall condition of the failing disk. A disk with a few newly-bad blocks that is otherwise functional can be left in place during the replacement to provide data redundancy. A drive that is experiencing continuous errors can actually slow down the replacement. In extreme cases, a disk with serious problems might spend so much time retrying failures that it could prevent the replacement resilvering from completing before another drive fails.
8.2.10.1 Replacing an Encrypted Drive

If the ZFS pool is encrypted, additional steps are needed when replacing a failed drive.

First, make sure that a passphrase has been set using the instructions in *Encryption* (page 135) **before** attempting to replace the failed drive. Then, follow the steps 1 and 2 as described above. During step 3, a prompt will appear to input and confirm the passphrase for the pool. Enter this information then click *Replace Disk*.

Wait until resilvering is complete before **restoring the encryption keys to the pool** (page 152). *Restore the encryption keys before the next reboot or access to the pool will be permanently lost.*

Warning: Access to the pool will be permanently lost unless the encryption keys are restored to the pool before the next system reboot!

1. Highlight the pool that contains the disk that was just replaced and click the *Add Recovery Key* button to save the new recovery key. The old recovery key will no longer function, so it can be safely discarded.

8.2.10.2 Removing a Log or Cache Device

Added log or cache devices appear in *Storage → Volumes → Volume Status*. Clicking the device enables its *Replace* and *Remove* buttons.

Log and cache devices can be safely removed or replaced with these buttons. Both types of devices improve performance, and throughput can be impacted by their removal.

8.2.11 Replacing Drives to Grow a ZFS Pool

The recommended method for expanding the size of a ZFS pool is to pre-plan the number of disks in a vdev and to stripe additional vdevs from *Volumes* (page 132) as additional capacity is needed.

But adding vdevs is not an option if there are not enough unused disk ports. If there is at least one unused disk port or drive bay, a single disk at a time can be replaced with a larger disk, waiting for the resilvering process to include the new disk into the volume, removing the old disk, then repeating with another disk until all of the original disks have been replaced. At that point, the volume capacity automatically increases to include the new space.

One advantage of this method is that disk redundancy is present during the process.
1. Connect the new, larger disk to the unused disk port or drive bay.
2. Go to Storage → Volumes.
3. Select the volume and click the Volume Status button.
4. Select one of the old, smaller disks in the volume. Click the Replace button. Choose the new disk as the replacement.

The status of the resilver process is shown on the screen, or can be viewed with zpool status. When the new disk has resilvered, the old one is automatically offline. It can then be removed from the system, and that port or bay used to hold the next new disk.

If an unused disk port or bay is not available, a drive can be replaced with a larger one as shown in Replacing a Failed Drive (page 155). This process is slow and places the system in a degraded state. Since a failure at this point could be disastrous, do not attempt this method unless the system has a reliable backup. Replace one drive at a time and wait for the resilver process to complete on the replaced drive before replacing the next drive. After all the drives are replaced and the final resilver completes, the added space appears in the volume.

8.2.12 Adding Spares

ZFS provides the ability to have “hot” spares. These are drives that are connected to a volume, but not in use. If the volume experiences the failure of a data drive, the system uses the hot spare as a temporary replacement. If the failed drive is replaced with a new drive, the hot spare drive is no longer needed and reverts to being a hot spare. If the failed drive is detached from the volume, the spare is promoted to a full member of the volume.

Hot spares can be added to a volume during or after creation. On FreeNAS®, hot spare actions are implemented by zfsd(8). Add a spare by going to Storage → Volume Manager. Select the volume to extend from the Volume to extend dropdown. Choose a disk from the list of Available disks and click + to add that disk to the volume. Select spare in the Volume layout drop down. Click Extend Volume to add the hot spare.

Danger: When adding a spare disk to an encrypted volume, the passphrase and recovery key are reset. Click Download Key to download the new recovery key. To create a new passphrase, click Create Passphrase.

8.3 Periodic Snapshot Tasks

A periodic snapshot task allows scheduling the creation of read-only versions of ZFS volumes and datasets at a given point in time. Snapshots can be created quickly and, if little data changes, new snapshots take up very little space. For example, a snapshot where no files have changed takes 0 MiB of storage, but as changes are made to files, the snapshot size changes to reflect the size of the changes.

Snapshots provide a clever way of keeping a history of files, providing a way to recover an older copy or even a deleted file. For this reason, many administrators take snapshots often (perhaps every fifteen minutes), store them for a period of time (possibly a month), and store them on another system (typically using Replication Tasks (page 160)). Such a strategy allows the administrator to roll the system back to a specific point in time. If there is a catastrophic loss, an off-site snapshot can be used to restore the system up to the time of the last snapshot.

An existing ZFS volume is required before creating a snapshot. Creating a volume is described in Volume Manager (page 133).

To create a periodic snapshot task, click Storage → Periodic Snapshot Tasks → Add Periodic Snapshot which opens the screen shown in Figure 8.22. Table 8.7 summarizes the fields in this screen.
Note: If only a one-time snapshot is needed, instead use *Storage → Volumes* and click the *Create Snapshot* button for the volume or dataset to snapshot.

![Periodic Snapshots](image)

Fig. 8.22: Creating a Periodic Snapshot

Table 8.7: Options When Creating a Periodic Snapshot

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume/Dataset</td>
<td>drop-down menu</td>
<td>Select an existing ZFS volume, dataset, or zvol.</td>
</tr>
<tr>
<td>Recursive</td>
<td>checkbox</td>
<td>Set to take separate snapshots of the volume or dataset and each of its child datasets. Unset to take a single snapshot of only the specified volume or dataset.</td>
</tr>
<tr>
<td>Snapshot Lifet ime</td>
<td>integer and drop-down menu</td>
<td>Define a length of time to retain the snapshot on this system. After the time expires, the snapshot is removed. Snapshots replicated to other systems are not affected.</td>
</tr>
<tr>
<td>Begin</td>
<td>drop-down menu</td>
<td>Choose the hour and minute when the system can begin taking snapshots.</td>
</tr>
<tr>
<td>End</td>
<td>drop-down menu</td>
<td>Choose the hour and minute when the system will stop taking snapshots.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 8.7 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interval</td>
<td>drop-down menu</td>
<td>Define how often the system takes snapshots between the Begin and End times.</td>
</tr>
<tr>
<td>Weekday</td>
<td>checkboxes</td>
<td>Choose the days of the week to take snapshots.</td>
</tr>
<tr>
<td>Enabled</td>
<td>checkbox</td>
<td>Unset to disable this task without deleting it.</td>
</tr>
</tbody>
</table>

If the *Recursive* option is enabled, child datasets of this dataset are included in the snapshot and there is no need to create snapshots for each child dataset. The downside is that there is no way to exclude particular child datasets from a recursive snapshot.

Click the *OK* button to save the task. Entries for each task are shown in *View Periodic Snapshot Tasks*. Click an entry to display *Edit* and *Delete* buttons for it.

8.4 Replication Tasks

Replication is the duplication of snapshots from one FreeNAS® system to another computer. When a new snapshot is created on the source computer, it is automatically replicated to the destination computer. Replication is typically used to keep a copy of files on a separate system, with that system sometimes being at a different physical location.

The basic configuration requires a source system with the original data and a destination system where the data will be replicated. When a *periodic snapshot* (page 158) of the selected dataset occurs, the replication task copies the data to the destination system.

When snapshots are automatically created on the source computer, they are replicated to the destination computer. First-time replication tasks can take a long time to complete as the entire snapshot must be copied to the destination system. Replicated data is not visible on the receiving system until the replication task completes. Later replications only send the snapshot changes to the destination system. Interrupting a running replication requires the replication task to restart from the beginning.

The target dataset on the receiving system is automatically created in read-only mode to protect the data. To mount or browse the data on the receiving system, create a clone of the snapshot and use the clone. Clones are created in read/write mode, making it possible to browse or mount them. See *Snapshots* (page 174) for more information on creating clones.

8.4.1 Examples: Common Configuration

The examples shown here use the same setup of source and destination computers.

8.4.1.1 Alpha (Source)

Alpha is the source computer with the data to be replicated. It is at IP address 10.0.0.102. A *volume* (page 132) named *alphavol* has already been created, and a *dataset* (page 140) named *alphadata* has been created on that volume. This dataset contains the files which will be snapshotted and replicated onto *Beta*.

This new dataset has been created for this example, but a new dataset is not required. Most users will already have datasets containing the data they wish to replicate.

Create a periodic snapshot of the source dataset by selecting *Storage → Periodic Snapshot Tasks*. Click the *alphavol/alphadata* dataset to highlight it. Create a *periodic snapshot* (page 158) of it by clicking *Periodic Snapshot Tasks*, then *Add Periodic Snapshot* as shown in *Figure 8.23*.

This example creates a snapshot of the *alphavol/alphadata* dataset every two hours from Monday through Friday between the hours of 9:00 and 18:00 (6:00 PM). Snapshots are automatically deleted after their chosen lifetime of two weeks expires.
8.4.1.2 Beta (Destination)

Beta is the destination computer where the replicated data will be copied. It is at IP address 10.0.0.118. A volume (page 132) named betavol has already been created. Snapshots are transferred with SSH (page 259). To allow incoming connections, this service is enabled on Beta. The service is not required for outgoing connections, and so does not need to be enabled on Alpha.

8.4.2 Example: FreeNAS® to FreeNAS® Semi-Automatic Setup

FreeNAS® offers a special semi-automatic setup mode that simplifies setting up replication. Create the replication task on Alpha by clicking Replication Tasks and Add Replication. alphavol/alphadata is selected as the dataset to replicate. betavol is the destination volume where alphadata snapshots are replicated. The Setup mode dropdown is set to Semi-automatic as shown in Figure 8.24. The IP address of Beta is entered in the Remote hostname field. A hostname can be entered here if local DNS resolves for that hostname.

Note: If WebGUI HTTP -> HTTPS Redirect has been enabled in System → General on the destination computer, Remote HTTP/HTTPS Port must be set to the HTTPS port (usually 443) and Remote HTTPS must be enabled when creating the replication on the source computer.
The *Remote Auth Token* field expects a special token from the *Beta* computer. On *Beta*, choose *Storage → Replication Tasks*, then click *Temporary Auth Token*. A dialog showing the temporary authorization token is shown as in Figure 8.25.

Highlight the temporary authorization token string with the mouse and copy it.
8.4.3 Example: FreeNAS® to FreeNAS® Dedicated User Replication

A dedicated user can be used for replications rather than the root user. This example shows the process using the semi-automatic replication setup between two FreeNAS® systems with a dedicated user named repluser. SSH key authentication is used to allow the user to log in remotely without a password.

In this example, the periodic snapshot task has not been created yet. If the periodic snapshot shown in the example configuration (page 160) has already been created, go to Storage → Periodic Snapshot Tasks, click on the task to select it, and click Delete to remove it before continuing.

On Alpha, select Account → Users. Click the Add User. Enter repluser for Username, enter /mnt/alphavol/repluser in the Create Home Directory In field, enter Replication Dedicated User for the Full Name, and set the Disable password login option. Leave the other fields at their default values, but note the User ID number. Click OK to create the user.

On Beta, the same dedicated user must be created as was created on the sending computer. Select Account → Users. Click the Add User. Enter the User ID number from Alpha, repluser for Username, enter /mnt/betavol/repluser in the Create Home Directory In field, enter Replication Dedicated User for the Full Name, and set the Disable password login option. Leave the other fields at their default values. Click OK to create the user.

A dataset with the same name as the original must be created on the destination computer, Beta. Select Storage → Volumes, click on betavol, then click the Create Dataset icon at the bottom. Enter alphadata as the Dataset Name, then click Add Dataset.

The replication user must be given permissions to the destination dataset. Still on Beta, open a Shell (page 304) and enter this command:

```
zfs allow -ldu repluser create,destroy,diff,mount,readonly,receive,release,send,userprop betavol/→alphadata
```

The destination dataset must also be set to read-only. Enter this command in the Shell (page 304):
zfs set readonly=on betavol/alphadata

Close the **Shell** (page 304) by typing `exit` and pressing `Enter`.

The replication user must also be able to mount datasets. Still on Beta, go to **System → Tunables**. Click **Add Tunable**. Enter `vfs.usermount` for the **Variable**, 1 for the **Value**, and choose **Sysctl** from the **Type** drop-down. Click **OK** to save the tunable settings.

Back on Alpha, create a periodic snapshot of the source dataset by selecting **Storage → Periodic Snapshot Tasks**. Click the `alphavol/alphadata` dataset to highlight it. Create a **periodic snapshot** (page 158) of it by clicking **Periodic Snapshot Tasks**, then **Add Periodic Snapshot** as shown in **Figure 8.23**.

Still on Alpha, create the replication task by clicking **Replication Tasks** and **Add Replication**. `alphavol/alphadata` is selected as the dataset to replicate. `betavol/alphadata` is the destination volume and dataset where `alphadata` snapshots are replicated.

The **Setup mode** dropdown is set to **Semi-automatic** as shown in **Figure 8.24**. The IP address of Beta is entered in the **Remote hostname** field. A hostname can be entered here if local DNS resolves for that hostname.

Note: If **WebGUI HTTP–HTTPS Redirect** has been enabled in **System → General** on the destination computer, **Remote HTTP/HTTPS Port** must be set to the HTTPS port (usually 443) and **Remote HTTPS** must be enabled when creating the replication on the source computer.

The **Remote Auth Token** field expects a special token from the Beta computer. On Beta, choose **Storage → Replication Tasks**, then click **Temporary Auth Token**. A dialog showing the temporary authorization token is shown as in **Figure 8.25**.

Highlight the temporary authorization token string with the mouse and copy it.

On the Alpha system, paste the copied temporary authorization token string into the **Remote Auth Token** field as shown in **Figure 8.26**.

Set the **Dedicated User** option. Choose `repluser` in the **Dedicated User** drop-down.

Click the **OK** button to create the replication task.

Note: The temporary authorization token is only valid for a few minutes. If a **Token is invalid** message is shown, get a new temporary authorization token from the destination system, clear the **Remote Auth Token** field, and paste in the new one.

Replication will begin when the periodic snapshot task runs.

Additional replications can use the same dedicated user that has already been set up. The permissions and read only settings made through the **Shell** (page 304) must be set on each new destination dataset.

8.4.4 Example: FreeNAS® to FreeNAS® or Other Systems, Manual Setup

This example uses the same basic configuration of source and destination computers shown above, but the destination computer is not required to be a FreeNAS® system. Other operating systems can receive the replication if they support SSH, ZFS, and the same features that are in use on the source system. The details of creating volumes and datasets, enabling SSH, and copying encryption keys will vary when the destination computer is not a FreeNAS® system.

8.4.4.1 Encryption Keys

A public encryption key must be copied from Alpha to Beta to allow a secure connection without a password prompt. On Alpha, select **Storage → Replication Tasks → View Public Key**, producing the window shown in **Figure 8.27**. Use the mouse to highlight the key data shown in the window, then copy it.
On Beta, select Account → Users → View Users. Click the root account to select it, then click Modify User. Paste the copied key into the SSH Public Key field and click OK as shown in Figure 8.28.

Back on Alpha, create the replication task by clicking Replication Tasks and Add Replication. alphavol/alphadata is selected as the dataset to replicate. The destination volume is betavol. The alphadata dataset and snapshots are replicated there. The IP address of Beta is entered in the Remote hostname field as shown in Figure 8.29. A hostname can be entered here if local DNS resolves for that hostname.
Click the SSH Key Scan button to retrieve the SSH host keys from Beta and fill the Remote hostkey field. Finally, click OK to create the replication task. After each periodic snapshot is created, a replication task will copy it to the destination system. See Limiting Replication Times (page 169) for information about restricting when replication is allowed to run.
Add Replication

Volume/Dataset: alphavol/alphadata
Remote ZFS Volume/Dataset: betavol
Recursively replicate child dataset's snapshots: []
Delete stale snapshots on remote system: []
Replication Stream Compression: [lzo 4 (fastest)]
Limit (kB/s): [0]
Begin: [00:00:00]
End: [23:59:00]
Enabled: [✓]
Setup mode: Manual
Remote hostname: 10.0.0.118
Remote port: [22]
Dedicated User Enabled: []
Dedicated User:
Encryption Cipher: Standard
Remote hostkey:
10.0.0.118 ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAAIBQC4ws+kfJa
CDL1SnPWeqHwuVjEOk8pl+kUBJS8yf0ALPI/aB
c82DcZnNGwtJjn14xTyxA1XJKXio1YYkTnTlJ7W
R+S9C5HLt+vwSUhks3EdD8/00CFmeiw
/00dzejT9oiCrqnnHIl+dyySqaJAE0yfoQyTGFbsey
FYQ9E26aLSzA+iEd71+aJLE++n60RCENUcopeFGF
mgqA0tWET1HxjKjY252RqhY02k7jrhzyYPSLZvl
Yy3mwbSG1xj8D2xGgxs7qdia13r6akL+TRA4Bi
/d8GxVAKwzJPyv
/K/aWiibmaUcBVayUj60yaRFg9uuhn43HYMhBja4fE/r1
10.0.0.118 ecdsa-sha2-nistp256
AAAAB3NzaC1yc2EAAAADAQABAAABAAIBb4l
4fE/r1
/levDCDw3aucDIA8WY5Xx+WP8YkraJzg4bofn1w
yc2fCL4gzsFsOAg=
10.0.0.118 ssh-ed25519
AAAAC3NzaC1zDIINET5AAAAI0zUfTtc59yr90WH
7nDoD4i3GdPKaZR/V70gq87t7GE
8.4.5 Replication Options

Table 8.8 describes the options in the replication task dialog.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume/Dataset</td>
<td>drop-down menu</td>
<td>On the source computer with snapshots to replicate, choose an existing ZFS pool or dataset with an active periodic snapshot task.</td>
</tr>
<tr>
<td>Remote ZFS Volume/Dataset</td>
<td>string</td>
<td>Enter the ZFS volume or dataset on the remote or destination computer which will store the snapshots. Example: pool-name/datasetname, not the mount point or filesystem path.</td>
</tr>
<tr>
<td>Recursively replicate child dataset snapshots</td>
<td>checkbox</td>
<td>When enabled, include snapshots of child datasets from the primary dataset.</td>
</tr>
<tr>
<td>Delete stale snapshots</td>
<td>checkbox</td>
<td>Set to delete previous snapshots from the remote or destination system which are no longer present on the source computer.</td>
</tr>
<tr>
<td>Replication Stream Compression</td>
<td>drop-down menu</td>
<td>Choices are lz4 (fastest), pigz (allrounder), plzip (best compression), or Off (no compression). Selecting a compression algorithm can reduce the size of the data being replicated.</td>
</tr>
<tr>
<td>Limit (kbps)</td>
<td>integer</td>
<td>Limit replication speed to the specified value in kilobits/second. Default of 0 is unlimited.</td>
</tr>
<tr>
<td>Begin</td>
<td>drop-down menu</td>
<td>Define a time to start the replication task.</td>
</tr>
<tr>
<td>End</td>
<td>drop-down menu</td>
<td>Define the point in time by which replication must start. A started replication task continues until it is finished.</td>
</tr>
<tr>
<td>Enabled</td>
<td>checkbox</td>
<td>Deselect to disable the scheduled replication task without deleting it.</td>
</tr>
<tr>
<td>Setup mode</td>
<td>drop-down menu</td>
<td>Choose the configuration mode for the remote. Choices are Manual or Semi-automatic. Note semi-automatic only works with remote version 9.10.2 or later.</td>
</tr>
<tr>
<td>Remote hostname</td>
<td>string</td>
<td>Enter the IP address or DNS name of remote system to receive the replication data.</td>
</tr>
<tr>
<td>Remote port</td>
<td>string</td>
<td>Enter the port number used by the SSH server on the remote or destination computer.</td>
</tr>
<tr>
<td>Dedicated User Enabled</td>
<td>checkbox</td>
<td>Select the user account other than root to be used for replication.</td>
</tr>
<tr>
<td>Dedicated User</td>
<td>drop-down menu</td>
<td>Only available if Dedicated User Enabled is enabled. Select the user account to be used for replication.</td>
</tr>
<tr>
<td>Encryption Cipher</td>
<td>drop-down menu</td>
<td>Standard, Fast, or Disabled.</td>
</tr>
<tr>
<td>Remote hostkey</td>
<td>string</td>
<td>Click SSH Key Scan to retrieve the public host key of the remote or destination computer and populate this field with that key.</td>
</tr>
</tbody>
</table>

The replication task runs after a new periodic snapshot is created. The periodic snapshot and any new manual snapshots of the same dataset are replicated onto the destination computer.

When multiple replications have been created, replication tasks run serially, one after another. Completion time depends on the number and size of snapshots and the bandwidth available between the source and destination computers.

The first time a replication runs, it must duplicate data structures from the source to the destination computer. This can take much longer to complete than subsequent replications, which only send differences in data.
Warning: Snapshots record incremental changes in data. If the receiving system does not have at least one snapshot that can be used as a basis for the incremental changes in the snapshots from the sending system, there is no way to identify only the data that has changed. In this situation, the snapshots in the receiving system target dataset are removed so a complete initial copy of the new replicated data can be created.

Selecting Storage → Replication Tasks displays Figure 8.30, the list of replication tasks. The Last snapshot sent to remote side column shows the name of the last snapshot that was successfully replicated, and Status shows the current status of each replication task. The display is updated every five seconds, always showing the latest status.

![Fig. 8.30: Replication Task List](image)

Note: The encryption key that was copied from the source computer (Alpha) to the destination computer (Beta) is an RSA public key located in the /data/ssh/replication.pub file on the source computer. The host public key used to identify the destination computer (Beta) is from the /etc/ssh/ssh_host_rsa_key.pub file on the destination computer.

8.4.6 Replication Encryption

The default Encryption Cipher Standard setting provides good security. Fast is less secure than Standard but can give reasonable transfer rates for devices with limited cryptographic speed. For networks where the entire path between source and destination computers is trusted, the Disabled option can be chosen to send replicated data without encryption.

8.4.7 Limiting Replication Times

The Begin and End times in a replication task make it possible to restrict when replication is allowed. These times can be set to only allow replication after business hours, or at other times when disk or network activity will not slow down other operations like snapshots or Scrubs (page 171). The default settings allow replication to occur at any time. These times control when replication task are allowed to start, but will not stop a replication task that is already running. Once a replication task has begun, it will run until finished.

8.4.8 Troubleshooting Replication

Replication depends on SSH, disks, network, compression, and encryption to work. A failure or misconfiguration of any of these can prevent successful replication.

8.4.8.1 SSH

SSH (page 259) must be able to connect from the source system to the destination system with an encryption key. This can be tested from Shell (page 304) by making an SSH (page 259) connection from the source system to the
destination system. From the previous example, this is a connection from *Alpha* to *Beta* at 10.0.0.118. Start the *Shell* (page 304) on the source machine (*Alpha*), then enter this command:

```
ssh -vv -i /data/ssh/replication 10.0.0.118
```

On the first connection, the system might say

```
No matching host key fingerprint found in DNS.
Are you sure you want to continue connecting (yes/no)?
```

Verify that this is the correct destination computer from the preceding information on the screen and type *yes*. At this point, an *SSH* (page 259) shell connection is open to the destination system, *Beta*.

If a password is requested, SSH authentication is not working. See Figure 8.27 above. This key value must be present in the */root/.ssh/authorized_keys* file on *Beta*, the destination computer. The */var/log/auth.log* file can show diagnostic errors for login problems on the destination computer also.

8.4.8.2 Compression

Matching compression and decompression programs must be available on both the source and destination computers. This is not a problem when both computers are running FreeNAS®, but other operating systems might not have *lz4*, *pigz*, or *plzip* compression programs installed by default. An easy way to diagnose the problem is to set *Replication Stream Compression* to *Off*. If the replication runs, select the preferred compression method and check */var/log/debug.log* on the FreeNAS® system for errors.

8.4.8.3 Manual Testing

On *Alpha*, the source computer, the */var/log/messages* file can also show helpful messages to locate the problem.

On the source computer, *Alpha*, open a *Shell* (page 304) and manually send a single snapshot to the destination computer, *Beta*. The snapshot used in this example is named `auto-20161206.1110-2w`. As before, it is located in the `alphavol/alphadata` dataset. A `@` symbol separates the name of the dataset from the name of the snapshot in the command.

```
zfs send alphavol/alphadata@auto-20161206.1110-2w | ssh -i /data/ssh/replication 10.0.0.118 zfs...
```

If a snapshot of that name already exists on the destination computer, the system will refuse to overwrite it with the new snapshot. The existing snapshot on the destination computer can be deleted by opening a *Shell* (page 304) on *Beta* and running this command:

```
zfs destroy -R betavol/alphadata@auto-20161206.1110-2w
```

Then send the snapshot manually again. Snapshots on the destination system, *Beta*, can be listed from the *Shell* (page 304) with `zfs list -t snapshot` or by going to *Storage → Snapshots*.

Error messages here can indicate any remaining problems.

8.5 Resilver Priority

Resilvering, or the process of copying data to a replacement disk, is best completed as quickly as possible. Increasing the priority of resilvers can help them to complete more quickly. The *Resilver Priority* tab makes it possible to increase the priority of resilvering at times where the additional I/O or CPU usage will not affect normal usage. Select *Storage → Resilver Priority* to display the screen shown in Figure 8.31. Table 8.9 describes the fields on this screen.
8.6 Scrubs

A scrub is the process of ZFS scanning through the data on a volume. Scrubs help to identify data integrity problems, detect silent data corruptions caused by transient hardware issues, and provide early alerts of impending disk failures. FreeNAS® makes it easy to schedule periodic automatic scrubs.

Each volume should be scrubbed at least once a month. Bit errors in critical data can be detected by ZFS, but only when that data is read. Scheduled scrubs can find bit errors in rarely-read data. The amount of time needed for a scrub is proportional to the quantity of data on the volume. Typical scrubs take several hours or longer.

The scrub process is I/O intensive and can negatively impact performance. Schedule scrubs for evenings or weekends to minimize impact to users. Make certain that scrubs and other disk-intensive activity like S.M.A.R.T. Tests (page 117) are scheduled to run on different days to avoid disk contention and extreme performance impacts.

Scrubs only check used disk space. To check unused disk space, schedule S.M.A.R.T. Tests (page 117) of Type Long Self-Test to run once or twice a month.

Scrubs are scheduled and managed with Storage → Scrubs.
When a volume is created, a ZFS scrub is automatically scheduled. An entry with the same volume name is added to Storage → Scrubs. A summary of this entry can be viewed with Storage → Scrubs → View Scrubs. Figure 8.32 displays the default settings for the volume named volume1. In this example, the entry has been highlighted and the Edit button clicked to display the Edit screen. Table 8.10 summarizes the options in this screen.
Fig. 8.32: Viewing Volume Default Scrub Settings
<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>drop-down menu</td>
<td>Choose a volume to be scrubbed.</td>
</tr>
<tr>
<td>Threshold days</td>
<td>integer</td>
<td>Define the number of days to prevent a scrub from running after the last has completed. This ignores any other calendar schedule. The default is a multiple of 7 to ensure that the scrub always occurs on the same day of the week.</td>
</tr>
<tr>
<td>Description</td>
<td>string</td>
<td>Optional text description of scrub.</td>
</tr>
<tr>
<td>Minute</td>
<td>slider or minute selections</td>
<td>If the slider is used, a scrub occurs every N minutes. If specific minutes are chosen, a scrub runs only at the selected minute values.</td>
</tr>
<tr>
<td>Hour</td>
<td>slider or hour selections</td>
<td>If the slider is used, a scrub occurs every N hours. If specific hours are chosen, a scrub runs only at the selected hour values.</td>
</tr>
<tr>
<td>Day of Month</td>
<td>slider or month selections</td>
<td>If the slider is used, a scrub occurs every N days. If specific days of the month are chosen, a scrub runs only on the selected days of the selected months.</td>
</tr>
<tr>
<td>Month</td>
<td>checkboxes</td>
<td>Define the day of the month to run the scrub.</td>
</tr>
<tr>
<td>Day of week</td>
<td>checkboxes</td>
<td>A scrub occurs on the selected days. The default is Sunday to least impact users. Note that this field and the Day of Month field are ORed together: setting Day of Month to 01,15 and Day of week to Thursday will cause scrubs to run on the 1st and 15th days of the month, but also on any Thursday.</td>
</tr>
<tr>
<td>Enabled</td>
<td>checkbox</td>
<td>Unset to disable the scheduled scrub without deleting it.</td>
</tr>
</tbody>
</table>

Review the default selections and, if necessary, modify them to meet the needs of the environment. Note that the Threshold field is used to prevent scrubs from running too often, and overrides the schedule chosen in the other fields. Also, if a pool is locked or unmounted when a scrub is scheduled to occur, it will not be scrubbed.

Scheduled scrubs can be deleted with the Delete button, but this is not recommended. **Scrubs can provide an early indication of disk issues before a disk failure.** If a scrub is too intensive for the hardware, consider temporarily deselecting the Enabled button for the scrub until the hardware can be upgraded.

8.7 Snapshots

Snapshots are scheduled using Storage → Periodic Snapshot Tasks. To view and manage the listing of created snapshots, use Storage → Snapshots. An example listing is shown in Figure 8.33.

Note: If snapshots do not appear, check that the current time configured in Periodic Snapshot Tasks (page 158) does not conflict with the Begin, End, and Interval settings. If the snapshot was attempted but failed, an entry is added to /var/log/messages. This log file can be viewed in Shell (page 304).
The listing includes the name of the volume or dataset, the name of each snapshot, and the amount of used and referenced data.

Used is the amount of space consumed by this dataset and all of its descendants. This value is checked against the dataset quota and reservation. The space used does not include the dataset reservation, but does take into account the reservations of any descendent datasets. The amount of space that a dataset consumes from its parent, as well as the amount of space freed if this dataset is recursively deleted, is the greater of its space used and its reservation. When a snapshot is created, the space is initially shared between the snapshot and the filesystem, and possibly with previous snapshots. As the filesystem changes, space that was previously shared becomes unique to the snapshot, and is counted in the used space of the snapshot. Additionally, deleting snapshots can increase the amount of space unique to (and used by) other snapshots. The amount of space used, available, or referenced does not take into account pending changes. While pending changes are generally accounted for within a few seconds, disk changes do not necessarily guarantee that the space usage information is updated immediately.

Tip: Space used by individual snapshots can be seen by running `zfs list -t snapshot` from Shell (page 304).

Refer indicates the amount of data accessible by this dataset, which may or may not be shared with other datasets in the pool. When a snapshot or clone is created, it initially references the same amount of space as the filesystem or snapshot it was created from, since its contents are identical.

Snapshots have icons on the right side for several actions.

Clone Snapshot prompts for the name of the clone to create. A clone is a writable copy of the snapshot. Since a clone is actually a dataset which can be mounted, it appears in the Volumes tab rather than the Snapshots tab. By default, `-clone` is added to the name of a snapshot when a clone is created.

Destroy Snapshot a pop-up message asks for confirmation. Child clones must be deleted before their parent snapshot can be deleted. While creating a snapshot is instantaneous, deleting a snapshot can be I/O intensive and can take a long time, especially when deduplication is enabled. To delete a block in a snapshot, ZFS has to walk all the allocated blocks to see if that block is used anywhere else. If it is not used, it can be freed.

The most recent snapshot also has a **Rollback Snapshot** icon. Clicking the icon asks for confirmation before rolling back to the chosen snapshot state. Confirming by clicking Yes causes any files that have changed since the snapshot was taken to be reverted back to their state at the time of the snapshot.

Note: Rollback is a potentially dangerous operation and causes any configured replication tasks to fail as the replication system uses the existing snapshot when doing an incremental backup. To restore the data within a snapshot, the recommended steps are:

1. Clone the desired snapshot.
2. Share the clone with the share type or service running on the FreeNAS® system.
3. After users have recovered the needed data, destroy the clone in the Active Volumes tab.

This approach does not destroy any on-disk data and has no impact on replication.
A range of snapshots can be selected with the mouse. Click on the option in the left column of the first snapshot, then press and hold Shift and click on the option for the end snapshot. This can be used to select a range of obsolete snapshots to be deleted with the Destroy icon at the bottom. Be cautious and careful when deleting ranges of snapshots.

Periodic snapshots can be configured to appear as shadow copies in newer versions of Windows Explorer, as described in Configuring Shadow Copies (page 212). Users can access the files in the shadow copy using Explorer without requiring any interaction with the FreeNAS® graphical administrative interface.

The ZFS Snapshots screen allows the creation of filters to view snapshots by selected criteria. To create a filter, click the Define filter icon (near the text No filter applied). When creating a filter:

• Select the column or leave the default of Any Column.
• Select the condition. Possible conditions are: contains (default), is, starts with, ends with, does not contain, is not, does not start with, does not end with, and is empty.
• Enter a value that meets the view criteria.
• Click the Filter button to save the filter and exit the define filter screen. Alternately, click the + button to add another filter.

When creating multiple filters, select the filter to use before leaving the define filter screen. After a filter is selected, the No filter applied text changes to Clear filter. Clicking Clear filter produces a pop-up message indicates that this removes the filter and all available snapshots are listed.

Warning: A snapshot and any files it contains will not be accessible or searchable if the mount path of the snapshot is longer than 88 ascii characters. The data within the snapshot will be safe, and the snapshot will become accessible again when the mount path is shortened. For details of this limitation, and how to shorten a long mount path, see Path and Name Lengths (page 17).

8.7.1 Browsing a snapshot collection

All snapshots for a dataset are accessible as an ordinary hierarchical filesystem, which can be reached from a hidden .zfs file located at the root of every dataset. A user with permission to access that file can view and explore all snapshots for a dataset like any other files, from the CLI or via File Sharing services such as Samba, NFS and FTP. This is an advanced capability which requires some command line actions to achieve. In summary, the main changes to settings that are required are:

• Snapshot visibility must be manually enabled in the ZFS properties of the dataset.
• In Samba auxiliary settings, the veto files command must be modified to not hide the .zfs file, and the setting zfsacl:expose_snapdir=true must be added.

The effect will be that any user who can access the dataset contents, will also be able to view the list of snapshots by navigating to the .zfs directory of the dataset, and to browse and search any files they have permission to access throughout the entire snapshot collection of the dataset. A user’s ability to view files within a snapshot will be limited by any permissions or ACLs set on the files when the snapshot was taken. Snapshots are fixed as “read-only”, so this access does not permit the user to change any files in the snapshots, or to modify or delete any snapshot, even if they had write permission at the time when the snapshot was taken.

Note: ZFS has a zfs diff command which can list the files that have changed between any two snapshot versions within a dataset, or between any snapshot and the current data.

8.8 VMware-Snapshot

Storage → VMware-Snapshots is used to coordinate ZFS snapshots when using FreeNAS® as a VMware datastore. When a ZFS snapshot is created, FreeNAS® automatically snapshots any running VMware virtual machines before
taking a scheduled or manual ZFS snapshot of the dataset or zvol backing that VMware datastore. Virtual machines must be powered on for FreeNAS® snapshots to be copied to VMware. The temporary VMware snapshots are then deleted on the VMware side but still exist in the ZFS snapshot and can be used as stable resurrection points in that snapshot. These coordinated snapshots are listed in Snapshots (page 174).

Figure 8.34 shows the menu for adding a VMware snapshot and Table 8.11 summarizes the available options.

![Add VMware-Snapshot](image)

Fig. 8.34: Adding a VMware Snapshot

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname</td>
<td>string</td>
<td>Enter the IP address or hostname of VMware host. When clustering, this is the vCenter server for the cluster.</td>
</tr>
<tr>
<td>Username</td>
<td>string</td>
<td>Enter the username on the VMware host with permission to snapshot virtual machines.</td>
</tr>
<tr>
<td>Password</td>
<td>string</td>
<td>Enter the password associated with Username.</td>
</tr>
<tr>
<td>ZFS Filesystem</td>
<td>drop-down menu</td>
<td>Select the filesystem to snapshot.</td>
</tr>
<tr>
<td>Datastore</td>
<td>drop-down menu</td>
<td>Enter the Hostname, Username, and Password. Click Fetch Datastores to populate the menu and select the datastore with which to synchronize.</td>
</tr>
</tbody>
</table>
FreeNAS® supports integration with these directory services:

- **Active Directory** (page 178) (for Windows 2000 and higher networks)
- **LDAP** (page 184)
- **NIS** (page 187)

It also supports **Kerberos Realms** (page 188), **Kerberos Keytabs** (page 188), and the ability to add more parameters to **Kerberos Settings** (page 189).

This section summarizes each of these services and their available configurations within the FreeNAS® web interface.

9.1 Active Directory

Active Directory (AD) is a service for sharing resources in a Windows network. AD can be configured on a Windows server that is running Windows Server 2000 or higher or on a Unix-like operating system that is running Samba version 4 (https://wiki.samba.org/index.php/Setting_up_Samba_as_an_Active_Directory_Domain_Controller#Provisioning_a_Samba_Active_Directory_Domain).

Since AD provides authentication and authorization services for the users in a network, it is not necessary to recreate these user accounts on the FreeNAS® system. Instead, configure the Active Directory service so that it can import the account information and imported users can be authorized to access the SMB shares on the FreeNAS® system.

Many changes and improvements have been made to Active Directory support within FreeNAS®. It is strongly recommended to update the system to the latest FreeNAS® 11.2 before attempting Active Directory integration.

Ensure name resolution is properly configured before configuring the Active Directory service. **ping** the domain name of the Active Directory domain controller from **Shell** (page 304) on the FreeNAS® system. If the **ping** fails, check the DNS server and default gateway settings in **Network → Global Configuration** on the FreeNAS® system.

By default, **Allow DNS updates** in the **Active Directory options** (page 179) is enabled. This adds FreeNAS® **SMB 'Bind IP Addresses'** (page 254) DNS records to the Active Directory DNS when the domain is joined. Disabling **Allow DNS updates** means that the Active Directory DNS records must be updated manually.

Active Directory relies on Kerberos, a time-sensitive protocol. The time on the FreeNAS® system and the Active Directory Domain Controller cannot be out of sync by more than five minutes in a default Active Directory environment.

To ensure both systems are set to the same time:

- use the same NTP server (set in **System → General → NTP Servers** on the FreeNAS® system)
- have the same timezone

Using a FreeNAS® system as an AD server and connecting to it with a FreeNAS® client requires additional configuration. On the AD server, go to **System → CAs** and create a new internal or intermediate **Certificate Authority (CA)** (page 93). Highlight the created CA and click **Export Certificate** and **Export Private Key** to save these values.

On the client web interface, select **Directory Service → Active Directory → Advanced Mode**. Set **Encryption Mode** to **TLS** and **SASL wrapping** to **sign**. Go to **System → CAs** and click **Import CA**. Create a unique **Identifier** and paste the AD server CA certificate and private keys in those fields. Click **OK** and continue configuring AD.
Figure 9.1 shows the screen that appears when Directory Service → Active Directory is chosen. Table 9.1 describes the configurable options. Some settings are only available in Advanced Mode. To see these settings, either click Advanced Mode or configure the system to always display these settings by checking Show advanced fields by default in System → Advanced.

![Configuring Active Directory](image)

Table 9.1: Active Directory Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain Name (DNS/Realm-Name)</td>
<td>string</td>
<td></td>
<td>Name of Active Directory domain (example.com) or child domain (sales.example.com). This setting is mandatory and the GUI will refuse to save the settings if the domain controller for the specified domain cannot be found.</td>
</tr>
<tr>
<td>Domain Account Name</td>
<td>string</td>
<td></td>
<td>Name of the Active Directory administrator account. This setting is mandatory and the GUI will refuse to save the settings if it cannot connect to the domain controller using this account name.</td>
</tr>
<tr>
<td>Domain Account Password</td>
<td>string</td>
<td></td>
<td>Password for the Active Directory administrator account. This setting is mandatory and the GUI will refuse to save the settings if it cannot connect to the domain controller using this password.</td>
</tr>
<tr>
<td>AD check connectivity frequency (seconds)</td>
<td>integer</td>
<td></td>
<td>How often to verify that Active Directory services are active.</td>
</tr>
<tr>
<td>How many recovery attempts</td>
<td>integer</td>
<td></td>
<td>Number of times to attempt reconnecting to the Active Directory server. Tries forever when set to 0.</td>
</tr>
<tr>
<td>Enable Monitoring</td>
<td>checkbox</td>
<td></td>
<td>Restart Active Directory automatically if the service is disconnected. Setting this prevents configuring the Domain Controller (page 236) service.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 9.1 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Select the Active Directory server certificate if SSL connections are used. If a certificate does not exist, create a Certificate Authority (page 93), then create a certificate on the Active Directory server. Import the certificate to the FreeNAS® system using the Certificates (page 95) menu. To clear a saved certificate, choose the blank entry and click Save.</td>
</tr>
<tr>
<td>Verbose logging</td>
<td>checkbox</td>
<td>✓</td>
<td>Set to log attempts to join the domain to <code>/var/log/messages</code>.</td>
</tr>
<tr>
<td>Allow Trusted Domains</td>
<td>checkbox</td>
<td>✓</td>
<td>Do not set this unless the network has active domain/forest trusts (https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc757352(v=ws.10) and managing files on multiple domains is required. Setting this option generates more winbindd traffic and slows down filtering with user and group information. If enabled, also configuring the idmap ranges and a backend for each trusted domain in the environment is recommended.</td>
</tr>
<tr>
<td>Use Default Domain</td>
<td>checkbox</td>
<td>✓</td>
<td>Unset to prepend the domain name to the username. If <code>Allow Trusted Domains</code> is set and multiple domains use the same usernames, unset to prevent name collisions.</td>
</tr>
<tr>
<td>Allow DNS updates</td>
<td>checkbox</td>
<td>✓</td>
<td>Unset to disable Samba from doing DNS updates when joining a domain.</td>
</tr>
<tr>
<td>Disable Active Directory user/group cache</td>
<td>checkbox</td>
<td>✓</td>
<td>Disable caching AD users and groups. Setting this hides all AD users and groups from web interface drop-down menus and auto-completion suggestions, but manually entering names is still allowed. This can help when unable to bind to a domain with a large number of users or groups.</td>
</tr>
<tr>
<td>Site Name</td>
<td>string</td>
<td>✓</td>
<td>Auto-detected site name. Do not change this unless the detected site name is incorrect for the particular AD environment.</td>
</tr>
<tr>
<td>Domain Controller</td>
<td>string</td>
<td>✓</td>
<td>The server that manages user authentication and security as part of a Windows domain. Leave empty for FreeNAS® to use the DNS SRV records to automatically detect and connect to the domain controller. If the domain controller must be set manually, enter the server hostname or IP address.</td>
</tr>
</tbody>
</table>
Table 9.1 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Catalog Server</td>
<td>string</td>
<td>✓</td>
<td>The global catalog server holds a full set of attributes for the domain in which it resides and a subset of attributes for all objects in the Microsoft Active Directory Forest. See the IBM Knowledge Center link. Leave empty for FreeNAS® to use the DNS SRV records to automatically detect and connect to the server. If the global catalog server must be entered manually, enter the server hostname or IP address.</td>
</tr>
<tr>
<td>Kerberos Realm</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Select the realm created using the instructions in Kerberos Realms (page 188).</td>
</tr>
<tr>
<td>Kerberos Principal</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Browse to the location of the keytab created using the instructions in Kerberos Keytabs (page 188).</td>
</tr>
<tr>
<td>AD timeout</td>
<td>integer</td>
<td>✓</td>
<td>In seconds, increase if the AD service does not start after connecting to the domain.</td>
</tr>
<tr>
<td>DNS timeout</td>
<td>integer</td>
<td>✓</td>
<td>In seconds, increase if AD DNS queries timeout.</td>
</tr>
<tr>
<td>Idmap backend</td>
<td>drop-down menu and Edit</td>
<td>✓</td>
<td>Select the backend to use to map Windows security identifiers (SIDs) to UNIX UIDs and GIDs. See Table 9.2 for a summary of the available backends. Click Edit to configure the backend.</td>
</tr>
<tr>
<td>Windbind NSS Info</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Defines the schema to use when querying AD for user/group info. rfc2307 uses the RFC2307 schema included in Windows 2003 R2, sfu20 is for Services For Unix 3.0 or 3.5, and sfu is for Services For Unix 2.0.</td>
</tr>
<tr>
<td>SASL wrapping</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Defines how LDAP traffic is transmitted. Choices are plain (plain text), sign (signed only), or seal (signed and encrypted). Windows 2000 SP3 and newer can be configured to enforce signed LDAP connections.</td>
</tr>
<tr>
<td>Enable</td>
<td>checkbox</td>
<td></td>
<td>Activate the Active Directory service.</td>
</tr>
<tr>
<td>NetBIOS name</td>
<td>string</td>
<td>✓</td>
<td>Name for the computer object generated in AD. Limited to 15 characters. Automatically populated with the original hostname of the system. This must be different from the Workgroup name.</td>
</tr>
<tr>
<td>NetBIOS alias</td>
<td>string</td>
<td>✓</td>
<td>Limited to 15 characters.</td>
</tr>
</tbody>
</table>

Table 9.2 summarizes the backends which are available in the Idmap backend drop-down menu. Each backend has its own man page (http://samba.org.ru/samba/docs/man/manpages/) which gives implementation details.

Changing idmap backends requires refreshing the windbind resolver cache by sending SIGHUP (signal hang up) to the parent windbinddd process. To find this parent process, start an SSH (page 259) session with the FreeNAS® system and enter service samba_server status. To send the SIGHUP, enter kill -HUP pid, where pid is the parent process ID.

Table 9.2: ID Mapping Backends

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ad</td>
<td>AD server uses RFC2307 or Services For Unix schema extensions. Mappings must be provided in advance by adding the uidNumber attributes for users and gidNumber attributes for groups in the AD.</td>
</tr>
<tr>
<td>autorid</td>
<td>Similar to rid, but automatically configures the range to be used for each domain, so there is no need to specify a specific range for each domain in the forest. The only needed configuration is the range of UID/GIDs to use for user/group mappings and an optional size for the ranges.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 9.2 – continued from previous page

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fruit</td>
<td>Generate IDs the way Apple Mac OS X does, so UID and GID can be identical on all FreeNAS® servers on the network. For use in LDAP (page 184) environments where Apple Open Directory is the authoritative LDAP server.</td>
</tr>
<tr>
<td>ldap</td>
<td>Stores and retrieves mapping tables in an LDAP directory service. Default for LDAP directory service.</td>
</tr>
<tr>
<td>nss</td>
<td>Provides a simple means of ensuring that the SID for a Unix user is reported as the one assigned to the corresponding domain user.</td>
</tr>
<tr>
<td>rfc2307</td>
<td>IDs for AD users stored as RFC2307 (https://tools.ietf.org/html/rfc2307) ldap schema extensions. This module can either look up the IDs in the AD LDAP servers or an external (non-AD) LDAP server.</td>
</tr>
<tr>
<td>rid</td>
<td>Default for AD. Requires an explicit idmap configuration for each domain, using disjoint ranges where a writeable default idmap range is to be defined, using a backend like tdb or ldap.</td>
</tr>
<tr>
<td>script</td>
<td>Stores mapping tables for clustered environments in winbind_cache. tdb.</td>
</tr>
<tr>
<td>tdb</td>
<td>Default backend used by winbindd for storing mapping tables.</td>
</tr>
<tr>
<td>tdb2</td>
<td>Substitute for tdb used by winbindd in clustered environments.</td>
</tr>
</tbody>
</table>

Rebuild Directory Service Cache immediately refreshes the web interface directory service cache. This occurs automatically once a day as a cron job.

If there are problems connecting to the realm, verify (https://support.microsoft.com/en-us/help/909264/naming-conventions-in-active-directory-for-computers-domains-sites-and) the settings do not include any disallowed characters. Active Directory does not allow $ characters in Domain or NetBIOS names. The length of those names is also limited to 15 characters. The Administrator account password cannot contain the $ character. If a $ exists in the domain administrator password, kinit (https://www.freebsd.org/cgi/man.cgi?query=kinit) reports a Password Incorrect error and ldap_bind (https://www.freebsd.org/cgi/man.cgi?query=ldap_bind) reports an Invalid credentials (49) error.

It can take a few minutes after configuring the Active Directory service for the AD information to be populated to the FreeNAS® system. Once populated, the AD users and groups will be available in the drop-down menus of the Permissions screen of a volume/dataset. For performance reasons, every available user may not show in the listing. However, it will autocomplete all applicable users when typing in a username.

The Active Directory users and groups that are imported to the FreeNAS® system are shown by typing commands in the FreeNAS® Shell (page 304):

- View users: `wbinfo -u`
- View groups: `wbinfo -g`

In addition, `wbinfo -m` shows the domains and `wbinfo -t` tests the connection. When successful, `wbinfo -t` shows a message similar to:

```
checking the trust secret for domain YOURDOMAIN via RPC calls succeeded
```

To manually check that a specified user can authenticate, open the Shell (page 304) and enter `smbclient//127.0.0.1/SHARE -U DOMAIN\username`, where `SHARE` is the SMB share name, `DOMAIN` is the name of the trusted domain, and `username` is the user account for authentication testing.

`getent passwd` and `getent group` can provide more troubleshooting information if no users or groups are listed in the output.

Tip: Sometimes network users do not appear in the drop-down menu of a Permissions screen but the `wbinfo` commands display these users. This is typically due to the FreeNAS® system taking longer than the default ten seconds to join Active Directory. Increase the value of AD timeout to 60 seconds.
To change a certificate, set the **Encryption Mode** to **Off** and unset **Enable** to disable AD. Click **Save**. Select the new **Certificate**, set the **Encryption Mode** as desired, set **Enable** to re-enable AD, and click **Save** to restart AD.

9.1.1 Troubleshooting Tips

Active Directory uses DNS to determine the location of the domain controllers and global catalog servers in the network. Use `host -t srv _ldap._tcp.domainname.com` to determine the SRV records of the network and change the weight and/or priority of the SRV record to reflect the fastest server. More information about SRV records can be found in the Microsoft article [How DNS Support for Active Directory Works](https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc759550(v=ws.10)).

The realm used depends upon the priority in the SRV DNS record. DNS can override the system Active Directory settings. When unable to connect to the correct realm, check the SRV records on the DNS server.

If the cache becomes out of sync due to an AD server being taken off and back online, resync the cache using `Directory Service → Active Directory → Rebuild Directory Service Cache`.

An expired password for the administrator account will cause `kinit` to fail. Ensure the password is still valid. Also, double-check the password on the AD account being used does not include any spaces, special symbols, and is not unusually long.

If the Windows server version is lower than 2008 R2, try creating a **Computer** entry on the Windows server's OU. When creating this entry, enter the FreeNAS® hostname in the **name** field. Make sure it is under 15 characters, the same name as the one set in the **Hostname** field in **Network → Global Configuration**, and the same **NetBIOS Name** in **Directory Service → Active Directory** settings. Make sure the hostname of the domain controller is set in the **Domain Controller** field of **Directory Service → Active Directory**.

9.1.2 If the System Does not Join the Domain

If the system will not join the Active Directory domain, run these commands in the order listed. `klist` will show a Kerberos ticket:

If the cache becomes out of sync due to an AD server being taken off and back online, resync the cache using `Directory Service → Active Directory → Rebuild Directory Service Cache`.

If any of the commands fail or result in a traceback, create a bug report at https://bugs.ixsystems.com that includes the commands in the order in which they were run and the exact wording of the error message or traceback.

```
sqlite3 /data/freenas-v1.db "UPDATE directoryservice_activedirectory SET ad_enable=1"
service ix-hostname start
service ix-kerberos start
service ix-kinit start
klist
service ix-pre-samba start
net -k -d 5 ads join [this generates verbose output of the domain join]
service samba_server restart
service ix-nsswitch start
service ix-pam start
service ix-cache start
```

Next, only run these two commands if **UNIX extensions** is set in **Advanced Mode** and a keytab has been uploaded using **Kerberos Keytabs** (page 188):

```
service ix-sssd start
service sssd start
```

Finally, run these commands. `echo` returns a 0 unless something has gone wrong:
FreeNAS® includes an OpenLDAP (http://www.openldap.org/) client for accessing information from an LDAP server. An LDAP server provides directory services for finding network resources such as users and their associated permissions. Examples of LDAP servers include Microsoft Server (2000 and newer), Mac OS X Server, Novell eDirectory, and OpenLDAP running on a BSD or Linux system. If an LDAP server is running on the network, configure the FreeNAS® LDAP service so network users can authenticate to the LDAP server and have authorized access to the data stored on the FreeNAS® system.

LDAP authentication for SMB shares is disabled unless the LDAP directory has been configured for and populated with Samba attributes. The most popular script for performing this task is [smbldap-tools](https://wiki.samba.org/index.php/4.1_smbldap-tools). In addition, the LDAP server must support SSL/TLS and the certificate for the LDAP server CA must be imported with System → CAs → Import CA. Note that non-CA certificates are not supported at this time.

Figure 9.2 shows the LDAP Configuration screen that is seen after clicking Directory Service → LDAP.
Table 9.3 summarizes the available configuration options. Some settings are only available in Advanced Mode. To see these settings, either click the **Advanced Mode** button or configure the system to always display these settings by checking the box **Show advanced fields by default** in **System → Advanced**.

Those new to LDAP terminology should read the [OpenLDAP Software 2.4 Administrator’s Guide](http://www.openldap.org/doc/admin24/).

![Configuring LDAP](image)

Table 9.3: LDAP Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname</td>
<td>string</td>
<td></td>
<td>Hostname or IP address of the LDAP server.</td>
</tr>
<tr>
<td>Base DN</td>
<td>string</td>
<td></td>
<td>Top level of the LDAP directory tree to be used when searching for resources. Example: <code>dc=test,dc=org</code>.</td>
</tr>
<tr>
<td>Bind DN</td>
<td>string</td>
<td></td>
<td>Name of administrative account on the LDAP server. Example: <code>cn=Manager,dc=test,dc=org</code>.</td>
</tr>
<tr>
<td>Bind password</td>
<td>string</td>
<td></td>
<td>Password for Root bind DN.</td>
</tr>
<tr>
<td>Allow Anonymous Binding</td>
<td>checkbox</td>
<td>✓</td>
<td>Instructs the LDAP server to not provide authentication and to allow read and write access to any client.</td>
</tr>
<tr>
<td>User Suffix</td>
<td>string</td>
<td>✓</td>
<td>Optional. Can be added to the name when the user account is added to the LDAP directory. Example: <code>dept. or company name</code>.</td>
</tr>
<tr>
<td>Group Suffix</td>
<td>string</td>
<td>✓</td>
<td>Optional. Can be added to the name when the group is added to the LDAP directory. Example: <code>dept. or company name</code>.</td>
</tr>
<tr>
<td>Password Suffix</td>
<td>string</td>
<td>✓</td>
<td>Optional. Can be added to the password when the password is added to LDAP directory.</td>
</tr>
<tr>
<td>Machine Suffix</td>
<td>string</td>
<td>✓</td>
<td>Optional. Can be added to the name when the system is added to the LDAP directory. Example: <code>server, accounting</code>.</td>
</tr>
<tr>
<td>SUDO Suffix</td>
<td>string</td>
<td>✓</td>
<td>Use if LDAP-based users need superuser access.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 9.3 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kerberos Realm</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Select the realm created using the instructions in [Kerberos Realms](page 188).</td>
</tr>
<tr>
<td>Kerberos Principal</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Browse to the location of the principal in the keytab created as described in [Kerberos Keytabs](page 188).</td>
</tr>
<tr>
<td>Encryption Mode</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Choices are Off, SSL (LDAPS, port 636), or TLS (LDAP, port 389). Note that either SSL or TLS and a Certificate must be selected for authentication to work.</td>
</tr>
<tr>
<td>Certificate</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Select the certificate of the LDAP CA (required if authentication is used). The certificate for the LDAP server CA must first be imported with <code>System → Certificates → Import Certificate</code>.</td>
</tr>
<tr>
<td>LDAP timeout</td>
<td>integer</td>
<td>✓</td>
<td>Increase this value (in seconds) if obtaining a Kerberos ticket times out.</td>
</tr>
<tr>
<td>DNS timeout</td>
<td>integer</td>
<td>✓</td>
<td>Increase this value (in seconds) if DNS queries timeout.</td>
</tr>
<tr>
<td>Idmap Backend</td>
<td>drop-down menu and Edit button</td>
<td>✓</td>
<td>Select the backend to use to map Windows security identifiers (SIDs) to UNIX UIDs and GIDs. See Table 9.2 for a summary of the available backends. Click Edit to configure the selected backend.</td>
</tr>
<tr>
<td>Samba Schema</td>
<td>checkbox</td>
<td>✓</td>
<td>Set if LDAP authentication for SMB shares is needed and the LDAP server is already configured with Samba attributes.</td>
</tr>
<tr>
<td>Auxiliary Parameters</td>
<td>string</td>
<td>✓</td>
<td>Additional options for <code>sssd.conf(5)</code> (https://www.freebsd.org/cgi/man.cgi?query=sssd.conf).</td>
</tr>
<tr>
<td>Schema</td>
<td>drop-down menu</td>
<td>✓</td>
<td>If Samba Schema is set, select the schema to use. Choices are <code>rfc2307</code> and <code>rfc2307bis</code>.</td>
</tr>
<tr>
<td>Enable</td>
<td>checkbox</td>
<td></td>
<td>Unset to disable the configuration without deleting it.</td>
</tr>
<tr>
<td>NetBIOS name</td>
<td>string</td>
<td>✓</td>
<td>Limited to 15 characters. Automatically populated with the original hostname of the system. This must be different from the Workgroup name.</td>
</tr>
<tr>
<td>NetBIOS alias</td>
<td>string</td>
<td>✓</td>
<td>Limited to 15 characters.</td>
</tr>
</tbody>
</table>

Click the Rebuild Directory Service Cache button after adding a user to LDAP who needs immediate access to FreeNAS®. Otherwise this occurs automatically once a day as a cron job.

Note: FreeNAS® automatically appends the root DN. This means the scope and root DN are not to be included when configuring the user, group, password, and machine suffixes.

LDAP users and groups appear in the drop-down menus of the Permissions screen of a dataset after configuring the LDAP service. Type `getent passwd` from Shell (page 304) to verify the users have been imported. Type `getent group` to verify the groups have been imported.

If the users and groups are not listed, refer to [Common errors encountered when using OpenLDAP Software](http://www.openldap.org/doc/admin24/appendix-common-errors.html) for common errors and how to fix them. When troubleshooting LDAP, open Shell (page 304) and look for error messages in `/var/log/auth.log`.

To clear LDAP users and groups from FreeNAS®, go to Directory Service → LDAP, clear the Hostname field, unset Enable, and click Save. Confirm LDAP users and groups are cleared by going to the Shell and viewing the output of the `getent passwd` and `getent group` commands.
9.3 NIS

The Network Information Service (NIS) maintains and distributes a central directory of Unix user and group information, hostnames, email aliases, and other text-based tables of information. If an NIS server is running on the network, the FreeNAS® system can be configured to import the users and groups from the NIS directory.

Note: In Windows Server 2016, Microsoft removed the Identity Management for Unix (IDMU) and NIS Server Role. See Clarification regarding the status of Identity Management for Unix (IDMU) & NIS Server Role in Windows Server 2016 Technical Preview and beyond (https://blogs.technet.microsoft.com/activedirectoryua/2016/02/09/identity-management-for-unix-idmu-is-deprecated-in-windows-server/).

Figure 9.3 shows the configuration screen which opens after going to Directory Service → NIS. Table 9.4 summarizes the configuration options.

![NIS Configuration](image)

Fig. 9.3: NIS Configuration

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIS domain</td>
<td>string</td>
<td>Name of NIS domain.</td>
</tr>
<tr>
<td>NIS servers</td>
<td>string</td>
<td>Comma-delimited list of hostnames or IP addresses.</td>
</tr>
<tr>
<td>Secure mode</td>
<td>checkbox</td>
<td>If set, <code>ypbind(8)</code> (https://www.freebsd.org/cgi/man.cgi?query=ypbind) will refuse to bind to any NIS server that is not running as root on a TCP port number over 1024.</td>
</tr>
<tr>
<td>Manycast</td>
<td>checkbox</td>
<td>If set, <code>ypbind</code> will bind to the server that responds the fastest. This is useful when no local NIS server is available on the same subnet.</td>
</tr>
<tr>
<td>Enable</td>
<td>checkbox</td>
<td>Unset to disable the configuration without deleting it.</td>
</tr>
</tbody>
</table>

Click the Rebuild Directory Service Cache button after adding a user to NIS who needs immediate access to FreeNAS®. Otherwise this occurs automatically once a day as a cron job.
9.4 Kerberos Realms

A default Kerberos realm is created for the local system in FreeNAS®. Directory Service → Kerberos Realms can be used to view and add Kerberos realms. If the network contains a Key Distribution Center (KDC), click Add kerberos realm to add the realm. This configuration screen is shown in Figure 9.4.

![Add kerberos realm](image)

Fig. 9.4: Adding a Kerberos Realm

Table 9.5 summarizes the configurable options. Some settings are only available in Advanced Mode. To see these settings, either click Advanced Mode or configure the system to always display these settings by checking the box Show advanced fields by default in System → Advanced.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Realm</td>
<td>string</td>
<td>✓</td>
<td>Mandatory. Name of the Kerberos realm.</td>
</tr>
<tr>
<td>KDC</td>
<td>string</td>
<td>✓</td>
<td>Name of the Key Distribution Center.</td>
</tr>
<tr>
<td>Admin Server</td>
<td>string</td>
<td>✓</td>
<td>Server where all changes to the database are performed.</td>
</tr>
<tr>
<td>Password Server</td>
<td>string</td>
<td>✓</td>
<td>Server where all password changes are performed.</td>
</tr>
</tbody>
</table>

9.5 Kerberos Keytabs

Kerberos keytabs are used to do Active Directory or LDAP joins without a password. This means the password for the Active Directory or LDAP administrator account does not need to be saved into the FreeNAS® configuration database, which is a security risk in some environments.

When using a keytab, it is recommended to create and use a less privileged account for performing the required queries as the password for that account will be stored in the FreeNAS® configuration database. To create the keytab on a Windows system, use the ktpass (https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/ktpass) command:

```
ktpass.exe /out freenas.keytab /princ http/useraccount@EXAMPLE.COM /mapuser useraccount /ptype KRB5_NT_PRINCIPAL /crypto ALL /pass userpass
```

where:

- `freenas.keytab` is the file to upload to the FreeNAS® server.
- `http/useraccount@EXAMPLE.COM` is the principal name written in the format `host/user.account@KERBEROS.REALM`. By convention, the kerberos realm is written in all caps, but make sure the case used for the Kerberos Realm (page 188) matches the realm name. See this note (https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/ktpass#BKMK_remarks) about using /princ for more details.
• userpass is the password associated with useraccount.

Setting /crypto to ALL allows using all supported cryptographic types. These keys can be specified instead of ALL:

• DES-CBC-CRC is used for compatibility.
• DES-CBC-MD5 adheres more closely to the MIT implementation and is used for compatibility.
• RC4-HMAC-NT uses 128-bit encryption.
• AES256-SHA1 uses AES256-CTS-HMAC-SHA1-96 encryption.
• AES128-SHA1 uses AES128-CTS-HMAC-SHA1-96 encryption.

This will create a keytab with sufficient privileges to grant tickets.

After the keytab is generated, use Directory Service → Kerberos Keytabs → Add kerberos keytab to add it to the FreeNAS® system.

To instruct the Active Directory service to use the keytab, select the installed keytab using the drop-down Kerberos keytab menu in Directory Service → Active Directory. When using a keytab with Active Directory, make sure that the username and userpass in the keytab matches the Domain Account Name and Domain Account Password fields in Directory Service → Active Directory.

To instruct LDAP to use a principal from the keytab, select the principal from the drop-down Kerberos Principal menu in Directory Service → LDAP.

9.6 Kerberos Settings

To configure additional Kerberos parameters, use Directory Service → Kerberos Settings. Figure 9.5 shows the fields available:

- **Appdefaults auxiliary parameters**: contains settings used by some Kerberos applications. The available settings and their syntax are listed in the [appdefaults] section of krb.conf(5) (http://web.mit.edu/kerberos/krb5-1.12/doc/admin/conf_files/krb5_conf.html#appdefaults).

- **Libdefaults auxiliary parameters**: contains settings used by the Kerberos library. The available settings and their syntax are listed in the [libdefaults] section of krb.conf(5) (http://web.mit.edu/kerberos/krb5-1.12/doc/admin/conf_files/krb5_conf.html#libdefaults).

![Directory Service](image-url)

Fig. 9.5: Additional Kerberos Settings
Shares are created to make part or all of a volume accessible to other computers on the network. The type of share to create depends on factors like which operating systems are being used by computers on the network, security requirements, and expectations for network transfer speeds.

FreeNAS® provides a Wizard (page 296) for creating shares. The Wizard (page 296) automatically creates the correct type of dataset and permissions for the type of share, sets the default permissions for the share type, and starts the service needed by the share. It is recommended to use the Wizard to create shares, fine-tune the share settings using the instructions in the rest of this chapter if needed, then fine-tune the default permissions from the client operating system to meet the requirements of the network.

Note: Shares are created to provide and control access to an area of storage. Before creating shares, making a list of the users that need access to storage data, which operating systems these users are using, whether all users should have the same permissions to the stored data, and whether these users should authenticate before accessing the data is recommended. This information can help determine which type of shares are needed, whether multiple datasets are needed to divide the storage into areas with different access and permissions, and how complex it will be to set up those permission requirements. Note that shares are used to provide access to data. When a share is deleted, it removes access to data but does not delete the data itself.

These types of shares and services are available:

- **AFP** (page 191): Apple Filing Protocol shares are used when the client computers all run macOS. Apple has deprecated AFP in favor of **SMB** (page 203). Using AFP in modern networks is no longer recommended.

- **Unix (NFS)** (page 195): Network File System shares are accessible from macOS, Linux, BSD, and the professional and enterprise versions (but not the home editions) of Windows. This can be a good choice when the client computers do not all run the same operating system but NFS client software is available for all of them.

- **WebDAV** (page 202): WebDAV shares are accessible using an authenticated web browser (read-only) or WebDAV client (https://en.wikipedia.org/wiki/WebDAV#Client_support) running on any operating system.

- **SMB** (page 203): Server Message Block shares, also known as Common Internet File System (CIFS) shares, are accessible by Windows, macOS, Linux, and BSD computers. Access is slower than an NFS share due to the single-threaded design of Samba. SMB provides more configuration options than NFS and is a good choice on a network for Windows or Mac systems. However, it is a poor choice if the CPU on the FreeNAS® system is limited. If it is maxed out, upgrade the CPU or consider a different type of share.

- **Block (iSCSI)** (page 214): block or iSCSI shares appear as an unformatted disk to clients running iSCSI initiator software or a virtualization solution such as VMware. These are usually used as virtual drives.

Fast access from any operating system can be obtained by configuring the **FTP** (page 239) service instead of a share and using a cross-platform FTP file manager application such as **Filezilla** (https://filezilla-project.org/). Secure FTP can be configured if the data needs to be encrypted.

When data security is a concern and the network users are familiar with SSH command line utilities or **WinSCP** (https://winscp.net/eng/index.php), consider using the **SSH** (page 259) service instead of a share. It is slower than unencrypted FTP due to the encryption overhead, but the data passing through the network is encrypted.
Note: It is generally a mistake to share a volume or dataset with more than one share type or access method. Different types of shares and services use different file locking methods. For example, if the same volume is configured to use both NFS and FTP, NFS will lock a file for editing by an NFS user, but an FTP user can simultaneously edit or delete that file. This results in lost edits and confused users. Another example: if a volume is configured for both AFP and SMB, Windows users can be confused by the “extra” filenames used by Mac files and delete them. This corrupts the files on the AFP share. Pick the one type of share or service that makes the most sense for the types of clients accessing that volume, and use that single type of share or service. To support multiple types of shares, divide the volume into datasets and use one dataset per share.

This section demonstrates configuration and fine-tuning of AFP, NFS, SMB, WebDAV, and iSCSI shares. FTP and SSH configurations are described in Services (page 233).

10.1 Apple (AFP) Shares

FreeNAS® uses the Netatalk (http://netatalk.sourceforge.net/) AFP server to share data with Apple systems. This section describes the configuration screen for fine-tuning AFP shares created using the Wizard (page 296). It then provides configuration examples for using the Wizard (page 296) to create a guest share, configuring Time Machine to back up to a dataset on the FreeNAS® system, and for connecting to the share from a macOS client.

To view the AFP share created by the Wizard, click Sharing → Apple (AFP) and highlight the name of the share. Click its Edit button to see the configuration options shown in Figure 10.1. The values showing for these options will vary, depending upon the information given when the share was created.

![Fig. 10.1: Creating an AFP Share](image)

Note: Table 10.1 summarizes the options available to fine-tune an AFP share. Leaving these options at the de-
fault settings is recommended as changing them can cause unexpected behavior. Most settings are only available with Advanced Mode. Do not change an advanced option without fully understanding the function of that option. Refer to Setting up Netatalk (http://netatalk.sourceforge.net/2.2/htmldocs/configuration.html) for a more detailed explanation of these options.

Table 10.1: AFP Share Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path</td>
<td>browse button</td>
<td></td>
<td>Browse to the volume/dataset to share. Do not nest additional volumes, datasets, or symbolic links beneath this path. Netatalk does not fully support nesting functionality.</td>
</tr>
<tr>
<td>Use as home share</td>
<td>checkbox</td>
<td></td>
<td>Set to allow the share to host user home directories. Only one share can be used as the home share.</td>
</tr>
<tr>
<td>Name</td>
<td>string</td>
<td></td>
<td>Enter the volume name that appears in in macOS after selecting Go → Connect to server in the Finder menu. Limited to 27 characters and cannot contain a period.</td>
</tr>
<tr>
<td>Share Comment</td>
<td>string</td>
<td>✓</td>
<td>Enter an optional comment.</td>
</tr>
<tr>
<td>Allow List</td>
<td>string</td>
<td>✓</td>
<td>Comma-delimited list of allowed users and/or groups where groupname begins with a @. Note that adding an entry will deny any user/group that is not specified.</td>
</tr>
<tr>
<td>Deny List</td>
<td>string</td>
<td>✓</td>
<td>Comma-delimited list of denied users and/or groups where groupname begins with a @. Note that adding an entry will allow all users/groups that are not specified.</td>
</tr>
<tr>
<td>Read-only Access</td>
<td>string</td>
<td>✓</td>
<td>Comma-delimited list of users and/or groups who only have read access where groupname begins with a @.</td>
</tr>
<tr>
<td>Read-write Access</td>
<td>string</td>
<td>✓</td>
<td>Comma-delimited list of users and/or groups who have read and write access where groupname begins with a @.</td>
</tr>
<tr>
<td>Time Machine</td>
<td>checkbox</td>
<td></td>
<td>Set to advertise FreeNAS® as a Time Machine disk so it can be found by Macs. Setting multiple shares for Time Machine use is not recommended. When multiple Macs share the same pool, low disk space issues and intermittently failed backups can occur.</td>
</tr>
<tr>
<td>Time Machine Quota, GiB</td>
<td>integer</td>
<td></td>
<td>Appears when Time Machine is set. Enter a storage quota for each Time Machine backup on this share. The share must be remounted for any changes to this value to take effect.</td>
</tr>
<tr>
<td>Zero Device Numbers</td>
<td>checkbox</td>
<td>✓</td>
<td>Enable when the device number is not constant across a reboot.</td>
</tr>
<tr>
<td>No Stat</td>
<td>checkbox</td>
<td>✓</td>
<td>If enabled, AFP does not stat the volume path when enumerating the volumes list. Useful for automounting or volumes created by a preexec script.</td>
</tr>
<tr>
<td>AFP3 UNIX Privilges</td>
<td>checkbox</td>
<td>✓</td>
<td>Set to enable Unix privileges supported by Mac OS X 10.5 and higher. Do not enable if the network has Mac OS X 10.4 or lower clients. Those systems do not support this feature.</td>
</tr>
<tr>
<td>Default file permissions</td>
<td>checkboxes</td>
<td>✓</td>
<td>Only works with Unix ACLs. New files created on the share are set with the selected permissions.</td>
</tr>
<tr>
<td>Default directory permission</td>
<td>checkboxes</td>
<td>✓</td>
<td>Only works with Unix ACLs. New directories created on the share are set with the selected permissions.</td>
</tr>
<tr>
<td>Default umask</td>
<td>integer</td>
<td>✓</td>
<td>Umask is used for newly created files. Default is 000 (anyone can read, write, and execute).</td>
</tr>
<tr>
<td>Hosts Allow</td>
<td>string</td>
<td>✓</td>
<td>Enter a list of allowed hostnames or IP addresses. Separate entries with a comma, space, or tab.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 10.1 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hosts Deny</td>
<td>string</td>
<td>✓</td>
<td>Enter a list of denied hostnames or IP addresses. Separate entries with a comma, space, or tab.</td>
</tr>
<tr>
<td>Auxiliary Parameters</td>
<td>string</td>
<td></td>
<td>Additional afp.conf parameters not covered by other option fields.</td>
</tr>
</tbody>
</table>

10.1.1 Creating AFP Guest Shares

AFP supports guest logins, meaning that macOS users can access the AFP share without requiring their user accounts to first be created on or imported into the FreeNAS® system.

Note: When a guest share is created along with a share that requires authentication, AFP only maps users who log in as guest to the guest share. If a user logs in to the share that requires authentication, permissions on the guest share can prevent that user from writing to the guest share. The only way to allow both guest and authenticated users to write to a guest share is to set the permissions on the guest share to 777 or to add the authenticated users to a guest group and set the permissions to 77x.

Before creating a guest share, go to Services → AFP and make sure that the **Guest Access** option is enabled.

To create the AFP guest share, click **Wizard**, then click the **Next** button three times to display the screen shown in Figure 10.2. Complete these fields in this screen:

1. **Share name:** enter a name for the share that is identifiable but less than 27 characters long. This name cannot contain a period. In this example, the share is named `afp_guest`.
2. Click the button for **Mac OS X (AFP)**.
3. Click the **Ownership** button. Click the drop-down **User** menu and select **nobody**. Click the **Return** button to return to the previous screen.
4. Click the **Add** button. **The share is not created until the button is clicked.** Clicking the **Add** button adds an entry to the **Name** frame with the name that was entered in **Share name**.
Click the Next button three times, then the Confirm button to create the share. The Wizard automatically creates a dataset for the share that contains the correct default permissions and starts the AFP service so the share is immediately available. The new share is also added as an entry to Sharing → Apple (AFP).

macOS users can use Finder to connect to the guest AFP share by clicking Go → Connect to Server. In the example shown in Figure 10.3, the user entered `afp://` followed by the IP address of the FreeNAS® system.

Click the Connect button. Once connected, Finder opens automatically. The name of the AFP share is displayed in the SHARED section in the left frame and the contents of any data saved in the share is displayed in the right frame.
To disconnect from the volume, click the eject button in the Shared sidebar.

10.2 Unix (NFS) Shares

FreeNAS® supports sharing pools, datasets, and directories over the Network File System (NFS). Clients use the `mount` command to mount the share. Mounted NFS shares appear as another directory on the client system. Some Linux distros require the installation of additional software to mount an NFS share. Windows systems must enable Services for NFS in the Ultimate or Enterprise editions or install an NFS client application.

Note: For performance reasons, iSCSI is preferred to NFS shares when FreeNAS® is installed on ESXi. When considering creating NFS shares on ESXi, read through the performance analysis presented in Running ZFS over NFS as a VMware Store (https://tinyurl.com/archive-zfs-over-nfs-vmware).

To create an NFS share using the **Wizard** (page 296), click the **Next** button three times to display the screen shown in Figure 10.4. Enter a **Share name**. Spaces are not allowed in these names. Click the button for **Generic Unix (NFS)**, then click **Add** so the share name appears in the **Name** frame. When finished, click the **Next** button twice, then the **Confirm** button to create the share. Creating an NFS share using the wizard automatically creates a new dataset for the share, starts the services required for NFS, and adds an entry in Sharing → Unix (NFS) Shares. Depending on the requirements, the IP addresses that are allowed to access the NFS share can be restricted, or the permissions adjusted.
NFS shares are edited by clicking *Sharing* → *Unix (NFS)*, highlighting the entry for the share, and clicking the *Edit* button. In the example shown in Figure 10.5, the configuration screen is open for the *nfs_share1* share.
Remember these points when creating NFS shares:

1. Clients specify the *Path* when mounting the share.

2. The *Maproot* and *Mapall* options cannot both be enabled. The *Mapall* options supersede the *Maproot* options. To restrict only the root user permissions, set the *Maproot* option. To restrict permissions of all users, set the *Mapall* options.

3. Each volume or dataset is considered to be a unique filesystem. Individual NFS shares cannot cross filesystem boundaries. Adding paths to share more directories only works if those directories are within the same filesystem.

4. The network and host must be unique to both each created share and the filesystem or directory included in that share. Because `/etc/exports` is not an access control list (ACL), the rules contained in `/etc/exports` become undefined with overlapping networks or when using the same share with multiple hosts.

5. The *All dirs* option can only be used once per share per filesystem.

To better understand these restrictions, consider a scenario where there are:

- two networks, `10.0.0.0/8` and `20.0.0.0/8`
- a ZFS volume named `volume1` with 2 datasets named `dataset1` and `dataset2`
- `dataset1` contains directories named `directory1`, `directory2`, and `directory3`

Because of restriction #3, an error is shown when trying to create one NFS share like this:

- *Authorized networks* set to `10.0.0.0/8 20.0.0.0/8`
- *Path* set to `/mnt/volume1/dataset1` and `/mnt/volume1/dataset1/directory1`
The correct method to configure this share is to set the *Path* to `/mnt/volume1/dataset1` and set *All Directories*. This allows the client to also mount `/mnt/volume1/dataset1/directory1` when `/mnt/volume1/dataset1` is mounted.

Additional paths are used to define specific directories to be shared. For example, `dataset1` has three directories. To share only `/mnt/volume1/dataset1/directory1` and `/mnt/volume1/dataset1/directory2`, create paths for `directory1` and `directory2` within the share. This excludes `directory3` from the share.

Restricting a specific directory to a single network is done by creating a share for the volume or dataset and a share for the directory within that volume or dataset. Define the authorized networks for both shares.

First NFS share:
- *Authorized networks* set to `10.0.0.0/8`
- *Path* set to `/mnt/volume1/dataset1`

Second NFS share:
- *Authorized networks* set to `20.0.0.0/8`
- *Path* set to `/mnt/volume1/dataset1/directory1`

Note that this requires creating two shares. It cannot be done with only one share.

Table 10.2 summarizes the available configuration options in *NFS Share Settings* (page 197). Click *Advanced Mode* to see all settings.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path</td>
<td>browse button</td>
<td></td>
<td>Browse to the volume, dataset, or directory to be shared. Click Add extra Path to add multiple directories to this share.</td>
</tr>
<tr>
<td>Comment</td>
<td>string</td>
<td></td>
<td>Text describing the share. Typically used to name the share. If left empty, this shows the Path entries of the share.</td>
</tr>
<tr>
<td>Authorized networks</td>
<td>string</td>
<td>✓</td>
<td>Space-delimited list of allowed networks in network/mask CIDR notation. Example: <code>1.2.3.0/24</code>. Leave empty to allow all.</td>
</tr>
<tr>
<td>Authorized IP addresses or hosts</td>
<td>string</td>
<td>✓</td>
<td>Space-delimited list of allowed IP addresses or hostnames. Leave empty to allow all.</td>
</tr>
<tr>
<td>All directories</td>
<td>checkbox</td>
<td></td>
<td>Allow the client to also mount any subdirectories of the selected pool or dataset.</td>
</tr>
<tr>
<td>Read only</td>
<td>checkbox</td>
<td></td>
<td>Prohibit writing to the share.</td>
</tr>
<tr>
<td>Quiet</td>
<td>checkbox</td>
<td>✓</td>
<td>Restrict some syslog diagnostics to avoid some error messages. See <code>exports(5)</code> (https://www.freebsd.org/cgi/man.cgi?query=exports) for examples.</td>
</tr>
<tr>
<td>Maproot User</td>
<td>drop-down menu</td>
<td>✓</td>
<td>When a user is selected, the root user is limited to permissions of that user.</td>
</tr>
<tr>
<td>Maproot Group</td>
<td>drop-down menu</td>
<td>✓</td>
<td>When a group is selected, the root user is also limited to permissions of that group.</td>
</tr>
<tr>
<td>Mapall User</td>
<td>drop-down menu</td>
<td>✓</td>
<td>All clients use the permissions of the specified user.</td>
</tr>
<tr>
<td>Mapall Group</td>
<td>drop-down menu</td>
<td>✓</td>
<td>All clients use the permissions of the specified group.</td>
</tr>
</tbody>
</table>
Table 10.2 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security</td>
<td>selection</td>
<td>✓</td>
<td>Only appears if Enable NFSv4 is enabled in Services → NFS. Choices are sys or these Kerberos options: krb5 (authentication only), krb5i (authentication and integrity), or krb5p (authentication and privacy). If multiple security mechanisms are added to the Selected column using the arrows, use the Up or Down buttons to list in order of preference.</td>
</tr>
</tbody>
</table>

10.2.1 Example Configuration

By default, the *Mapall* fields are not set. This means that when a user connects to the NFS share, the user has the permissions associated with their user account. This is a security risk if a user is able to connect as *root* as they will have complete access to the share.

A better option is to do this:

1. Specify the built-in *nobody* account to be used for NFS access.
2. In the *Change Permissions* screen of the volume/dataset that is being shared, change the owner and group to *nobody* and set the permissions according to the desired requirements.
3. Select *nobody* in the *Mapall User* and *Mapall Group* drop-down menus for the share in Sharing → Unix (NFS) Shares.

With this configuration, it does not matter which user account connects to the NFS share, as it will be mapped to the *nobody* user account and will only have the permissions that were specified on the volume/dataset. For example, even if the *root* user is able to connect, it will not gain *root* access to the share.

10.2.2 Connecting to the Share

The following examples share this configuration:

1. The FreeNAS® system is at IP address 192.168.2.2.
2. A dataset named /mnt/volume1/nfs_share1 is created and the permissions set to the *nobody* user account and the *nobody* group.
3. An NFS share is created with these attributes:
 - *Path*: /mnt/volume1/nfs_share1
 - *Authorized Networks*: 192.168.2.0/24
 - *All Directories* option is enabled
 - *MapAll User* is set to *nobody*
 - *MapAll Group* is set to *nobody*

10.2.2.1 From BSD or Linux

NFS shares are mounted on BSD or Linux clients with this command executed as the superuser (*root*) or with *sudo*:

```bash
mount -t nfs 192.168.2.2:/mnt/volume1/nfs_share1 /mnt
```

- `-t nfs` specifies the filesystem type of the share
- `192.168.2.2` is the IP address of the FreeNAS® system
- `/mnt/volume/nfs_share1` is the name of the directory to be shared, a dataset in this case
• /mnt is the mountpoint on the client system. This must be an existing, empty directory. The data in the NFS share appears in this directory on the client computer.

Successfully mounting the share returns to the command prompt without any status or error messages.

Note: If this command fails on a Linux system, make sure that the nfs-utils (https://sourceforge.net/projects/nfs/files/nfs-utils/) package is installed.

This configuration allows users on the client system to copy files to and from /mnt (the mount point). All files are owned by nobody:nobody. Changes to any files or directories in /mnt write to the FreeNAS® system /mnt/volume1/nfs_share1 dataset.

NFS share settings cannot be changed when the share is mounted on a client computer. The `umount` command is used to unmount the share on BSD and Linux clients. Run it as the superuser or with `sudo` on each client computer:

```
umount /mnt
```

10.2.2.2 From Microsoft

Windows NFS client support varies with versions and releases. For best results, use Windows (SMB) Shares (page 203).

10.2.2.3 From macOS

A macOS client uses Finder to mount the NFS volume. Go to Go → Connect to Server. In the Server Address field, enter `nfs://` followed by the IP address of the FreeNAS® system and the name of the volume/dataset being shared by NFS. The example shown in Figure 10.6 continues with our example of 192.168.2.2:/mnt/volume1/nfs_share1.

Finder opens automatically after connecting. The IP address of the FreeNAS® system displays in the SHARED section in the left frame and the contents of the share display in the right frame. Figure 10.7 shows an example where /mnt/data has one folder named images. The user can now copy files to and from the share.

![Fig. 10.6: Mounting the NFS Share from macOS](image_url)

Fig. 10.6: Mounting the NFS Share from macOS
10.2.3 Troubleshooting NFS

Some NFS clients do not support the NLM (Network Lock Manager) protocol used by NFS. This is the case if the client receives an error that all or part of the file may be locked when a file transfer is attempted. To resolve this error, add the option `-o nolock` when running the `mount` command on the client to allow write access to the NFS share.

If a “time out giving up” error is shown when trying to mount the share from a Linux system, make sure that the portmapper service is running on the Linux client. If portmapper is running and timeouts are still shown, force the use of TCP by including `-o tcp` in the `mount` command.

If a `RPC: Program not registered` error is shown, upgrade to the latest version of FreeNAS® and restart the NFS service after the upgrade to clear the NFS cache.

If clients see “reverse DNS” errors, add the FreeNAS® IP address in the Host name data base field of Network → Global Configuration.

If clients receive timeout errors when trying to mount the share, add the client IP address and hostname to the Host name data base field in Network → Global Configuration.

Some older versions of NFS clients default to UDP instead of TCP and do not auto-negotiate for TCP. By default, FreeNAS® uses TCP. To support UDP connections, go to Services → NFS and enable the Serve UDP NFS clients option.

The `nfsstat -c` or `nfsstat -s` commands can be helpful to detect problems from the Shell (page 304). A high proportion of retries and timeouts compared to reads usually indicates network problems.
10.3 WebDAV Shares

In FreeNAS®, WebDAV shares can be created so that authenticated users can browse the contents of the specified volume, dataset, or directory from a web browser.

Configuring WebDAV shares is a two step process. First, create the WebDAV shares to specify which data can be accessed. Then, configure the WebDAV service by specifying the port, authentication type, and authentication password. Once the configuration is complete, the share can be accessed using a URL in the format:

\[\text{protocol://IP_address:port_number/share_name} \]

where:

- **protocol**: is either http or https, depending upon the Protocol configured in Services → WebDAV.
- **IP address**: is the IP address or hostname of the FreeNAS® system. Take care when configuring a public IP address to ensure that the network firewall only allows access to authorized systems.
- **port_number**: is configured in Services → WebDAV. If the FreeNAS® system is to be accessed using a public IP address, consider changing the default port number and ensure that the network's firewall only allows access to authorized systems.
- **share_name**: is configured in Sharing → WebDAV Shares.

Entering the URL in a web browser brings up an authentication pop-up message. Enter a username of webdav and the password configured in Services → WebDAV.

Warning: At this time, only the webdav user is supported. For this reason, it is important to set a good password for this account and to only give the password to users which should have access to the WebDAV share.

To create a WebDAV share, click Sharing → WebDAV Shares → Add WebDAV Share which will open the screen shown in Figure 10.8.

![Add WebDAV Share](image)

Fig. 10.8: Adding a WebDAV Share

Table 10.3 summarizes the available options.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share Path Name</td>
<td>string</td>
<td>Enter a name for the share.</td>
</tr>
<tr>
<td>Comment</td>
<td>string</td>
<td>Optional.</td>
</tr>
</tbody>
</table>

Table 10.3: WebDAV Share Options

Continued on next page
Table 10.3 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path</td>
<td>browse button</td>
<td>Browse to the volume/dataset to share.</td>
</tr>
<tr>
<td>Read Only</td>
<td>checkbox</td>
<td>Set to prohibit users from writing to the share.</td>
</tr>
<tr>
<td>Change User & Group Ownership</td>
<td>checkbox</td>
<td>Enable to automatically set the share contents to the webdav user and group.</td>
</tr>
</tbody>
</table>

After clicking *OK*, a pop-up asks about enabling the service. Once the service starts, review the settings in *Services* → *WebDAV* as they are used to determine which URL is used to access the WebDAV share and whether or not authentication is required to access the share. These settings are described in *WebDAV* (page 266).

10.4 Windows (SMB) Shares

FreeNAS® uses Samba (https://www.samba.org/) to share volumes using Microsoft’s SMB protocol. SMB is built into the Windows and macOS operating systems and most Linux and BSD systems pre-install the Samba client in order to provide support for SMB. If the distro did not, install the Samba client using the distro software repository.

The SMB protocol supports many different types of configuration scenarios, ranging from the simple to complex. The complexity of the scenario depends upon the types and versions of the client operating systems that will connect to the share, whether the network has a Windows server, and whether Active Directory is being used. Depending on the authentication requirements, it might be necessary to create or import users and groups.

Samba supports server-side copy of files on the same share with clients from Windows 8 and higher. Copying between two different shares is not server-side. Windows 7 clients support server-side copying with Robocopy (https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/cc733145(v=ws.11)).

This chapter starts by summarizing the available configuration options. It demonstrates some common configuration scenarios as well as offering some troubleshooting tips. Reading through this entire chapter before creating any SMB shares is recommended to gain a better understanding of the configuration scenario that meets the specific network requirements.

Warning: SMB1 is disabled by default for security (https://www.ixsystems.com/blog/library/do-not-use-smb1/). If necessary, SMB1 can be enabled in *Services* → *SMB Settings*.

Figure 10.9 shows the configuration screen that appears after clicking *Sharing* → *Windows (SMB Shares)* → *Add Windows (SMB) Share*.
Table 10.4 summarizes the options when creating a SMB share. Some settings are only available after clicking the Advanced Mode button. For simple sharing scenarios, Advanced Mode options are not needed. For more complex sharing scenarios, only change an Advanced Mode option after fully understanding the function of that option. smb.conf(5) (https://www.freebsd.org/cgi/man.cgi?query=smb.conf) provides more details for each configurable option.

Table 10.4: SMB Share Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path</td>
<td>browse button</td>
<td></td>
<td>Select the volume, dataset, or directory to share. The same path can be used by more than one share.</td>
</tr>
<tr>
<td>Name</td>
<td>string</td>
<td></td>
<td>Enter a name for this share. An existing SMB share name cannot be reused.</td>
</tr>
<tr>
<td>Use as home share</td>
<td>checkbox</td>
<td></td>
<td>Set to allow this share to hold user home directories. Only one share can be the home share. Note that lower case names for user home directories are strongly recommended, as Samba maps usernames to all lower case. For example, the username John will be mapped to a home directory named john. If the Path to the home share includes an upper case username, delete the existing user and recreate (page 64) it in Accounts → Users with an all lower case Username. Return to Sharing → SMB to create the home share, and select the Path that contains the new lower case username.</td>
</tr>
<tr>
<td>Setting</td>
<td>Value</td>
<td>Advanced Mode</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>Name</td>
<td>string</td>
<td></td>
<td>Name the new share. Each share name must be unique.</td>
</tr>
<tr>
<td>Apply Default Permissions</td>
<td>checkbox</td>
<td></td>
<td>ACLs grant read and write for owner or group and read-only for others. Leave this unset when creating shares on a system with custom ACLs.</td>
</tr>
<tr>
<td>Comment</td>
<td>string</td>
<td>✓</td>
<td>Optional description.</td>
</tr>
<tr>
<td>Export Read Only</td>
<td>checkbox</td>
<td>✓</td>
<td>Prohibit write access to the share.</td>
</tr>
<tr>
<td>Browsable to Network Clients</td>
<td>checkbox</td>
<td>✓</td>
<td>Determine whether this share name is included when browsing shares. Home shares are only visible to the owner regardless of this setting.</td>
</tr>
<tr>
<td>Export Recycle Bin</td>
<td>checkbox</td>
<td>✓</td>
<td>Files that are deleted from the same dataset are moved to the Recycle Bin and do not take any additional space. When the files are in a different dataset or a child dataset, they are copied to the dataset where the Recycle Bin is located. To prevent excessive space usage, files larger than 20 MiB are deleted rather than moved. Adjust the Auxiliary Parameter <code>crossrename:sizelimit=</code> setting to allow larger files. For example, <code>crossrename:sizelimit=50</code> allows moves of files up to 50 MiB in size.</td>
</tr>
<tr>
<td>Show Hidden Files</td>
<td>checkbox</td>
<td>✓</td>
<td>Disable the Windows hidden attribute on a new Unix hidden file. Unix hidden filenames start with a dot: <code>.foo</code>. Existing files are not affected.</td>
</tr>
<tr>
<td>Allow Guest Access</td>
<td>checkbox</td>
<td></td>
<td>Privileges are the same as the guest account. Guest access is disabled by default in Windows 10 version 1709 and Windows Server version 1903. Additional client-side configuration is required to provide guest access to these clients.</td>
</tr>
<tr>
<td>Only Allow Guest Access</td>
<td>checkbox</td>
<td>✓</td>
<td>Requires Allow guest access to also be enabled. Forces guest access for all connections.</td>
</tr>
<tr>
<td>Access Based Share Enumeration</td>
<td>checkbox</td>
<td>✓</td>
<td>Restrict share visibility to users with a current Windows Share ACL access of read or write. Use Windows administration tools to adjust the share permissions. See <code>smb.conf(5)</code> (https://www.freebsd.org/cgi/man.cgi?query=smb.conf).</td>
</tr>
<tr>
<td>Hosts Allow</td>
<td>string</td>
<td>✓</td>
<td>Enter a list of allowed hostnames or IP addresses. Separate entries with a comma (,), space, or tab.</td>
</tr>
<tr>
<td>Hosts Deny</td>
<td>string</td>
<td>✓</td>
<td>Enter a list of denied hostnames or IP addresses. Separate entries with a comma (,), space, or tab. Specify <code>ALL</code> and list any hosts from Hosts Allow to have those hosts take precedence.</td>
</tr>
<tr>
<td>VFS Objects</td>
<td>selection</td>
<td>✓</td>
<td>Add virtual file system modules to enhance functionality. Table 10.5 summarizes the available modules.</td>
</tr>
<tr>
<td>Periodic Snapshot Task</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Used to configure directory shadow copies on a per-share basis. Select the pre-configured periodic snapshot task to use for the shadow copies of the share. Periodic snapshots must be recursive.</td>
</tr>
<tr>
<td>Auxiliary Parameters</td>
<td>string</td>
<td>✓</td>
<td>Additional <code>smb4.conf</code> (https://www.freebsd.org/cgi/man.cgi?query=smb.conf) parameters not covered by other option fields.</td>
</tr>
</tbody>
</table>

Here are some notes about *ADVANCED MODE* settings:

- Hostname lookups add some time to accessing the SMB share. If only using IP addresses, unset the *Hostnames lookups* option in *Services → SMB*.

- When the *Browsable to Network Clients* option is enabled (the default), the share is visible through Windows File...
Explorer or through `net view`. When the Use as a home share option is selected, deselecting the Browsable to Network Clients option hides the share named homes so that only the dynamically generated share containing the authenticated user home directory will be visible. By default, the homes share and the user home directory are both visible. Users are not automatically granted read or write permissions on browsable shares. This option provides no real security because shares that are not visible in Windows File Explorer can still be accessed with a UNC path.

- If some files on a shared volume should be hidden and inaccessible to users, put a `veto files=` line in the Auxiliary Parameters field. The syntax for the veto files option and some examples can be found in the `smb.conf` manual page (https://www.freebsd.org/cgi/man.cgi?query=smb.conf).

Samba disables NTLMv1 authentication by default for security. Standard configurations of Windows XP and some configurations of later clients like Windows 7 will not be able to connect with NTLMv1 disabled. Security guidance for NTLMv1 and LM network authentication (https://support.microsoft.com/en-us/help/2793313/security-guidance-for-ntlmv1-and-lm-network-authentication) has information about the security implications and ways to enable NTLMv2 on those clients. If changing the client configuration is not possible, NTLMv1 authentication can be enabled by enabling the `NTLMv1 auth` option in Services ➔ SMB.

Table 10.5 provides an overview of the available VFS modules. Be sure to research each module before adding or deleting it from the Selected column of the VFS Objects field of the share. Some modules need additional configuration after they are added. Refer to Stackable VFS modules (https://www.samba.org/samba/docs/old/Samba3-HOWTO/VFS.html) and the `vfs_*` man pages (https://www.samba.org/samba/docs/current/man-html/) for more details.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>acl_tdb</td>
<td>Store NTFS ACLs in a tdb file to enable full mapping of Windows ACLs.</td>
</tr>
<tr>
<td>acl_xattr</td>
<td>Store NTFS ACLs in Extended Attributes (EAs) to enable the full mapping of Windows ACLs.</td>
</tr>
<tr>
<td>aio_fork</td>
<td>Enable async I/O.</td>
</tr>
<tr>
<td>audit</td>
<td>Log share access, connects/disconnects, directory opens/creates/removes, and file opens/closes/renames/unlinks/chmods to syslog.</td>
</tr>
<tr>
<td>cacheprime</td>
<td>Prime the kernel file data cache.</td>
</tr>
<tr>
<td>cap</td>
<td>Translate filenames to and from the CAP encoding format, commonly used in Japanese language environments.</td>
</tr>
<tr>
<td>catia</td>
<td>Improve Mac interoperability by translating characters that are unsupported by Windows.</td>
</tr>
<tr>
<td>commit</td>
<td>Track the amount of data written to a file and synchronize it to disk when a specified amount accumulates.</td>
</tr>
<tr>
<td>crossrename</td>
<td>Allow server side rename operations even if source and target are on different physical devices. Required for the recycle bin to work across dataset boundaries. Automatically added when Export Recycle Bin is enabled.</td>
</tr>
<tr>
<td>default_quota</td>
<td>Deprecated: use the ixnas module instead. Store the default quotas that are reported to a Windows client in the quota record of a user.</td>
</tr>
<tr>
<td>dirsort</td>
<td>Sort directory entries alphabetically before sending them to the client.</td>
</tr>
<tr>
<td>expand_msdfs</td>
<td>Enable support for Microsoft Distributed File System (DFS).</td>
</tr>
<tr>
<td>extd_audit</td>
<td>Send audit logs to both syslog and the Samba log files.</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>fake_perms</td>
<td>Allow roaming profile files and directories to be set to read-only.</td>
</tr>
<tr>
<td>fruit</td>
<td>Enhance macOS support by providing the SMB2 AAPL extension and Netatalk interoperability. Automatically loads <code>catia</code> and <code>streams_xattr</code>, but see the warning (page 208) below.</td>
</tr>
<tr>
<td>full_audit</td>
<td>Record selected client operations to the system log.</td>
</tr>
</tbody>
</table>
| ixnas | Experimental module to improve ACL compatibility with Windows, store DOS attributes as file flags, and enable User Quota Administration (page 212) from Windows. Several Auxiliary Parameters are available with `ixnas`. | Userspace Quota Settings:
 - `ixnas:base_user_quota` = sets a ZFS user quota on every user that connects to the share. Example: `ixnas:base_user_quota = 80G` sets the quota to 80 GiB.
 - `ixnas:zfs_quota_enabled` = enables support for userspace quotas. Choices are True or False. Default is True. Example: `ixnas:zfs_quota_enabled = True`.
Home Dataset Settings:
 - `ixnas:chown_homedir` = changes the owner of a created home dataset to the currently authenticated user. `ixnas:zfs_auto_homedir` must be set to True. Choices are True or False. Example: `ixnas:chown_homedir = True`.
 - `ixnas:homedir_quota` = sets a quota on new ZFS datasets. `ixnas:zfs_auto_homedir` must be set to True. Example: `ixnas:homedir_quota = 20G` sets the quota to 20 GiB.
 - `ixnas:zfs_auto_homedir` = creates new ZFS datasets for users connecting to home shares instead of folders. Choices are True or False. Default is False. Example: `ixnas:zfs_auto_homedir = False`. |
<p>| linux_xfs_sgid | Used to work around an old Linux XFS bug. |
| media_harmony | Allow Avid editing workstations to share a network drive. |
| netatalk | Ease the co-existence of SMB and AFP shares. |
| noacl | Disable NT ACL support. If an extended ACL is present in the share connection path, all access to this share will be denied. When the Read-only attribute (https://www.oreilly.com/openbook/samba/book/ch05_03.html) is set, all write bits are removed. Disabling the Read-only attribute adds the write bits back to the share, up to create mask (umask). Adding noacl requires adding the <code>zfsacl</code> object. noacl is incompatible with the ixnas VFS object. |</p>
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>offline</td>
<td>Mark all files in the share with the DOS offline attribute. This can prevent Windows Explorer from reading files just to make thumbnail images.</td>
</tr>
<tr>
<td>posix_eadb</td>
<td>Provide Extended Attributes (EAs) support so they can be used on filesystems which do not provide native support for EAs.</td>
</tr>
<tr>
<td>preopen</td>
<td>Useful for video streaming applications that want to read one file per frame.</td>
</tr>
<tr>
<td>readahead</td>
<td>Useful for Windows Vista clients reading data using Windows Explorer.</td>
</tr>
<tr>
<td>readonly</td>
<td>Mark a share as read-only for all clients connecting within the configured time period.</td>
</tr>
<tr>
<td>shadow_copy</td>
<td>Allow Microsoft shadow copy clients to browse shadow copies on Windows shares.</td>
</tr>
<tr>
<td>shadow_copy_zfs</td>
<td>Allow Microsoft shadow copy clients to browse shadow copies on Windows shares. This object uses ZFS snapshots (page 336) of the shared pool or dataset to create the shadow copies.</td>
</tr>
<tr>
<td>shell_snap</td>
<td>Provide shell-script callouts for snapshot creation and deletion operations issued by remote clients using the File Server Remote VSS Protocol (FSRVP).</td>
</tr>
<tr>
<td>streams_Depot</td>
<td>Experimental module to store alternate data streams in a central directory. The association with the primary file can be lost due to inode numbers changing when a directory is copied to a new location. See https://marc.info/?l=samba&m=132542069802160&w=2.</td>
</tr>
<tr>
<td>streams_xattr</td>
<td>Enable storing NTFS alternate data streams in the file system. Enabled by default.</td>
</tr>
<tr>
<td>syncops</td>
<td>Ensure metadata operations are performed synchronously.</td>
</tr>
<tr>
<td>time_audit</td>
<td>Log system calls that take longer than the defined number of milliseconds.</td>
</tr>
<tr>
<td>unityed_media</td>
<td>Allow multiple Avid clients to share a network drive.</td>
</tr>
<tr>
<td>virusfilter</td>
<td>This extremely experimental module is still under development and does not work at this time.</td>
</tr>
<tr>
<td>winmsa</td>
<td>Emulate the Microsoft MoveSecurityAttributes=0 registry option. Moving files or directories sets the ACL for file and directory hierarchies to inherit from the destination directory.</td>
</tr>
<tr>
<td>worm</td>
<td>Control the writability of files and folders depending on their change time and an adjustable grace period.</td>
</tr>
<tr>
<td>xattr_tdb</td>
<td>Store Extended Attributes (EAs) in a tdb file so they can be used on filesystems which do not provide support for EAs.</td>
</tr>
<tr>
<td>zfs_space</td>
<td>Correctly calculate ZFS space used by the share, including space used by ZFS snapshots, quotas, and reservations. Enabled by default.</td>
</tr>
<tr>
<td>zfsacl</td>
<td>Provide ACL extensions for proper integration with ZFS. Enabled by default.</td>
</tr>
</tbody>
</table>
Warning: Be careful when using multiple SMB shares, some with and some without fruit. macOS clients negotiate SMB2 AAPL protocol extensions on the first connection to the server, so mixing shares with and without fruit will globally disable AAPL if the first connection occurs without fruit. To resolve this, all macOS clients need to disconnect from all SMB shares and the first reconnection to the server has to be to a fruit-enabled share.

These VFS objects do not appear in the selection box:

- **recycle**: moves deleted files to the recycle directory instead of deleting them. Controlled by `Export Recycle Bin` in the *SMB share options* (page 204).
- **shadow_copy2**: a more recent implementation of `shadow_copy` with some additional features. `shadow_copy2` and the associated parameters are automatically added to the `smb4.conf` when a *Periodic Snapshot Task* is selected.

To view all active SMB connections and users, enter `smbstatus` in the *Shell* (page 304).

10.4.1 Configuring Unauthenticated Access

SMB supports guest logins, meaning that users can access the SMB share without needing to provide a username or password. This type of share is convenient as it is easy to configure, easy to access, and does not require any users to be configured on the FreeNAS® system. This type of configuration is also the least secure as anyone on the network can access the contents of the share. Additionally, since all access is as the guest user, even if the user inputs a username or password, there is no way to differentiate which users accessed or modified the data on the share. This type of configuration is best suited for small networks where quick and easy access to the share is more important than the security of the data on the share.

Note: Windows 10, Windows Server 2016 version 1709, and Windows Server 2019 disable SMB2 guest access. Read the Microsoft security notice (https://support.microsoft.com/en-hk/help/4046019/guest-access-in-smb2-disabled-by-default-in-windows-10-and-windows-ser) for details about security vulnerabilities with SMB2 guest access and instructions to re-enable guest logins on these Microsoft systems.

To configure an unauthenticated SMB share, click *Wizard*, then click the *Next* button three times to display the screen shown in Figure 10.10. Complete the following fields in this screen:

1. **Share name**: enter a name for the share that is useful. In this example, the share is named `smb_insecure`.
2. Click the button for *Windows (SMB)* and enable the *Allow Guest* option.
3. Click the *Ownership* button. Click the drop-down *User* menu and select `nobody`. Click the *Return* button to return to the previous screen.
4. Click the *Add* button. **If this step is forgotten, the share will not be created.** Clicking the *Add* button adds an entry to the *Name* frame with the name that was entered in *Share name*.
Fig. 10.10: Creating an Unauthenticated SMB Share

Click the Next button twice, then the Confirm button to create the share. The Wizard automatically creates a dataset for the share and starts the SMB service so the share is immediately available. The new share will appear in Sharing → Windows (SMB).

Users can now access the share from any SMB client and will not be prompted for their username or password. For example, to access the share from a Windows system, open Explorer and click on Network. For this configuration example, a system named FREENAS appears with a share named insecure_smb. The user can copy data to and from the unauthenticated SMB share.

10.4.2 Configuring Authenticated Access With Local Users

Most configuration scenarios require each user to have their own user account and to authenticate before accessing the share. This allows the administrator to control access to data, provide appropriate permissions to that data, and to determine who accesses and modifies stored data. A Windows domain controller is not needed for authenticated SMB shares, which means that additional licensing costs are not required. However, because there is no domain controller to provide authentication for the network, each user account must be created on the FreeNAS® system. This type of configuration scenario is often used in home and small networks as it does not scale well if many user accounts are needed.

Before configuring this scenario, determine which users need authenticated access. While not required for the configuration, it eases troubleshooting if the username and password that will be created on the FreeNAS® system matches that information on the client system. Next, determine if each user should have their own share to store their own data or if several users will be using the same share. The simpler configuration is to make one share per user as it does not require the creation of groups, adding the correct users to the groups, and ensuring that group
permissions are set correctly.

To use the Wizard to create an authenticated SMB share, enter the following information, as shown in the example in Figure 10.11.

1. **Share name**: enter a name for the share that is useful. In this example, the share is named *smb_user1*.

2. Click the button for **Windows (SMB)**.

3. Click the **Ownership** button. To create the user account on the FreeNAS® system, type their name into the **User** field and enable the **Create User** option. The user's password is then entered and confirmed. **If the user will not be sharing this share with other users**, type their name into the **Group** field and click **Create Group**. **If, however, the share will be used by several users**, instead type in a group name and enable the **Create Group** option. In the example shown in Figure 10.12, *user1* has been used for both the user and group name, meaning that this share will only be used by *user1*. When finished, click **Return** to return to the screen shown in Figure 10.11.

4. Click the **Add** button. **If this step is forgotten, the share will not be created**. Clicking the **Add** button adds an entry to the **Name** frame with the name that was entered in **Share name**.

When configuring multiple authenticated shares, repeat for each user, giving each user their own **Share name** and **Ownership**. When finished, click **Next** twice, then **Confirm** to create the shares. The Wizard automatically creates a dataset with the correct ownership for each share and starts the SMB service so the shares are available immediately. The new shares are also added to **Sharing → Windows (SMB)**.

![Wizard](image)

Fig. 10.11: Creating an Authenticated SMB Share
The authenticated share can now be tested from any SMB client. For example, to test an authenticated share from a Windows system with network discovery enabled, open Explorer and click on Network. If network discovery is disabled, open Explorer and enter `\HOST` in the address bar, where `HOST` is the IP address or hostname of the share system. This example shows a system named `FREENAS` with a share named `smb_user1`.

After clicking `smb_user1`, a Windows Security dialog prompts for the username and password of the user associated with `smb_user1`. After authenticating, the user can copy data to and from the SMB share.

Map the share as a network drive to prevent Windows Explorer from hanging when accessing the share. Right-click the share and select `Map network drive...`. Choose a drive letter from the drop-down menu and click `Finish`.

Windows caches user account credentials with the authenticated share. This sometimes prevents connection to a share, even when the correct username and password are provided. Logging out of Windows clears the cache. The authentication dialog reappears the next time the user connects to an authenticated share.

10.4.3 User Quota Administration

File Explorer can manage quotas on SMB shares connected to an Active Directory (page 178) server. Both the share and dataset being shared must be configured to allow this feature:

- Create an authenticated share with `domain admins` as both the user and group name in Ownership.
- Edit the SMB share and add `ixnas` to the list of selected VFS Object (page 206).
- In Windows Explorer, connect to and map the share with a user account which is a member of the domain `admins` group. The Quotas tab becomes active.

10.4.4 Configuring Shadow Copies

Shadow Copies (https://en.wikipedia.org/wiki/Shadow_copy), also known as the Volume Shadow Copy Service (VSS) or Previous Versions, is a Microsoft service for creating volume snapshots. Shadow copies can be used to restore previous versions of files from within Windows Explorer. Shadow Copy support is built into Vista and Windows 7. Windows XP or 2000 users need to install the Shadow Copy client (http://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=16220).

When a periodic snapshot task is created on a ZFS volume that is configured as a SMB share in FreeNAS®, it is automatically configured to support shadow copies.

Before using shadow copies with FreeNAS®, be aware of the following caveats:
• If the Windows system is not fully patched to the latest service pack, Shadow Copies may not work. If no previous versions of files to restore are visible, use Windows Update to make sure that the system is fully up-to-date.

• Shadow copy support only works for ZFS pools or datasets. This means that the SMB share must be configured on a volume or dataset, not on a directory.

• Datasets are filesystems and shadow copies cannot traverse filesystems. To see the shadow copies in the child datasets, create separate shares for them.

• Shadow copies will not work with a manual snapshot. Creating a periodic snapshot task for the pool or dataset being shared by SMB or a recursive task for a parent dataset is recommended.

• The periodic snapshot task should be created and at least one snapshot should exist before creating the SMB share. If the SMB share was created first, restart the SMB service in Services → Control Services.

• Appropriate permissions must be configured on the volume/dataset being shared by SMB.

To configure shadow copy support, use the instructions in Configuring Authenticated Access With Local Users (page 210) to create the desired number of shares. In this configuration example, a Windows 7 computer has two users: user1 and user2. For this example, two authenticated shares are created so that each user account has their own share. The first share is named user1 and the second share is named user2. Then:

1. Use Storage → Periodic Snapshot Tasks → Add Periodic Snapshot to create at least one periodic snapshot task. There are two options for snapshot tasks. One is to create a snapshot task for each user’s dataset. In this example the datasets are /mnt/volume1/user1 and /mnt/volume1/user2. Another option is to create one periodic snapshot task for the entire volume, /mnt/volume1 in this case. Before continuing to the next step, confirm that at least one snapshot for each defined task is displayed in the Storage → Snapshots tab. When creating the schedule for the periodic snapshot tasks, keep in mind how often the users need to access modified files and during which days and time of day they are likely to make changes.

2. Go to Sharing → Windows (SMB) Shares. Highlight a share and click Edit, then Advanced Mode. Click the Periodic Snapshot Task drop-down menu and select the periodic snapshot task to use for that share. Repeat for each share being configured as a shadow copy. For this example, the share named /mnt/volume1/user1 dataset and the share named /mnt/volume1/user2 dataset are configured to take snapshots of the /mnt/volume1/user1 and /mnt/volume1/user2 datasets, respectively.

3. Verify that the SMB service is set to ON in Services → Control Services.

Figure 10.13 provides an example of using shadow copies while logged in as user1 on the Windows system. In this example, the user right-clicked modified file and selected Restore previous versions from the menu. This particular file has three versions: the current version, plus two previous versions stored on the FreeNAS® system. The user can choose to open one of the previous versions, copy a previous version to the current folder, or restore one of the previous versions, overwriting the existing file on the Windows system.
10.5 Block (iSCSI)

iSCSI is a protocol standard for the consolidation of storage data. iSCSI allows FreeNAS® to act like a storage area network (SAN) over an existing Ethernet network. Specifically, it exports disk devices over an Ethernet network that iSCSI clients (called initiators) can attach to and mount. Traditional SANs operate over fibre channel networks which require a fibre channel infrastructure such as fibre channel HBAs, fibre channel switches, and discrete cabling. iSCSI can be used over an existing Ethernet network, although dedicated networks can be built for iSCSI traffic in an effort to boost performance. iSCSI also provides an advantage in an environment that uses Windows shell programs; these programs tend to filter “Network Location” but iSCSI mounts are not filtered.

Before configuring the iSCSI service, be familiar with this iSCSI terminology:

CHAP: an authentication method which uses a shared secret and three-way authentication to determine if a system is authorized to access the storage device and to periodically confirm that the session has not been hijacked by another system. In iSCSI, the initiator (client) performs the CHAP authentication.

Mutual CHAP: a superset of CHAP in that both ends of the communication authenticate to each other.
Initiator: a client which has authorized access to the storage data on the FreeNAS® system. The client requires initiator software to initiate the connection to the iSCSI share.

Target: a storage resource on the FreeNAS® system. Every target has a unique name known as an iSCSI Qualified Name (IQN).

Internet Storage Name Service (iSNS): protocol for the automated discovery of iSCSI devices on a TCP/IP network.

Extent: the storage unit to be shared. It can either be a file or a device.

Portal: indicates which IP addresses and ports to listen on for connection requests.

LUN: Logical Unit Number representing a logical SCSI device. An initiator negotiates with a target to establish connectivity to a LUN. The result is an iSCSI connection that emulates a connection to a SCSI hard disk. Initiators treat iSCSI LUNs as if they were a raw SCSI or SATA hard drive. Rather than mounting remote directories, initiators format and directly manage filesystems on iSCSI LUNs. When configuring multiple iSCSI LUNs, create a new target for each LUN. Since iSCSI multiplexes a target with multiple LUNs over the same TCP connection, there can be TCP contention when more than one target accesses the same LUN. FreeNAS® supports up to 1024 LUNs.

In FreeNAS®, iSCSI is built into the kernel. This version of iSCSI supports Microsoft Offloaded Data Transfer (ODX) (https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/hh831628(v=ws.11)), meaning that file copies happen locally, rather than over the network. It also supports the VAAI (page 341) (vStorage APIs for Array Integration) primitives for efficient operation of storage tasks directly on the NAS. To take advantage of the VAAI primitives, create a zvol using the instructions in Create zvol (page 143) and use it to create a device extent, as described in Extents (page 222).

To configure iSCSI:

1. Review the target global configuration parameters.
2. Create at least one portal.
3. Determine which hosts are allowed to connect using iSCSI and create an initiator.
4. Decide if authentication will be used, and if so, whether it will be CHAP or mutual CHAP. If using authentication, create an authorized access.
5. Create a target.
6. Create either a device or a file extent to be used as storage.
7. Associate a target with an extent.
8. Start the iSCSI service in Services → Control Services.

The rest of this section describes these steps in more detail.

10.5.1 Target Global Configuration

Sharing → Block (iSCSI) → Target Global Configuration, shown in Figure 10.14, contains settings that apply to all iSCSI shares. Table 10.6 summarizes the settings that are configured in the Target Global Configuration screen.

Some built-in values affect iSNS usage. Fetching of allowed initiators from iSNS is not implemented, so target ACLs must be configured manually. To make iSNS registration useful, iSCSI targets should have explicitly configured port IP addresses. This avoids initiators attempting to discover unconfigured target portal addresses like 0.0.0.0.

The iSNS registration period is 900 seconds. Registered Network Entities not updated during this period are unregistered. The timeout for iSNS requests is 5 seconds.
10.5.2 Portals

A portal specifies the IP address and port number to be used for iSCSI connections. Sharing → Block (iSCSI) → Portals → Add Portal brings up the screen shown in Figure 10.15.

Table 10.15 summarizes the settings that can be configured when adding a portal. To assign additional IP addresses to the portal, click the link Add extra Portal IP.
Table 10.7: Portal Configuration Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment</td>
<td>string</td>
<td>Optional description. Portals are automatically assigned a numeric group ID.</td>
</tr>
<tr>
<td>Discovery Auth Method</td>
<td>drop-down menu</td>
<td>ISCSI (page 244) supports multiple authentication methods that are used by the target to discover valid devices. None allows anonymous discovery while CHAP and Mutual CHAP both require authentication.</td>
</tr>
<tr>
<td>Discovery Auth Group</td>
<td>drop-down menu</td>
<td>Select a user created in Authorized Access if the Discovery Auth Method is set to CHAP or Mutual CHAP.</td>
</tr>
<tr>
<td>IP address</td>
<td>drop-down menu</td>
<td>Select the IPv4 or IPv6 address associated with an interface or the wildcard address of 0.0.0.0 (any interface).</td>
</tr>
<tr>
<td>Port</td>
<td>integer</td>
<td>TCP port used to access the iSCSI target. Default is 3260.</td>
</tr>
</tbody>
</table>

FreeNAS® systems with multiple IP addresses or interfaces can use a portal to provide services on different interfaces or subnets. This can be used to configure multi-path I/O (MPIO). MPIO is more efficient than a link aggregation. If the FreeNAS® system has multiple configured interfaces, portals can also be used to provide network access.
control. For example, consider a system with four interfaces configured with these addresses:

192.168.1.1/24
192.168.2.1/24
192.168.3.1/24
192.168.4.1/24

A portal containing the first two IP addresses (group ID 1) and a portal containing the remaining two IP addresses (group ID 2) could be created. Then, a target named A with a Portal Group ID of 1 and a second target named B with a Portal Group ID of 2 could be created. In this scenario, the iSCSI service would listen on all four interfaces, but connections to target A would be limited to the first two networks and connections to target B would be limited to the last two networks.

Another scenario would be to create a portal which includes every IP address except for the one used by a management interface. This would prevent iSCSI connections to the management interface.

10.5.3 Initiators

The next step is to configure authorized initiators, or the systems which are allowed to connect to the iSCSI targets on the FreeNAS® system. To configure which systems can connect, use **Sharing → Block (iSCSI) → Initiators → Add Initiator**, shown in Figure 10.16.

![Add Initiator](image)

Fig. 10.16: Adding an iSCSI Initiator

Table 10.8 summarizes the settings that can be configured when adding an initiator.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiators</td>
<td>string</td>
<td>Use ALL keyword or a list of initiator hostnames separated by spaces.</td>
</tr>
<tr>
<td>Authorized network</td>
<td>string</td>
<td>Network addresses that can use this initiator. Use ALL or list network addresses with a CIDR (https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing) mask. Separate multiple addresses with a space: 192.168.2.0/24 192.168.2.1/12.</td>
</tr>
<tr>
<td>Comment</td>
<td>string</td>
<td>Notes or a description of the initiator.</td>
</tr>
</tbody>
</table>

In the example shown in Figure 10.17, two groups are created. Group 1 allows connections from any initiator on any network. Group 2 allows connections from any initiator on the 10.10.1.0/24 network. Click an initiator's entry to display its **Edit** and **Delete** buttons.
Note: Attempting to delete an initiator causes a warning that indicates if any targets or target/extent mappings depend upon the initiator. Confirming the delete causes these to be deleted also.

![Sample iSCSI Initiator Configuration](image)

10.5.4 Authorized Accesses

When using CHAP or mutual CHAP to provide authentication, creating an authorized access in **Sharing → Block (iSCSI) → Authorized Accesses → Add Authorized Access** is recommended. This screen is shown in [Figure 10.18](image).

Note: This screen sets login authentication. This is different from discovery authentication which is set in **Target Global Configuration** (page 215).
Table 10.9 summarizes the settings that can be configured when adding an authorized access:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group ID</td>
<td>integer</td>
<td>Allow different groups to be configured with different authentication profiles. Example: enter 1 for all users in Group 1 to inherit the Group 1 authentication profile. Group IDs that are already configured with authorized access cannot be reused.</td>
</tr>
<tr>
<td>User</td>
<td>string</td>
<td>Enter name of user account to create for CHAP authentication with the user on the remote system. Many initiators default to using the initiator name as the user.</td>
</tr>
<tr>
<td>Secret</td>
<td>string</td>
<td>Enter and confirm a password for User. Must be between 12 and 16 characters.</td>
</tr>
<tr>
<td>Peer User</td>
<td>string</td>
<td>Only input when configuring mutual CHAP. In most cases it will need to be the same value as User.</td>
</tr>
<tr>
<td>Peer Secret</td>
<td>string</td>
<td>Enter and confirm the mutual secret password which must be different than the Secret. Required if Peer User is set.</td>
</tr>
</tbody>
</table>

Note: CHAP does not work with GlobalSAN initiators on macOS.

As authorized accesses are added, they will be listed under View Authorized Accesses. In the example shown in Figure 10.19, three users (test1, test2, and test3) and two groups (1 and 2) are created, with group 1 consisting of one CHAP user and group 2 consisting of one mutual CHAP user and one CHAP user. Click an authorized access entry to display its Edit and Delete buttons.
10.5.5 Targets

Next, create a Target using `Sharing → Block (iSCSI) → Targets → Add Target`, as shown in Figure 10.20. A target combines a portal ID, allowed initiator ID, and an authentication method. Table 10.10 summarizes the settings that can be configured when creating a Target.

Note: An iSCSI target creates a block device that may be accessible to multiple initiators. A clustered filesystem is required on the block device, such as VMFS used by VMware ESX/ESXi, in order for multiple initiators to mount the block device read/write. If a traditional filesystem such as EXT, XFS, FAT, NTFS, UFS, or ZFS is placed on the block device, care must be taken that only one initiator at a time has read/write access or the result will be filesystem corruption. If multiple clients need access to the same data on a non-clustered filesystem, use SMB or NFS instead of iSCSI, or create multiple iSCSI targets (one per client).
Fig. 10.20: Adding an iSCSI Target

Table 10.10: Target Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Name</td>
<td>string</td>
<td>Required. The base name is automatically prepended if the target name does not start with <code>iqn</code>. Lowercase alphanumeric characters plus dot (.), dash (-), and colon (:) are allowed. See the “Constructing iSCSI names using the iqn. format” section of RFC 3721 (https://tools.ietf.org/html/rfc3721.html).</td>
</tr>
<tr>
<td>Target Alias</td>
<td>string</td>
<td>Enter an optional user-friendly name.</td>
</tr>
<tr>
<td>Portal Group ID</td>
<td>drop-down</td>
<td>Leave empty or select number of existing portal to use.</td>
</tr>
<tr>
<td>Initiator Group ID</td>
<td>drop-down</td>
<td>Select which existing initiator group has access to the target.</td>
</tr>
<tr>
<td>Auth Method</td>
<td>drop-down</td>
<td>Choices are: None, Auto, CHAP, or Mutual CHAP.</td>
</tr>
<tr>
<td>Authentication Group number</td>
<td>drop-down</td>
<td>Select None or an integer. This number represents the number of existing authorized accesses.</td>
</tr>
</tbody>
</table>

10.5.6 Extents

iSCSI targets provide virtual access to resources on the FreeNAS® system. Extents are used to define resources to share with clients. There are two types of extents: *device* and *file*.

Device extents provide virtual storage access to zvols, zvol snapshots, or physical devices like a disk, an SSD, a hardware RAID volume, or a HAST device (https://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/disks-
File extents provide virtual storage access to an individual file.

Tip: For typical use as storage for virtual machines where the virtualization software is the iSCSI initiator, device extents with zvols provide the best performance and most features. For other applications, device extents sharing a raw device can be appropriate. File extents do not have the performance or features of device extents, but do allow creating multiple extents on a single filesystem.

Virtualized zvols support all the FreeNAS® VAAI (page 341) primitives and are recommended for use with virtualization software as the iSCSI initiator.

The ATS, WRITE SAME, XCOPY and STUN, primitives are supported by both file and device extents. The UNMAP primitive is supported by zvols and raw SSDs. The threshold warnings primitive is fully supported by zvols and partially supported by file extents.

Virtualizing a raw device like a single disk or hardware RAID volume limits performance to the abilities of the device. Because this bypasses ZFS, such devices do not benefit from ZFS caching or provide features like block checksums or snapshots.

Virtualizing a zvol adds the benefits of ZFS, such as read and write cache. Even if the client formats a device extent with a different filesystem, the data still resides on a ZFS volume and benefits from ZFS features like block checksums and snapshots.

Warning: For performance reasons and to avoid excessive fragmentation, keep the used space of the pool below 80% when using iSCSI. The capacity of an existing extent can be increased as shown in Growing LUNs (page 227).

To add an extent, go to Sharing → Block (iSCSI) → Extents → Add Extent. In the example shown in Figure 10.21, the device extent is using the export zvol that was previously created from the /mnt/volume1 volume.

Table 10.11 summarizes the settings that can be configured when creating an extent. Note that file extent creation fails when the name of the file to be created to the volume/dataset name is not appended.
Table 10.11: Extent Configuration Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extent Name</td>
<td>string</td>
<td>Enter the extent name. If the Extent size is not 0, it cannot be an existing file within the volume/dataset.</td>
</tr>
<tr>
<td>Extent Type</td>
<td>drop-down menu</td>
<td>Select from File or Device.</td>
</tr>
<tr>
<td>Device</td>
<td>drop-down menu</td>
<td>Only appears if Device is selected. Select the unformatted disk, controller, zvol, zvol snapshot, or HAST device.</td>
</tr>
<tr>
<td>Serial</td>
<td>string</td>
<td>Unique LUN ID. The default is generated from the system MAC address.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 10.11 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path to the extent</td>
<td>browse button</td>
<td>Only appears if File is selected. Browse to an existing file and use 0 as the Extent size, or browse to the volume or dataset, click Close, append the Extent Name to the path, and specify a value in Extent size. Extents cannot be created inside the jail root directory.</td>
</tr>
<tr>
<td>Extent size</td>
<td>integer</td>
<td>Only appears if File is selected. If the size is specified as 0, the file must already exist and the actual file size will be used. Otherwise, specify the size of the file to create.</td>
</tr>
<tr>
<td>Logical Block Size</td>
<td>drop-down menu</td>
<td>Leave at the default of 512 unless the initiator requires a different block size.</td>
</tr>
<tr>
<td>Disable Physical Block Size Reporting</td>
<td>checkbox</td>
<td>Set if the initiator does not support physical block size values over 4K (MS SQL). Setting can also prevent constant block size warnings (https://www.virten.net/2016/12/the-physical-block-size-reported-by-the-device-is-not-supported/) when using this share with ESXi.</td>
</tr>
<tr>
<td>Available Space Threshold</td>
<td>string</td>
<td>Only appears if File or a zvol is selected. When the specified percentage of free space is reached, the system issues an alert. See VAAI (page 341) Threshold Warning for more information.</td>
</tr>
<tr>
<td>Comment</td>
<td>string</td>
<td>Enter an optional comment.</td>
</tr>
<tr>
<td>Enable TPC</td>
<td>checkbox</td>
<td>If enabled, an initiator can bypass normal access control and access any scannable target. This allows xcopy operations otherwise blocked by access control.</td>
</tr>
<tr>
<td>Xen initiator compat mode</td>
<td>checkbox</td>
<td>Set this option when using Xen as the iSCSI initiator.</td>
</tr>
<tr>
<td>LUN RPM</td>
<td>drop-down menu</td>
<td>Do NOT change this setting when using Windows as the initiator. Only needs to be changed in large environments where the number of systems using a specific RPM is needed for accurate reporting statistics.</td>
</tr>
<tr>
<td>Read-only</td>
<td>checkbox</td>
<td>Set to prevent the initiator from initializing this LUN.</td>
</tr>
</tbody>
</table>

10.5.7 Target/Extents

The last step is associating an extent to a target within Sharing → Block (iSCSI) → Associated Targets → Add Target/Extent. This screen is shown in Figure 10.22. Use the drop-down menus to select the existing target and extent. Click OK to add an entry for the LUN.

![Add Target / Extent](image)

Fig. 10.22: Associating a Target With an Extent
Table 10.12 summarizes the settings that can be configured when associating targets and extents.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>drop-down menu</td>
<td>Select an existing target.</td>
</tr>
<tr>
<td>LUN ID</td>
<td>integer</td>
<td>Select or enter a value between 0 and 1023. Some initiators expect a value less than 256. Use unique LUN IDs for each associated target.</td>
</tr>
<tr>
<td>Extent</td>
<td>drop-down menu</td>
<td>Select an existing extent.</td>
</tr>
</tbody>
</table>

Always associating extents to targets in a one-to-one manner is recommended, even though the GUI will allow multiple extents to be associated with the same target.

Note: Each LUN entry has Edit and Delete buttons for modifying the settings or deleting the LUN entirely. A verification popup appears when the Delete button is clicked. If an initiator has an active connection to the LUN, it is indicated in red text. Clearing initiator connections to a LUN before deleting it is recommended.

After iSCSI has been configured, remember to start it in Services → Control Services. Click the red OFF button next to iSCSI. After a second or so, it will change to a blue ON, indicating that the service has started.

10.5.8 Connecting to iSCSI

To access the iSCSI target, clients must use iSCSI initiator software.

macOS does not include an initiator. globalSAN (http://www.studionetworksolutions.com/globalsan-iscsi-initiator/) is a commercial, easy-to-use Mac initiator.

Some Linux distros provide the command line utility iscsiadm from Open-iSCSI (http://www.open-iscsi.com/). Use a web search to see if a package exists for the distribution should the command not exist on the Linux system.

If a LUN is added while iscsiadm is already connected, it will not see the new LUN until rescanned with iscsiadm -m node -R. Alternately, use iscsiadm -m discovery -t st -p portal_IP to find the new LUN and iscsiadm -m node -T LUN_Name -l to log into the LUN.

Instructions for connecting from a VMware ESXi Server can be found at How to configure FreeNAS 8 for iSCSI and connect to ESXi (https://www.vladan.fr/how-to-configure-freenas-8-for-iscsi-and-connect-to-esxi/). Note that the requirements for booting vSphere 4.x off iSCSI differ between ESX and ESXi. ESX requires a hardware iSCSI adapter while ESXi requires specific iSCSI boot firmware support. The magic is on the booting host side, meaning that there is no difference to the FreeNAS® configuration. See the iSCSI SAN Configuration Guide (https://www.vmware.com/pdf/vsphere4/rr41/vsp_41_iscsi_san_cfg.pdf) for details.

The VMware firewall only allows iSCSI connections on port 3260 by default. If a different port has been selected, outgoing connections to that port must be manually added to the firewall before those connections will work.

If the target can be seen but does not connect, check the Discovery Auth settings in Target Global Configuration.

If the LUN is not discovered by ESXi, make sure that promiscuous mode is set to Accept in the vSwitch.
10.5.9 Growing LUNs

The method used to grow the size of an existing iSCSI LUN depends on whether the LUN is backed by a file extent or a zvol. Both methods are described in this section.

Enlarging a LUN with one of the methods below gives it more unallocated space, but does not automatically resize filesystems or other data on the LUN. This is the same as binary-copying a smaller disk onto a larger one. More space is available on the new disk, but the partitions and filesystems on it must be expanded to use this new space. Resizing virtual disk images is usually done from virtual machine management software. Application software to resize filesystems is dependent on the type of filesystem and client, but is often run from within the virtual machine. For instance, consider a Windows VM with the last partition on the disk holding an NTFS filesystem. The LUN is expanded and the partition table edited to add the new space to the last partition. The Windows disk manager must still be used to resize the NTFS filesystem on that last partition to use the new space.

10.5.9.1 Zvol Based LUN

To grow a zvol based LUN, go to Storage → Volumes → View Volumes, highlight the zvol to be grown, and click Edit zvol. In the example shown in Figure 10.23, the current size of the zvol named zvol1 is 10 GiB.

![Edit zvol](image)

Fig. 10.23: Editing an Existing Zvol

Enter the new size for the zvol in the Size field and click Edit ZFS Volume. This menu closes and the new size for the zvol is immediately shown in the Used column of the View Volumes screen.

Note: The web interface does not allow reducing (shrinking) the size of the zvol, as doing so could result in loss of data. It also does not allow increasing the size of the zvol past 80% of the volume size.

10.5.9.2 File Extent Based LUN

To grow a file extent based LUN, go to Services → iSCSI → File Extents → View File Extents to determine the path of the file extent to grow. Open Shell to grow the extent. This example grows /mnt/volume1/data by 2 G:

```bash
/mnt/volume1/data
```
Go back to Services → iSCSI → File Extents → View File Extents and click the Edit button for the file extent. Set the size to 0 as this causes the iSCSI target to use the new size of the file.

10.6 Creating Authenticated and Time Machine Shares

macOS includes the Time Machine feature which performs automatic back ups. FreeNAS® supports Time Machine backups for both SMB (page 203) and AFP (page 191) shares. This section has instructions to create Time Machine SMB and AFP shares, using the Wizard to create an AFP Time Machine share. The process for creating an authenticated share for a user is the same as creating a Time Machine share for that user.

10.6.1 Manual Creation of Authenticated or Time Machine Shares

Create Time Machine and authenticated shares on a new dataset (page 140).

Change permissions on the new dataset by going to Storage → Volumes. Select the dataset and click Change Permissions. Enter these settings:

1. Permission Type: Select Mac.
2. Owner (user): Use the drop-down to select the desired user account. If the user does not yet exist on the FreeNAS® system, create one with Account → Users. See users (page 64) for more information.
3. Owner (group): Select the desired group name. If the group does not yet exist on the FreeNAS® system, create one with Account → Groups. See groups (page 61) for more information.
4. Click Change.

Create the authenticated or Time Machine share:

1. Go to Sharing → Windows (SMB) or Sharing → Apple (AFP) and click Add Share. Apple deprecated the AFP protocol (https://support.apple.com/en-us/HT207828) and recommends using SMB.
2. Browse to the dataset created for the share.
3. When creating a Time Machine share, set the Time Machine option.
4. Fill out the other required fields.
5. Click OK.

10.6.2 Create AFP Time Machine Share with the Wizard

To use the Wizard to create an AFP authenticated or Time Machine share, enter the following information, as seen in the example in Figure 10.24.

1. Share name: enter a name for the share that is identifiable but less than 27 characters long. The name cannot contain a period. In this example, the share is named backup_user1.
2. Click the button for Mac OS X (AFP) and enable the Time Machine option.
3. Click the Ownership button. If the user already exists on the FreeNAS® system, click the drop-down User menu to select their user account. If the user does not yet exist on the FreeNAS® system, type their name into the User field and enable the Create User option. If the user is a member of a group that already exists on the FreeNAS® system, click the drop-down Group menu to select the group name. To create a new group to be used by Time Machine users, enter the name in the Group field and set the Create Group option. Otherwise, enter the same name as the user. In the example shown in Figure 10.25, both a new user1 user and a new tm_backups group are created. Since a new user is being created, this screen prompts for the user password to be used when accessing the share. It also provides an opportunity to change the default permissions on the share. When finished, click Return to return to the screen shown in Figure 10.24.
4. Click the Add button.

When creating multiple authenticated or Time Machine shares, repeat this process for each user. Give each user their own Share name and Ownership. When finished, click the Next button twice, then the Confirm button to create the shares. The Wizard creates a dataset for each share with the correct ownership and starts the AFP service so the shares are immediately available. The new shares appear in Sharing → Apple (AFP).

![Figure 10.24: Creating a Time Machine Share](image)

Fig. 10.24: Creating a Time Machine Share
10.6.3 Configuring Time Machine Backups

Configuring a quota for each Time Machine share helps prevent backups from using all available space on the FreeNAS® system. Time Machine creates ongoing hourly, daily, weekly, and monthly backups. The oldest backups are deleted when a Time Machine share fills up, so make sure that the quota size is large enough to hold the desired number of backups. Note that a default installation of macOS is over 20 GiB.

To configure a quota, go to Storage → Volumes and select the share dataset. In the example shown in Figure 10.26, the Time Machine share name is backup_user1. Click the Edit Options button for the share, then Advanced Mode. Enter a value in the Quota for this dataset field, then click Edit Dataset to save the change. In this example, the Time Machine share is restricted to 200 GiB.
Note: The example shown here is intended to show the general process of adding a FreeNAS® share in Time Machine. The example might not reflect the exact process to configure Time Machine on a specific version of macOS. See the Apple documentation (https://support.apple.com/en-us/HT201250) for detailed Time Machine configuration instructions.

To configure Time Machine on the macOS client, go to System Preferences → Time Machine, and click ON in the left panel.
Click **Select Disk...** in the right panel to find the FreeNAS® system with the share. Highlight the share and click **Use Backup Disk.** A connection dialog prompts to log in to the FreeNAS® system.

If Time Machine could not complete the backup. The backup disk image could not be created (error 45) is shown when backing up to the FreeNAS® system, a sparsebundle image must be created using these instructions (https://community.netgear.com/t5/Stora-Legacy/Solution-to-quot-Time-Machine-could-not-complete-the-backup/td-p/294697).

If Time Machine completed a verification of your backups. To improve reliability, Time Machine must create a new backup for you. is shown, follow the instructions in this post (http://www.garth.org/archives/2011,08,27,169,fix-time-machine-sparsebundle-nas-based-backup-errors.html) to avoid making another backup or losing past backups.
Services that ship with FreeNAS® are configured, started, or stopped in Services. FreeNAS® includes these built-in services:

- **AFP** (page 235)
- **Domain Controller** (page 236)
- **Dynamic DNS** (page 238)
- **FTP** (page 239)
- **iSCSI** (page 244)
- **LLDP** (page 245)
- **Netdata** (page 245)
- **NFS** (page 247)
- **Rsync** (page 248)
- **S3** (page 250)
- **S.M.A.R.T.** (page 252)
- **SMB** (page 253)
- **SNMP** (page 257)
- **SSH** (page 259)
- **TFTP** (page 261)
- **UPS** (page 263)
- **WebDAV** (page 266)

This section demonstrates starting a FreeNAS® service and the available configuration options for each FreeNAS® service.

11.1 Control Services

Services → Control Services, shown in Figure 11.1, lists all services. It also shows where to start, stop, or configure the available services. The S.M.A.R.T. service is enabled by default, but only runs if the storage devices support S.M.A.R.T. data (https://en.wikipedia.org/wiki/S.M.A.R.T.). Other services default to off until started.
Stopped services show a red stop symbol and a *Start Now* button. Running services show a green light with a *Stop Now* button.

Tip: Using a proxy server can prevent the list of services from being displayed. If a proxy server is used, do not configure it to proxy local network connections or websocket connections. VPN software can also cause problems. If the list of services is displayed when connecting on the local network but not when connecting through the VPN, check the VPN software configuration.

Services are configured by clicking the wrench icon or the name of the service in the *Services* section of the tree menu.
If a service does not start, go to System → Advanced and enable Show console messages in the footer. Console messages appear at the bottom of the browser. Clicking the console message area makes it into a pop-up window, allowing scrolling through or copying the messages. Watch these messages for errors when stopping or starting the problematic service.

To read the system logs for more information about a service failure, open Shell (page 304) and type `more /var/log/messages`.

11.2 AFP

The settings that are configured when creating AFP Shares in Sharing → Apple (AFP) Shares → Add Apple (AFP) Share are specific to each configured AFP Share. In contrast, global settings which apply to all AFP shares are configured in Services → AFP.

Figure 11.2 shows the available global AFP configuration options which are described in Table 11.1.

![Global AFP Configuration](image)

Fig. 11.2: Global AFP Configuration

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guest Access</td>
<td>checkbox</td>
<td>Set to disable the password prompt that appears before clients access AFP shares.</td>
</tr>
<tr>
<td>Guest account</td>
<td>drop-down menu</td>
<td>Select an account to use for guest access. The account must have permissions to the volume or dataset being shared.</td>
</tr>
</tbody>
</table>

Table 11.1: Global AFP Configuration Options
Table 11.1 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Connections</td>
<td>integer</td>
<td>Maximum number of simultaneous connections.</td>
</tr>
<tr>
<td>Database Path</td>
<td>browse button</td>
<td>Sets the database information to be stored in the path. Default is the root of the volume. The path must be writable even if the volume is read only.</td>
</tr>
<tr>
<td>Global auxiliary parameters</td>
<td>string</td>
<td>Add any additional afp.conf(5) parameters not covered elsewhere in this screen.</td>
</tr>
<tr>
<td>Map ACLs</td>
<td>drop-down menu</td>
<td>Choose mapping of effective permissions for authenticated users. Choices are: Rights (default, Unix-style permissions), Mode (ACLs), or None</td>
</tr>
<tr>
<td>Chmod Request</td>
<td>drop-down menu</td>
<td>Sets how Access Control Lists are handled. Ignored: ignores requests and gives the parent directory ACL inheritance full control over new items. Preserve: preserves ZFS Access Control Entries for named users and groups or the POSIX ACL group mask. Simple: is set to chmod() as requested without any extra steps.</td>
</tr>
<tr>
<td>Bind IP Addresses</td>
<td>selection</td>
<td>Specify the IP addresses to listen for FTP connections. Highlight the desired IP addresses in the Available list and use the >> button to add to the Selected list.</td>
</tr>
</tbody>
</table>

11.2.1 Troubleshooting AFP

Check for error messages in /var/log/afp.log.

Determine which users are connected to an AFP share by typing `afpusers`.

If Something wrong with the volume's CNID DB is shown, run this command from `Shell` (page 304), replacing the path to the problematic AFP share:

```
 dbd -rf /path/to/share
```

This command can take some time, depending upon the size of the pool or dataset being shared. The CNID database is wiped and rebuilt from the CNIDs stored in the AppleDouble files.

11.3 Domain Controller

FreeNAS® can be configured to act either as the domain controller for a network or to join an existing Active Directory (page 178) network as a domain controller.

This section demonstrates how to configure the FreeNAS® system to act as a domain controller. If the goal is to integrate with an existing Active Directory (page 178) network to access its authentication and authorization services, configure Active Directory (page 178) instead.

Note: The Domain Controller service cannot be configured when Enable Monitoring is set in Directory Services → Active Directory

Configuring a domain controller is a complex process that requires a good understanding of how Active Directory (page 178) works. While Services → Domain Controller makes it easy to enter the needed settings into the web interface, it is important to understand what those settings should be. Before beginning configuration, read through the Samba AD DC HOWTO (https://wiki.samba.org/index.php/Samba_AD_DC_HOWTO). After FreeNAS® is configured, use the RSAT utility from a Windows system to manage the domain controller. The Samba AD DC HOWTO includes instructions for installing and configuring RSAT.
Figure 11.3 shows the configuration screen for creating a domain controller and Table 11.2 summarizes the available options.

Table 11.2: Domain Controller Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Realm</td>
<td>string</td>
<td>Enter a capitalized DNS realm name.</td>
</tr>
<tr>
<td>Domain</td>
<td>string</td>
<td>Enter a capitalized domain name.</td>
</tr>
<tr>
<td>Server Role</td>
<td>drop-down menu</td>
<td>At this time, the only supported role is as the domain controller for a new domain.</td>
</tr>
<tr>
<td>DNS Forwarder</td>
<td>string</td>
<td>Enter the IP address of the DNS forwarder. Required for recursive queries when SAMBA_INTERNAL is selected.</td>
</tr>
<tr>
<td>Administrator password</td>
<td>string</td>
<td>Enter the password to be used for the ActiveDirectory administrator account.</td>
</tr>
<tr>
<td>Kerberos Realm</td>
<td>drop-down menu</td>
<td>Auto-populates with information from the Realm when the settings in this screen are saved.</td>
</tr>
</tbody>
</table>
11.3.1 Samba Domain Controller Backup

A `samba_backup` script is available to back up Samba4 domain controller settings is available. From the Shell (page 304), run `/usr/local/bin/samba_backup --usage` to show the input options.

11.4 Dynamic DNS

Dynamic DNS (DDNS) is useful if the FreeNAS® system is connected to an ISP that periodically changes the IP address of the system. With dynamic DNS, the system can automatically associate its current IP address with a domain name, allowing access to the FreeNAS® system even if the IP address changes. DDNS requires registration with a DDNS service such as DynDNS (https://dyn.com/dns/).

Figure 11.4 shows the DDNS configuration screen and Table 11.3 summarizes the configuration options. The values for these fields are provided by the DDNS provider. After configuring DDNS, remember to start the DDNS service in Services → Control Services.
<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provider</td>
<td>drop-down menu</td>
<td>Several providers are supported. If a specific provider is not listed, select Custom Provider and enter the information in the Custom Server and Custom Path fields.</td>
</tr>
<tr>
<td>CheckIP Server SSL</td>
<td>string</td>
<td>Set to use HTTPS for the connection to the CheckIP Server.</td>
</tr>
<tr>
<td>CheckIP Server</td>
<td>string</td>
<td>Enter the name and port of the server that reports the external IP address. Example: server.name.org:port.</td>
</tr>
<tr>
<td>CheckIP Path</td>
<td>string</td>
<td>Enter the path that is requested by the CheckIP Server to determine the user IP address.</td>
</tr>
<tr>
<td>Use SSL</td>
<td>checkbox</td>
<td>Set to use HTTPS for the connection to the server that updates the DNS record.</td>
</tr>
<tr>
<td>Domain name</td>
<td>string</td>
<td>Enter a fully qualified domain name. Separate multiple domains with a space, comma (,), or semicolon (;). Example: your-name.dyndns.org;mynname.dyndns.org</td>
</tr>
<tr>
<td>Username</td>
<td>string</td>
<td>Enter the username used to log in to the provider and update the record.</td>
</tr>
<tr>
<td>Password</td>
<td>string</td>
<td>Enter the password used to log in to the provider and update the record.</td>
</tr>
<tr>
<td>Update period</td>
<td>integer</td>
<td>How often the IP is checked in seconds.</td>
</tr>
</tbody>
</table>

When using he.net, enter the domain name for Username and enter the DDNS key generated for that domain's A entry at the he.net (https://he.net) website for Password.

11.5 FTP

FreeNAS® uses the proftpd (http://www.proftpd.org/) FTP server to provide FTP services. Once the FTP service is configured and started, clients can browse and download data using a web browser or FTP client software. The advantage of FTP is that easy-to-use cross-platform utilities are available to manage uploads to and downloads from the FreeNAS® system. The disadvantage of FTP is that it is considered to be an insecure protocol, meaning that it should not be used to transfer sensitive files. If concerned about sensitive data, see Encrypting FTP (page 244).

This section provides an overview of the FTP configuration options. It then provides examples for configuring anonymous FTP, specified user access within a chroot environment, encrypting FTP connections, and troubleshooting tips.

Figure 11.5 shows the configuration screen for Services → FTP. Some settings are only available in Advanced Mode. To see these settings, either click the Advanced Mode button or configure the system to always display these settings by enabling the Show advanced fields by default setting in System → Advanced.
Table 11.4 summarizes the available options when configuring the FTP server.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>integer</td>
<td></td>
<td>Set the port the FTP service listens on.</td>
</tr>
<tr>
<td>Clients</td>
<td>integer</td>
<td></td>
<td>Set the maximum number of simultaneous clients.</td>
</tr>
<tr>
<td>Connections</td>
<td>integer</td>
<td></td>
<td>Set the maximum number of connections per IP address where 0 means unlimited.</td>
</tr>
<tr>
<td>Login Attempts</td>
<td>integer</td>
<td></td>
<td>Enter the maximum number of attempts before client is disconnected. Increase this if users are prone to typos.</td>
</tr>
<tr>
<td>Timeout</td>
<td>integer</td>
<td></td>
<td>Enter the maximum client idle time in seconds before client is disconnected.</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allow Root Login</td>
<td>checkbox</td>
<td></td>
<td>Enabling this option is discouraged as increases security risk.</td>
</tr>
<tr>
<td>Allow Anonymous Login</td>
<td>checkbox</td>
<td></td>
<td>Set to enable anonymous FTP logins with access to the directory specified in Path.</td>
</tr>
<tr>
<td>Path</td>
<td>browse button</td>
<td></td>
<td>Set the root directory for anonymous FTP connections.</td>
</tr>
<tr>
<td>Allow Local User Login</td>
<td>checkbox</td>
<td></td>
<td>Required if Anonymous Login is disabled.</td>
</tr>
<tr>
<td>Display Login</td>
<td>string</td>
<td></td>
<td>Specify if Anonymous Login is disabled.</td>
</tr>
<tr>
<td>File Permission</td>
<td>checkboxes</td>
<td>✓</td>
<td>Set the default permissions for newly created files.</td>
</tr>
<tr>
<td>Directory Permissions</td>
<td>checkboxes</td>
<td>✓</td>
<td>Set the default permissions for newly created directories.</td>
</tr>
<tr>
<td>Enable FXP</td>
<td>checkbox</td>
<td>✓</td>
<td>Set to enable the File eXchange Protocol. This setting makes the server vulnerable to FTP bounce attacks so it is not recommended</td>
</tr>
<tr>
<td>Allow Transfer Resumption</td>
<td>checkbox</td>
<td></td>
<td>Set to allow FTP clients to resume interrupted transfers.</td>
</tr>
<tr>
<td>Always Chroot</td>
<td>checkbox</td>
<td></td>
<td>When set, a local user is only allowed access to their home directory unless the user is a member of group wheel.</td>
</tr>
<tr>
<td>Require IDENT Authentication</td>
<td>checkbox</td>
<td>✓</td>
<td>Setting this option results in timeouts if identd is not running on the client.</td>
</tr>
<tr>
<td>Perform Reverse DNS Lookups</td>
<td>checkbox</td>
<td></td>
<td>Set to perform reverse DNS lookups on client IPs. Can cause long delays if reverse DNS is not configured.</td>
</tr>
<tr>
<td>Masquerade address</td>
<td>string</td>
<td></td>
<td>Public IP address or hostname. Set if FTP clients cannot connect through a NAT device.</td>
</tr>
<tr>
<td>Minimum passive port</td>
<td>integer</td>
<td>✓</td>
<td>Used by clients in PASV mode, default of 0 means any port above 1023.</td>
</tr>
<tr>
<td>Maximum passive port</td>
<td>integer</td>
<td>✓</td>
<td>Used by clients in PASV mode, default of 0 means any port above 1023.</td>
</tr>
<tr>
<td>Local user upload bandwidth</td>
<td>integer</td>
<td>✓</td>
<td>Defined in KiB/s, default of 0 means unlimited.</td>
</tr>
<tr>
<td>Local user download bandwidth</td>
<td>integer</td>
<td>✓</td>
<td>Defined in KiB/s, default of 0 means unlimited.</td>
</tr>
<tr>
<td>Anonymous user upload bandwidth</td>
<td>integer</td>
<td>✓</td>
<td>Defined in KiB/s, default of 0 means unlimited.</td>
</tr>
<tr>
<td>Anonymous user download bandwidth</td>
<td>integer</td>
<td>✓</td>
<td>Defined in KiB/s, default of 0 means unlimited.</td>
</tr>
<tr>
<td>Enable TLS</td>
<td>checkbox</td>
<td>✓</td>
<td>Set to enable encrypted connections. Requires a certificate to be created or imported using Certificates (page 95).</td>
</tr>
<tr>
<td>TLS policy</td>
<td>drop-down menu</td>
<td>✓</td>
<td>The selected policy defines whether the control channel, data channel, both channels, or neither channel of an FTP session must occur over SSL/TLS. The policies are described here (http://www.proftpd.org/docs/directives/linked/config_ref_TLS.html).</td>
</tr>
<tr>
<td>TLS allow client renegotiations</td>
<td>checkbox</td>
<td>✓</td>
<td>Enabling this option is not recommended as it breaks several security measures. For this and the rest of the TLS fields, refer to mod_tls (http://www.proftpd.org/docs/contrib/mod_tls.html) for more details.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 11.4 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLS allow dot login</td>
<td>checkbox</td>
<td>✓</td>
<td>If set, the user home directory is checked for a .tlslogin file which contains one or more PEM-encoded certificates. If not found, the user is prompted for password authentication.</td>
</tr>
<tr>
<td>TLS allow per user</td>
<td>checkbox</td>
<td>✓</td>
<td>If set, the user password can be sent unencrypted.</td>
</tr>
<tr>
<td>TLS common name required</td>
<td>checkbox</td>
<td>✓</td>
<td>Set to require the certificate common name to match the FQDN of the host.</td>
</tr>
<tr>
<td>TLS enable diagnostics</td>
<td>checkbox</td>
<td>✓</td>
<td>If set when troubleshooting a connection, logs more verbosely.</td>
</tr>
<tr>
<td>TLS export certificate data</td>
<td>checkbox</td>
<td>✓</td>
<td>If set, exports the certificate environment variables.</td>
</tr>
<tr>
<td>TLS no certificate request</td>
<td>checkbox</td>
<td>✓</td>
<td>Try enabling this option if the client cannot connect and it is suspected the client software is not properly handling server certificate requests.</td>
</tr>
<tr>
<td>TLS no empty fragments</td>
<td>checkbox</td>
<td>✓</td>
<td>Enabling this is not recommended as it bypasses a security mechanism.</td>
</tr>
<tr>
<td>TLS no session reuse required</td>
<td>checkbox</td>
<td>✓</td>
<td>Enabling this reduces the security of the connection. Only use this if the client does not understand reused SSL sessions.</td>
</tr>
<tr>
<td>TLS export standard vars</td>
<td>checkbox</td>
<td>✓</td>
<td>If enabled, sets several environment variables.</td>
</tr>
<tr>
<td>TLS DNS name required</td>
<td>checkbox</td>
<td>✓</td>
<td>If set, the client DNS name must resolve to its IP address and the cert must contain the same DNS name.</td>
</tr>
<tr>
<td>TLS IP address required</td>
<td>checkbox</td>
<td>✓</td>
<td>If set, the client certificate must contain the IP address that matches the IP address of the client.</td>
</tr>
<tr>
<td>Certificate</td>
<td>drop-down</td>
<td></td>
<td>The SSL certificate to be used for TLS FTP connections. To create a certificate, use System → Certificates.</td>
</tr>
<tr>
<td>Auxiliary parameters</td>
<td>string</td>
<td>✓</td>
<td>Add any additional proftpd(8) (https://www.freebsd.org/cgi/man.cgi?query=proftpd) parameters not covered elsewhere in this screen.</td>
</tr>
</tbody>
</table>

This example demonstrates the auxiliary parameters that prevent all users from performing the FTP DELETE command:

```
<Limit DELE>
DenyAll
</Limit>
```

11.5.1 Anonymous FTP

Anonymous FTP may be appropriate for a small network where the FreeNAS® system is not accessible from the Internet and everyone in the internal network needs easy access to the stored data. Anonymous FTP does not require a user account for every user. In addition, passwords are not required so it is not necessary to manage changed passwords on the FreeNAS® system.

To configure anonymous FTP:

1. Give the built-in ftp user account permissions to the volume/dataset to be shared in Storage → Volumes as follows:
 - **Owner(user):** select the built-in ftp user from the drop-down menu
 - **Owner(group):** select the built-in ftp group from the drop-down menu
 - **Mode:** review that the permissions are appropriate for the share
Note: For FTP, the type of client does not matter when it comes to the type of ACL. This means that Unix ACLs are always used, even if Windows clients are accessing FreeNAS® via FTP.

2. Configure anonymous FTP in Services → FTP by setting these attributes:
 • Allow Anonymous Login: enable this option
 • Path: browse to the volume/dataset/directory to be shared

3. Start the FTP service in Services → Control Services. Click the Start Now button next to FTP. The FTP service takes a second or so to start. The indicator changes to green when the service is running, and the button changes to Stop Now.

4. Test the connection from a client using a utility such as Filezilla (https://filezilla-project.org/).

In the example shown in Figure 11.6, the user has entered this information into the Filezilla client:
 • IP address of the FreeNAS® server: 192.168.1.113
 • Username: anonymous
 • Password: the email address of the user

Fig. 11.6: Connecting Using Filezilla

The messages within the client indicate the FTP connection is successful. The user can now navigate the contents of the root folder on the remote site. This is the pool or dataset specified in the FTP service configuration. The user can also transfer files between the local site (their system) and the remote site (the FreeNAS® system).

11.5.2 FTP in chroot

If users are required to authenticate before accessing the data on the FreeNAS® system, either create a user account for each user or import existing user accounts using Active Directory (page 178) or LDAP (page 184). Then create a ZFS dataset for each user. Next, chroot each user so they are limited to the contents of their own home directory. Datasets provide the added benefit of configuring a quota so that the size of a user home directory is limited to the size of the quota.

To configure this scenario:

1. Create a ZFS dataset for each user in Storage → Volumes. Click an existing ZFS volume → Create ZFS Dataset and set an appropriate quota for each dataset. Repeat this process to create a dataset for every user that needs access to the FTP service.

2. When not using AD or LDAP, create a user account for each user in Account → Users → Add User. For each user, browse to the dataset created for that user in the Home Directory field. Repeat this process to create a user account for every user that needs access to the FTP service, making sure to assign each user their own dataset.

3. Set the permissions for each dataset in Storage → Volumes. Click the Change Permissions button for a dataset to assign a user account as Owner of that dataset and to set the desired permissions for that user. Repeat for each dataset.
Note: For FTP, the type of client does not matter when it comes to the type of ACL. This means Unix ACLs are always used, even if Windows clients will be accessing FreeNAS® with FTP.

4. Configure FTP in **Services → FTP** with these attributes:
 - **Path**: browse to the parent volume containing the datasets.
 - Make sure the options for **Allow Anonymous Login** and **Allow Root Login** are **unselected**.
 - Select the **Allow Local User Login** option to enable it.
 - Enable the **Always Chroot** option.

5. Start the FTP service in **Services → Control Services**. Click the **Start Now** button next to **FTP**. The FTP service takes a second or so to start. The indicator changes to green to show that the service is running, and the button changes to **Stop Now**.

6. Test the connection from a client using a utility such as Filezilla.

To test this configuration in Filezilla, use the **IP address** of the FreeNAS® system, the **Username** of a user that is associated with a dataset, and the **Password** for that user. The messages will indicate the authorization and the FTP connection are successful. The user can now navigate the contents of the root folder on the remote site. This time it is not the entire pool but the dataset created for that user. The user can transfer files between the local site (their system) and the remote site (their dataset on the FreeNAS® system).

11.5.3 Encrypting FTP

To configure any FTP scenario to use encrypted connections:

1. Import or create a certificate authority using the instructions in **CAs** (page 93). Then, import or create the certificate to use for encrypted connections using the instructions in **Certificates** (page 95).

2. In **Services → FTP**, choose the certificate in the **Certificate** and set the **Enable TLS** option.

3. Specify secure FTP when accessing the FreeNAS® system. For example, in Filezilla enter `ftps://IP_address` (for an implicit connection) or `ftpes://IP_address` (for an explicit connection) as the Host when connecting. The first time a user connects, they will be presented with the certificate of the FreeNAS® system. Click **OK** to accept the certificate and negotiate an encrypted connection.

4. To force encrypted connections, select **on** for the **TLS Policy**.

11.5.4 Troubleshooting FTP

The FTP service will not start if it cannot resolve the system hostname to an IP address with DNS. To see if the FTP service is running, open **Shell** (page 304) and issue the command:

```
sockstat -4p 21
```

If there is nothing listening on port 21, the FTP service is not running. To see the error message that occurs when FreeNAS® tries to start the FTP service, go to **System → Advanced**, check **Show console messages in the footer**, and click **Save**. Go to **Services → Control Services** and switch the FTP service off, then back on. Watch the console messages at the bottom of the browser for errors.

If the error refers to DNS, either create an entry in the local DNS server with the FreeNAS® system hostname and IP address, or add an entry for the IP address of the FreeNAS® system in the **Network → Global Configuration Host name data base** field.

11.6 iSCSI

Refer to **Block (iSCSI)** (page 214) for instructions on configuring iSCSI. To start the iSCSI service, click its entry in **Services**.
Note: A warning message is shown if the iSCSI service is stopped when initiators are connected. Open the *Shell* (page 304) and type `ctladm islist` to determine the names of the connected initiators.

11.7 LLDP

The Link Layer Discovery Protocol (LLDP) is used by network devices to advertise their identity, capabilities, and neighbors on an Ethernet network. FreeNAS® uses the ladvd (https://github.com/sspans/ladvd) LLDP implementation. If the network contains managed switches, configuring and starting the LLDP service will tell the FreeNAS® system to advertise itself on the network.

Figure 11.7 shows the LLDP configuration screen and Table 11.5 summarizes the configuration options for the LLDP service.

Fig. 11.7: Configuring LLDP

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Description</td>
<td>checkbox</td>
<td>Set to enable receive mode and to save received peer information in interface descriptions.</td>
</tr>
<tr>
<td>Country Code</td>
<td>string</td>
<td>Required for LLDP location support. Enter a two-letter ISO 3166 country code.</td>
</tr>
<tr>
<td>Location</td>
<td>string</td>
<td>Optional. Specify the physical location of the host.</td>
</tr>
</tbody>
</table>

11.8 Netdata

Netdata is a real-time performance and monitoring system. It displays data as web dashboards.

Start the Netdata service from the *Services* (page 233) screen. Click the wrench icon to display the Netdata settings dialog shown in Figure 11.8.
Click the *Take me to the Netdata UI* button to view the web dashboard as shown in Figure 11.9.

More information on configuring and using Netdata is available at the Netdata website (https://my-netdata.io/).
11.9 NFS

The settings that are configured when creating NFS Shares in Sharing → Unix (NFS) Shares → Add Unix (NFS) Share are specific to each configured NFS Share. In contrast, global settings which apply to all NFS shares are configured in Services → NFS.

Figure 11.10 shows the configuration screen and Table 11.6 summarizes the configuration options for the NFS service.

![Fig. 11.10: Configuring NFS](image)

Table 11.6

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of servers</td>
<td>4</td>
</tr>
<tr>
<td>Serve UDP NFS clients</td>
<td></td>
</tr>
<tr>
<td>Bind IP Addresses</td>
<td>10.0.0.142</td>
</tr>
<tr>
<td>Allow non-root mount</td>
<td></td>
</tr>
<tr>
<td>Enable NFSv4</td>
<td></td>
</tr>
<tr>
<td>NFSv3 ownership model for NFSv4</td>
<td></td>
</tr>
<tr>
<td>Require Kerberos for NFSv4</td>
<td></td>
</tr>
<tr>
<td>mountd(8) bind port</td>
<td></td>
</tr>
<tr>
<td>rpc.statd(8) bind port</td>
<td></td>
</tr>
<tr>
<td>rpc.lockd(8) bind port</td>
<td></td>
</tr>
<tr>
<td>Support >16 groups</td>
<td></td>
</tr>
<tr>
<td>Log mountd(8) requests</td>
<td></td>
</tr>
<tr>
<td>Log rpc.statd(8) and rpc.lockd(8)</td>
<td></td>
</tr>
</tbody>
</table>
Table 11.6: NFS Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of servers</td>
<td>integer</td>
<td>Specify how many servers to create. Increase if NFS client responses are slow. To limit CPU context switching, keep this number less than or equal to the number of CPUs reported by <code>sysctl -n kern.smp.cpus</code>.</td>
</tr>
<tr>
<td>Serve UDP NFS clients</td>
<td>checkbox</td>
<td>Set if NFS clients need to use UDP.</td>
</tr>
<tr>
<td>Bind IP Addresses</td>
<td>checkboxes</td>
<td>Select the IP addresses to listen on for NFS requests. When unselected, NFS listens on all available addresses.</td>
</tr>
<tr>
<td>Allow non-root mount</td>
<td>checkbox</td>
<td>Set only if the NFS client requires it.</td>
</tr>
<tr>
<td>Enable NFSv4</td>
<td>checkbox</td>
<td>Set to switch from NFSv3 to NFSv4. The default is NFSv3.</td>
</tr>
<tr>
<td>NFSv3 ownership model for NFSv4</td>
<td>checkbox</td>
<td>Grayed out unless Enable NFSv4 is checked and, in turn, grays out Support>16 groups which is incompatible. Set this option if NFSv4 ACL support is needed without requiring the client and the server to sync users and groups.</td>
</tr>
<tr>
<td>Require Kerberos for NFSv4</td>
<td>checkbox</td>
<td>Set to force NFS shares to fail if the Kerberos ticket is unavailable.</td>
</tr>
<tr>
<td>mountd(8) bind port</td>
<td>integer</td>
<td>Optional. Specify the port that mountd(8) binds to. (https://www.freebsd.org/cgi/man.cgi?query=mountd) binds to.</td>
</tr>
<tr>
<td>rpc.statd(8) bind port</td>
<td>integer</td>
<td>Optional. Specify the port that rpc.statd(8) binds to.</td>
</tr>
<tr>
<td>rpc.lockd(8) bind port</td>
<td>integer</td>
<td>Optional. Specify the port that rpc.lockd(8) binds to.</td>
</tr>
<tr>
<td>Support>16 groups</td>
<td>checkbox</td>
<td>Set this option if any users are members of more than 16 groups (useful in AD environments). Note this assumes group membership is configured correctly on the NFS server.</td>
</tr>
<tr>
<td>Log mountd(8) requests</td>
<td>checkbox</td>
<td>Enable logging of mountd(8) requests by syslog. (https://www.freebsd.org/cgi/man.cgi?query=mountd) requests by syslog.</td>
</tr>
<tr>
<td>Log rpc.statd(8) and rpc.lockd(8)</td>
<td>checkbox</td>
<td>Enable logging of rpc.statd(8) and rpc.lockd(8) requests by syslog. (https://www.freebsd.org/cgi/man.cgi?query=rpc.statd) and rpc.lockd(8) (https://www.freebsd.org/cgi/man.cgi?query=rpc.lockd) requests by syslog.</td>
</tr>
</tbody>
</table>

Note: NFSv4 sets all ownership to `nobody:nobody` if user and group do not match on client and server.

11.10 Rsync

Services → Rsync is used to configure an rsync server when using rsync module mode. Refer to [Rsync Module Mode](#) (page 114) for a configuration example.

This section describes the configurable options for the **rsyncd** service and rsync modules.

11.10.1 Configure Rsyncd

Figure 11.11 shows the rsyncd configuration screen which is accessed from *Services → Rsync*.

248
Table 11.7 summarizes the configuration options for the rsync daemon:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP Port</td>
<td>integer</td>
<td>Port for <code>rsyncd</code> to listen on. Default is 873.</td>
</tr>
</tbody>
</table>

11.10.2 Rsync Modules

Figure 11.12 shows the configuration screen that appears after clicking Services → Rsync → Rsync Modules → Add Rsync Module.

Table 11.8 summarizes the configuration options available when creating a rsync module.
Table 11.8: Rsync Module Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module name</td>
<td>string</td>
<td>Mandatory. This is required to match the setting on the rsync client.</td>
</tr>
<tr>
<td>Comment</td>
<td>string</td>
<td>Optional description.</td>
</tr>
<tr>
<td>Path</td>
<td>browse button</td>
<td>Browse to the volume or dataset to hold received data.</td>
</tr>
<tr>
<td>Access Mode</td>
<td>drop-down menu</td>
<td>Choices are Read and Write, Read-only, or Write-only.</td>
</tr>
<tr>
<td>Maximum connections</td>
<td>integer</td>
<td>0 is unlimited.</td>
</tr>
<tr>
<td>User</td>
<td>drop-down menu</td>
<td>Select the user to control file transfers to and from the module.</td>
</tr>
<tr>
<td>Group</td>
<td>drop-down menu</td>
<td>Select the group to control file transfers to and from the module.</td>
</tr>
<tr>
<td>Hosts allow</td>
<td>string</td>
<td>Optional patterns to match to allow hosts access. See <code>rsyncd.conf(5)</code></td>
</tr>
<tr>
<td>Hosts deny</td>
<td>string</td>
<td>Optional patterns to match to deny hosts access. See <code>rsyncd.conf(5)</code></td>
</tr>
<tr>
<td>Auxiliary parameters</td>
<td>string</td>
<td>Enter any additional parameters from <code>rsyncd.conf(5)</code></td>
</tr>
</tbody>
</table>

11.11 S3

S3 is a distributed or clustered filesystem protocol compatible with Amazon S3 cloud storage. The FreeNAS® S3 service uses Minio (https://minio.io/) to provide S3 storage hosted on the FreeNAS® system itself. Minio also provides features beyond the limits of the basic Amazon S3 specifications.
Figure 11.13 shows the S3 service configuration screen and Table 11.9 summarizes the configuration options. After configuring the S3 service, start it in Services → Control Services.

Table 11.9: S3 Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>drop-down menu</td>
<td>Enter the IP address to run the S3 service. 0.0.0.0 sets the server to listen on all addresses.</td>
</tr>
<tr>
<td>Port</td>
<td>string</td>
<td>Enter the TCP port on which to provide the S3 service. Default is 9000.</td>
</tr>
<tr>
<td>Access Key</td>
<td>string</td>
<td>Enter the S3 user name. This username must contain only alphanumeric characters and be between 5 and 20 characters long.</td>
</tr>
<tr>
<td>Secret Key</td>
<td>string</td>
<td>Enter the password to be used by connecting S3 systems. The key must contain only alphanumeric characters and be at least 8 but no more than 40 characters long.</td>
</tr>
<tr>
<td>Confirm S3 Key</td>
<td>string</td>
<td>Re-enter the S3 password to confirm.</td>
</tr>
<tr>
<td>Disks</td>
<td>string</td>
<td>Required. Directory where the S3 filesystem will be mounted. Ownership of this directory and all subdirectories is set to minio:minio. Create a separate dataset (page 140) for Minio to avoid issues with conflicting directory permissions or ownership.</td>
</tr>
<tr>
<td>Certificate</td>
<td>drop-down menu</td>
<td>The SSL certificate to be used for secure S3 connections. To create a certificate, use System → Certificates.</td>
</tr>
<tr>
<td>Enable Browser</td>
<td>checkbox</td>
<td>Set to enable the web user interface for the S3 service.</td>
</tr>
</tbody>
</table>
11.12 S.M.A.R.T.

S.M.A.R.T., or Self-Monitoring, Analysis, and Reporting Technology (https://en.wikipedia.org/wiki/S.M.A.R.T.), is an industry standard for disk monitoring and testing. Drives can be monitored for status and problems, and several types of self-tests can be run to check the drive health.

Tests run internally on the drive. Most tests can run at the same time as normal disk usage. However, a running test can greatly reduce drive performance, so they should be scheduled at times when the system is not busy or in normal use. It is very important to avoid scheduling disk-intensive tests at the same time. For example, do not schedule S.M.A.R.T. tests to run at the same time, or preferably, even on the same days as Scrubs (page 171).

Of particular interest in a NAS environment are the Short and Long S.M.A.R.T. tests. Details vary between drive manufacturers, but a Short test generally does some basic tests of a drive that takes a few minutes. The Long test scans the entire disk surface, and can take several hours on larger drives.

FreeNAS® uses the smartd(8) (https://www.smartmontools.org/browser/trunk/smartmontools/smartd.8.in) service to monitor S.M.A.R.T. information, including disk temperature. A complete configuration consists of:

2. Enabling or disabling S.M.A.R.T. for each disk member of a volume in Volumes → View Disks. This setting is enabled by default for disks that support S.M.A.R.T.
3. Checking the configuration of the S.M.A.R.T. service as described in this section.
4. Starting the S.M.A.R.T. service with Services → Control Services.

Figure 11.14 shows the configuration screen that appears after clicking Services → S.M.A.R.T.

![Fig. 11.14: S.M.A.R.T Configuration Options](image)

Note: smartd wakes up at the configured Check Interval. It checks the times configured in Tasks → S.M.A.R.T. Tests to see if a test must begin. Since the smallest time increment for a test is an hour, it does not make sense to set a Check Interval value higher than 60 minutes. For example, if the Check Interval is set to 120 minutes and the smart test to every hour, the test will only be run every two hours because smartd only activates every two hours.

Table 11.10 summarizes the options in the S.M.A.R.T configuration screen.
Table 11.10: S.M.A.R.T Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check interval</td>
<td>integer</td>
<td>Define in minutes how often <code>smartd</code> activates to check if any tests are configured to run.</td>
</tr>
<tr>
<td>Power mode</td>
<td>drop-down menu</td>
<td>Tests are not performed if the system enters the specified power mode: Never, Sleep, Standby, or Idle.</td>
</tr>
<tr>
<td>Difference</td>
<td>integer in degrees Celsius</td>
<td>Enter number of degrees in Celsius. S.M.A.R.T reports if the temperature of a drive has changed by N degrees Celsius since the last report. Default of 0 disables this option.</td>
</tr>
<tr>
<td>Informational</td>
<td>integer in degrees Celsius</td>
<td>Enter a threshold temperature in Celsius. S.M.A.R.T will message with a log level of LOG_INFO if the temperature is higher than specified degrees in Celsius. Default of 0 disables this option.</td>
</tr>
<tr>
<td>Critical</td>
<td>integer in degrees Celsius</td>
<td>Enter a threshold temperature in Celsius. S.M.A.R.T will message with a log level of LOG_CRIT and send an email if the temperature is higher than specified degrees in Celsius. Default of 0 disables this option.</td>
</tr>
<tr>
<td>Email to report</td>
<td>string</td>
<td>Email address to receive S.M.A.R.T. alerts. Use a space to separate multiple email addresses.</td>
</tr>
</tbody>
</table>

11.13 SMB

The settings configured when creating SMB Shares in Sharing → Windows (SMB) Shares → Add Windows (SMB) Share are specific to each configured SMB Share. In contrast, global settings which apply to all SMB shares are configured in Services → SMB.

Note: After starting the SMB service, it can take several minutes for the master browser election (https://www.samba.org/samba/docs/old/Samba3-HOWTO/NetworkBrowsing.html#id2581357) to occur and for the FreeNAS® system to become available in Windows Explorer.

Figure 11.15 shows some of the global SMB configuration options described in Table 11.11. This configuration screen is really a front-end to `smb4.conf` (https://www.freebsd.org/cgi/man.cgi?query=smb4.conf).
Table 11.11: Global SMB Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NetBIOS Name</td>
<td>string</td>
<td>Automatically populated with the original hostname of the system. Limited to 15 characters. It must be different from the Workgroup name.</td>
</tr>
<tr>
<td>NetBIOS Alias</td>
<td>string</td>
<td>Enter an alias. Limited to 15 characters</td>
</tr>
<tr>
<td>Workgroup</td>
<td>string</td>
<td>Must match Windows workgroup name. This setting is ignored if the Active Directory (page 178) or LDAP (page 184) service is running.</td>
</tr>
<tr>
<td>Description</td>
<td>string</td>
<td>Enter an optional server description.</td>
</tr>
<tr>
<td>Enable SMB1 support</td>
<td>checkbox</td>
<td>Allow legacy SMB clients to connect to the server. Warning: SMB1 is not secure and has been deprecated by Microsoft. See Do Not Use SMB1 (https://www.ixsystems.com/blog/library/do-not-use-smb1/).</td>
</tr>
<tr>
<td>DOS charset</td>
<td>drop-down menu</td>
<td>The character set Samba uses when communicating with DOS and Windows 9x/ME clients. Default is CP437.</td>
</tr>
<tr>
<td>UNIX charset</td>
<td>drop-down menu</td>
<td>Default is UTF-8 which supports all characters in all languages.</td>
</tr>
<tr>
<td>Log level</td>
<td>drop-down menu</td>
<td>Choices are Minimum, Normal, or Debug.</td>
</tr>
<tr>
<td>Use syslog only</td>
<td>checkbox</td>
<td>Set to log authentication failures to /var/log/messages instead of the default of /var/log/samba4/log.smbd.</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Master</td>
<td>checkbox</td>
<td>Set to determine if the system will participate in a browser election. Disable when network contains an AD or LDAP server or Vista or Windows 7 machines are present.</td>
</tr>
<tr>
<td>Domain logons</td>
<td>checkbox</td>
<td>Set if it is necessary to provide the netlogin service for older Windows clients.</td>
</tr>
<tr>
<td>Time Server for Domain</td>
<td>checkbox</td>
<td>Determines if the system advertises itself as a time server to Windows clients. Disable when network contains an AD or LDAP server.</td>
</tr>
<tr>
<td>Guest Account</td>
<td>drop-down menu</td>
<td>Select the account to be used for guest access. Default is nobody. Account must have permission to access the shared volume/dataset. If Guest Account user is deleted, resets to nobody.</td>
</tr>
<tr>
<td>Administrators Group</td>
<td>drop-down menu</td>
<td>Members of this group are local admins and automatically have privileges to take ownership of any file in an SMB share, reset permissions, and administer the SMB server through the Computer Management MMC snap-in.</td>
</tr>
<tr>
<td>File mask</td>
<td>integer</td>
<td>Overrides default file creation mask of 0666 which creates files with read and write access for everybody.</td>
</tr>
<tr>
<td>Directory mask</td>
<td>integer</td>
<td>Overrides default directory creation mask of 0777 which grants directory read, write and execute access for everybody.</td>
</tr>
<tr>
<td>Allow Empty Password</td>
<td>checkbox</td>
<td>Set to allow users to press Enter when prompted for a password. Requires the username/password to be the same as the Windows user account.</td>
</tr>
<tr>
<td>Unix Extensions</td>
<td>checkbox</td>
<td>Set to allow non-Windows SMB clients to access symbolic links and hard links, has no effect on Windows clients.</td>
</tr>
<tr>
<td>Zeroconf share discovery</td>
<td>checkbox</td>
<td>Enable if Mac clients will be connecting to the SMB share.</td>
</tr>
<tr>
<td>Hostname lookups</td>
<td>checkbox</td>
<td>Set to allow using hostnames rather than IP addresses in the Hosts Allow or Hosts Deny fields of a SMB share. Unset if IP addresses are used to avoid the delay of a host lookup.</td>
</tr>
<tr>
<td>Allow execute always</td>
<td>checkbox</td>
<td>If set, Samba will allow the user to execute a file, even if that user’s permissions are not set to execute.</td>
</tr>
<tr>
<td>Obey pam restrictions</td>
<td>checkbox</td>
<td>Unset this option to allow: Cross-domain authentication. Users and groups to be managed on another forest. Permissions to be delegated from Active Directory (page 178) users and groups to domain admins on another forest.</td>
</tr>
<tr>
<td>NTLMv1 auth</td>
<td>checkbox</td>
<td>Set to allow NTLMv1 authentication. Required by Windows XP clients and sometimes by clients in later versions of Windows.</td>
</tr>
<tr>
<td>Bind IP Addresses</td>
<td>checkboxes</td>
<td>Select the IPv4 and IPv6 addresses SMB will listen on. Always add the loopback interface 127.0.0.1 as Samba utilities connect to the loopback IP (https://wiki.samba.org/index.php/Configure_Samba_to_Bind_to_Specific_Interfaces) if no host name is provided.</td>
</tr>
<tr>
<td>Idmap Range Low</td>
<td>integer</td>
<td>The beginning UID/GID for which this system is authoritative. Any UID/GID lower than this value is ignored, providing a way to avoid accidental UID/GID overlaps between local and remotely defined IDs.</td>
</tr>
<tr>
<td>Idmap Range High</td>
<td>integer</td>
<td>The ending UID/GID for which this system is authoritative. Any UID/GID higher than this value is ignored, providing a way to avoid accidental UID/GID overlaps between local and remotely defined IDs.</td>
</tr>
</tbody>
</table>

Changes to SMB settings take effect immediately. Changes to share settings only take effect after the client and server negotiate a new session.
Note: Do not set the directory name cache size as an Auxiliary parameter. Due to differences in how Linux and BSD handle file descriptors, directory name caching is disabled on BSD systems to improve performance.

Note: SMB (page 253) cannot be disabled while Active Directory (page 178) is enabled.

11.13.1 Troubleshooting SMB

Do not connect to SMB shares as root, and do not add the root user in the SMB user database. There are security implications in attempting to do so, and Samba 4 and later take measures to prevent such actions. This can produce auth_check_ntlm_password and FAILED with error NT_STATUS_WRONG_PASSWORD errors.

Samba is single threaded, so CPU speed makes a big difference in SMB performance. A typical 2.5Ghz Intel quad core or greater should be capable of handling speeds in excess of GiB LAN while low power CPUs such as Intel Atoms and AMD C-30sE-350E-450 will not be able to achieve more than about 30-40 MiB/sec typically. Remember that other loads such as ZFS will also require CPU resources and may cause Samba performance to be less than optimal.

Samba’s write cache parameter has been reported to improve write performance in some configurations and can be added to the Auxiliary parameters field. Use an integer value which is a multiple of _SC_PAGESIZE (typically 4096) to avoid memory fragmentation. This will increase Samba’s memory requirements and should not be used on systems with limited RAM.

Windows automatically caches file sharing information. If changes are made to an SMB share or to the permissions of a volume/dataset being shared by SMB and the share becomes inaccessible, try logging out and back in to the Windows system. Alternately, users can type net use /delete from the command line to clear their SMB sessions.

Windows also automatically caches login information. To require users to log in every time they access they system, reduce the cache settings on the client computers.

Where possible, avoid using a mix of case in filenames as this can cause confusion for Windows users. Representing and resolving filenames with Samba (http://www.oreilly.com/openbook/samba/book/ch05_04.html) explains in more detail.

If a particular user cannot connect to a SMB share, ensure their password does not contain the ? character. If it does, have the user change the password and try again.

If permissions work for Windows users but not for macOS users, try disabling Unix Extensions and restarting the SMB service.

If the SMB service will not start, run this command from Shell (page 304) to see if there is an error in the configuration:

```
ptestparm /usr/local/etc/smb4.conf
```

If clients have problems connecting to the SMB share, go to Services → SMB and verify that Server maximum protocol is set to SMB2.

Using a dataset for SMB sharing is recommended. When creating the dataset, make sure that the Share type is set to Windows.

Do not use chmod to attempt to fix the permissions on a SMB share as it destroys the Windows ACLs. The correct way to manage permissions on a SMB share is to manage the share security from a Windows system as either the owner of the share or a member of the group that owns the share. To do so, right-click on the share, click Properties and navigate to the Security tab. If the ACLs are already destroyed by using chmod, winacl can be used to fix them. Type winacl from Shell (page 304) for usage instructions.

The Common Errors (https://www.samba.org/samba/docs/old/Samba3-HOWTO/domain-member.html#id2573692) section of the Samba documentation contains additional troubleshooting tips.

256
Directory listing speed in folders with a large number of files is sometimes a problem. A few specific changes can help improve the performance. However, changing these settings can affect other usage. In general, the defaults are adequate. **Do not change these settings unless there is a specific need.**

- **Hostname Lookups** and **Log Level** can also have a performance penalty. When not needed, they can be disabled or reduced in the *global SMB service options* (page 254).

- Make Samba datasets case insensitive by setting **Case Sensitivity** to **Insensitive** when creating them. This ZFS property is only available when creating a dataset. It cannot be changed on an existing dataset. To convert such datasets, back up the data, create a new case-insensitive dataset, create an SMB share on it, set the share level auxiliary parameter `case sensitive = true`, then copy the data from the old one onto it. After the data has been checked and verified on the new share, the old one can be deleted.

- If present, remove options for extended attributes and DOS attributes in *Auxiliary Parameters* (page 204) for the share.

- Disable as many **VFS Objects** as possible in the **share settings** (page 204). Many have performance overhead.

The SMB1 protocol is deprecated and vulnerable. Before enabling it, see [Do Not Use SMB1](https://www.ixsystems.com/blog/library/do-not-use-smb1/).

11.14 SNMP

SNMP (Simple Network Management Protocol) is used to monitor network-attached devices for conditions that warrant administrative attention. FreeNAS® uses [Net-SNMP](http://net-snmp.sourceforge.net/) to provide SNMP. When starting the SNMP service, this port will be enabled on the FreeNAS® system:

- **UDP 161** (listens here for SNMP requests)

 Available MIBS are located in `/usr/local/share/snmp/mibs`.

 Figure 11.16 shows the SNMP configuration screen. *Table 11.12* summarizes the configuration options.
Configuring SNMP

![Fig. 11.16: Configuring SNMP](image)

Table 11.12: SNMP Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>string</td>
<td>Optional description of the system location.</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact</td>
<td>string</td>
<td>Optional. Enter the administrator email address.</td>
</tr>
<tr>
<td>SNMP v3 Support</td>
<td>checkbox</td>
<td>Set to enable support for SNMP version 3.</td>
</tr>
<tr>
<td>Community</td>
<td>string</td>
<td>Default is public. Change this for security reasons! The value can only contain alphanumeric characters, underscores, dashes, periods, and spaces. This value can be empty for SNMPv3 networks.</td>
</tr>
<tr>
<td>Username</td>
<td>string</td>
<td>Only applies if SNMP v3 Support is set. Specify the username to register with this service. Refer to <code>snmpd.conf(5)</code> for more information about configuring this and the Authentication Type, Password, Privacy Protocol, and Privacy Passphrase fields.</td>
</tr>
<tr>
<td>Authentication Type</td>
<td>drop-down menu</td>
<td>Only applies if SNMP v3 Support is enabled. Choices are: MD5 or SHA.</td>
</tr>
<tr>
<td>Password</td>
<td>string</td>
<td>Only applies if SNMP v3 Support is enabled. Specify and confirm a password of at least eight characters.</td>
</tr>
<tr>
<td>Privacy Protocol</td>
<td>drop-down menu</td>
<td>Only applies if SNMP v3 Support is enabled. Choices are: AES or DES.</td>
</tr>
<tr>
<td>Privacy Passphrase</td>
<td>string</td>
<td>If not specified, Password is used.</td>
</tr>
<tr>
<td>Log Level</td>
<td>drop-down menu</td>
<td>Choices range from fewest log entries (Emergency) to the most (Debug).</td>
</tr>
<tr>
<td>Auxiliary Parameters</td>
<td>string</td>
<td>Enter additional <code>snmpd.conf(5)</code> options not covered in this screen. One option per line.</td>
</tr>
<tr>
<td>Expose zilstat via SNMP</td>
<td>checkbox</td>
<td>Gather ZFS Intent Log (ZIL) statistics. Enabling this option slows down pool performance.</td>
</tr>
</tbody>
</table>

Zenoss provides a seamless monitoring service through SNMP for FreeNAS® called TrueNAS ZenPack.

11.15 SSH

Secure Shell (SSH) is used to transfer files securely over an encrypted network. When a FreeNAS® system is used as an SSH server, the users in the network must use SSH client software to transfer files with SSH.

This section shows the FreeNAS® SSH configuration options, demonstrates an example configuration that restricts users to their home directory, and provides some troubleshooting tips.

Figure 11.17 shows the Services → SSH configuration screen. After configuring SSH, remember to start it in Services → Control Services.
Table 11.13 summarizes the configuration options. Some settings are only available in Advanced Mode. To see these settings, either click the Advanced Mode button, or configure the system to always display these settings by enabling the Show advanced fields by default option in System → Advanced.

Table 11.13: SSH Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bind Interfaces</td>
<td>selection</td>
<td>✓</td>
<td>By default, SSH listens on all interfaces unless specific interfaces are highlighted in the Available field and added to the Selected field.</td>
</tr>
<tr>
<td>TCP Port</td>
<td>integer</td>
<td></td>
<td>Port to open for SSH connection requests. 22 by default.</td>
</tr>
<tr>
<td>Login as Root with password</td>
<td>checkbox</td>
<td></td>
<td>As a security precaution, root logins are discouraged and disabled by default. If enabled, a password must be set for the root user in View Users.</td>
</tr>
<tr>
<td>Allow Password Authentication</td>
<td>checkbox</td>
<td></td>
<td>Unset to require key-based authentication for all users. Requires additional setup on both the SSH client and server.</td>
</tr>
<tr>
<td>Allow Kerberos Authentication</td>
<td>checkbox</td>
<td>✓</td>
<td>Before setting this option, ensure Kerberos Realms (page 188) and Kerberos Keytabs (page 188) are configured and FreeNAS® can communicate with the Kerberos Domain Controller (KDC).</td>
</tr>
<tr>
<td>Allow TCP Port Forwarding</td>
<td>checkbox</td>
<td></td>
<td>Set to allow users to bypass firewall restrictions using the SSH port forwarding feature.</td>
</tr>
<tr>
<td>Compress Connections</td>
<td>checkbox</td>
<td></td>
<td>Set to attempt to reduce latency over slow networks.</td>
</tr>
<tr>
<td>SFTP Log Level</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Select the syslog(3) level of the SFTP server. (https://www.freebsd.org/cgi/man.cgi?query=syslog)</td>
</tr>
<tr>
<td>SFTP Log Facility</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Select the syslog(3) facility of the SFTP server. (https://www.freebsd.org/cgi/man.cgi?query=syslog)</td>
</tr>
</tbody>
</table>

Continued on next page
A few `sshd_config(5)` options that are useful to enter in the **Extra Options** field include:

- increase the **ClientAliveInterval** if SSH connections tend to drop
- **ClientMaxStartup** defaults to 10. Increase this value if more concurrent SSH connections are required.

11.15.1 SCP Only

When SSH is configured, authenticated users with a user account created using **Account → Users → Add User** can use `ssh` to log into the FreeNAS® system over the network. The user home directory is the pool or dataset specified in the **Home Directory** field of the FreeNAS® account for that user. While the SSH login defaults to the user home directory, users are able to navigate outside their home directory, which can pose a security risk.

It is possible to allow users to use `scp` and `sftp` to transfer files between their local computer and their home directory on the FreeNAS® system, while restricting them from logging into the system using `ssh`. To configure this scenario, go to **Account → Users → View Users**, select the user, and click **Modify User**. Change the **Shell** to `scponly`. Repeat for each user that needs restricted SSH access.

Test the configuration from another system by running the `sftp`, `ssh`, and `scp` commands as the user. `sftp` and `scp` will work but `ssh` will fail.

Note: Some utilities like WinSCP and Filezilla can bypass the `scponly` shell. This section assumes that users are accessing the system using the command line versions of `scp` and `sftp`.

11.15.2 Troubleshooting SSH

Keywords listed in `sshd_config(5)` are case sensitive. This is important to remember when adding any **Extra options**. The configuration will not function as intended if the upper and lowercase letters of the keyword are not an exact match.

If clients are receiving “reverse DNS” or timeout errors, add an entry for the IP address of the FreeNAS® system in the **Host name database** field of **Network → Global Configuration**.

When configuring SSH, always test the configuration as an SSH user account to ensure the user is limited by the configuration and they have permission to transfer files within the intended directories. If the user account is experiencing problems, the SSH error messages are specific in describing the problem. Type this command within **Shell** (page 304) to read these messages as they occur:

```
tail -f /var/log/messages
```

Additional messages regarding authentication errors are found in `/var/log/auth.log`.

11.16 TFTP

Trivial File Transfer Protocol (TFTP) is a light-weight version of FTP typically used to transfer configuration or boot files between machines, such as routers, in a local environment. TFTP provides an extremely limited set of commands and provides no authentication.
If the FreeNAS® system will be used to store images and configuration files for network devices, configure and start the TFTP service. Starting the TFTP service opens UDP port 69.

Figure 11.18 shows the TFTP configuration screen and Table 11.14 summarizes the available options.

![TFTP Configuration Screen](image)

Fig. 11.18: TFTP Configuration

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directory</td>
<td>browse</td>
<td>Browse to an existing directory to be used for storage. Some devices require a specific directory name. Refer to the device documentation for details.</td>
</tr>
<tr>
<td>Allow New Files</td>
<td>checkbox</td>
<td>Enable if network devices need to send files to the system (for example, to back up their configuration).</td>
</tr>
<tr>
<td>Host</td>
<td>IP address</td>
<td>The default host to use for TFTP transfers. Enter an IP address. Example: 192.0.2.1.</td>
</tr>
<tr>
<td>Port</td>
<td>integer</td>
<td>The UDP port number that listens for TFTP requests. Example: 8050.</td>
</tr>
<tr>
<td>Username</td>
<td>drop-down</td>
<td>Select the account to be used for TFTP requests. The account must have permission to access the Directory.</td>
</tr>
<tr>
<td>File Permissions</td>
<td>checkboxes</td>
<td>Set permissions for newly created files. The default is everyone can read and only the owner can write. Some devices require less strict permissions.</td>
</tr>
<tr>
<td>Extra options</td>
<td>string</td>
<td>Add any additional tftpd(8) (https://www.freebsd.org/cgi/man.cgi?query=tftpd) options not shown in this screen. Add one option on each line.</td>
</tr>
</tbody>
</table>
11.17 UPS

FreeNAS® uses NUT (http://networkupstools.org/) (Network UPS Tools) to provide UPS support. If the FreeNAS® system is connected to a UPS device, configure the UPS service then start it in Services → Control Services.

Figure 11.19 shows the UPS configuration screen:
<table>
<thead>
<tr>
<th>** UPS Mode:**</th>
<th>Master</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifier:</td>
<td>ups</td>
</tr>
<tr>
<td>Driver:</td>
<td></td>
</tr>
<tr>
<td>Port:</td>
<td></td>
</tr>
<tr>
<td>Auxiliary parameters (ups.conf):</td>
<td></td>
</tr>
<tr>
<td>Auxiliary parameters (upsd.conf):</td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>Shutdown mode:</td>
<td>UPS goes on battery</td>
</tr>
<tr>
<td>Shutdown timer:</td>
<td>30</td>
</tr>
<tr>
<td>Shutdown Command:</td>
<td>/sbin/shutdown -p now</td>
</tr>
<tr>
<td>No Communication Warning Time:</td>
<td></td>
</tr>
<tr>
<td>Monitor User:</td>
<td>upsmmon</td>
</tr>
<tr>
<td>Monitor Password:</td>
<td>fixmepass</td>
</tr>
<tr>
<td>Extra users (upsd.users):</td>
<td></td>
</tr>
<tr>
<td>Remote Monitor:</td>
<td></td>
</tr>
<tr>
<td>Send Email Status Updates:</td>
<td></td>
</tr>
<tr>
<td>To email:</td>
<td></td>
</tr>
<tr>
<td>Email Subject:</td>
<td>UPS report generated by %h</td>
</tr>
<tr>
<td>Power Off UPS:</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 11.19: UPS Configuration Screen
Table 11.15: UPS Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPS Mode</td>
<td>dropdown menu</td>
<td>Select Master if the UPS is plugged directly into the system serial port. The UPS will remain the last item to shut down. Select Slave to have the system shut down before Master.</td>
</tr>
<tr>
<td>Identifier</td>
<td>string</td>
<td>Required. Describe the UPS device. Can contain alphanumeric, period, comma, hyphen, and underscore characters.</td>
</tr>
<tr>
<td>Driver / Remote Host</td>
<td>dropdown menu</td>
<td>Required. For a list of supported devices, see the Network UPS Tools compatibility list (https://networkupstools.org/stable-hcl.html). The Driver field changes to Remote Host when UPS Mode is set to Slave. Enter the IP address of the system configured as the UPS Master system. See this post (https://forums.freenas.org/index.php?resources/configuring-ups-support-for-single-or-multiple-freenas-servers.30/) for more details about configuring multiple systems with a single UPS.</td>
</tr>
<tr>
<td>Port / Remote Port</td>
<td>dropdown menu</td>
<td>Required. Enter the serial or USB port connected to the UPS (see NOTE (page 265)). Enter the IP address or hostname of the SNMP UPS device when an SNMP driver is selected. Port becomes Remote Port when the UPS Mode is set to Slave. Enter the open network port number of the UPS Master system. The default port is 3493.</td>
</tr>
<tr>
<td>Auxiliary Parameters (ups.conf)</td>
<td>string</td>
<td>Enter any additional options from ups.conf(5) (https://www.freebsd.org/cgi/man.cgi?query=ups.conf).</td>
</tr>
<tr>
<td>Description</td>
<td>string</td>
<td>Optional. Enter any notes about the UPS service.</td>
</tr>
<tr>
<td>Shutdown mode</td>
<td>dropdown menu</td>
<td>Choose when the UPS initiates shutdown. Choices are UPS goes on battery and UPS reaches low battery.</td>
</tr>
<tr>
<td>Shutdown timer</td>
<td>integer</td>
<td>Select a value in seconds for the UPS to wait before initiating shutdown. Shutdown will not occur if the power is restored while the timer is counting down. The value only applies when Shutdown Mode is set to UPS goes on battery.</td>
</tr>
<tr>
<td>Shutdown Command</td>
<td>string</td>
<td>Required. Enter the command to run to shut down the computer when battery power is low or shutdown timer runs out.</td>
</tr>
<tr>
<td>No Communication Warning Time</td>
<td>string</td>
<td>Enter a value in seconds to wait before alerting that the service cannot reach any UPS. Warnings continue until the situation is fixed.</td>
</tr>
<tr>
<td>Monitor User</td>
<td>string</td>
<td>Required. Enter a user to associate with this service. The recommended default user is upsmon.</td>
</tr>
<tr>
<td>Monitor Password</td>
<td>string</td>
<td>Required. Default is the known value fixmepass. Change this to enhance system security. Cannot contain a space or #.</td>
</tr>
<tr>
<td>Extra users (upsd.users)</td>
<td>string</td>
<td>Enter accounts that have administrative access. See upsd.users(5) (https://www.freebsd.org/cgi/man.cgi?query=upsd.users) for examples.</td>
</tr>
<tr>
<td>Remote monitor</td>
<td>checkbox</td>
<td>Set for the default configuration to listen on all interfaces using the known values of user upsmon and password fixmepass.</td>
</tr>
<tr>
<td>Send Email Status Updates</td>
<td>checkbox</td>
<td>Set to enable the FreeNAS® system to send email updates to the configured To email address.</td>
</tr>
<tr>
<td>To email</td>
<td>email address</td>
<td>Enter the email address to receive status updates. Separate multiple email addresses with a semicolon (;).</td>
</tr>
<tr>
<td>Email Subject</td>
<td>string</td>
<td>Enter a subject line to be used in email status updates.</td>
</tr>
<tr>
<td>Power Off UPS</td>
<td>checkbox</td>
<td>Set to power off the UPS after shutting down the FreeNAS system.</td>
</tr>
</tbody>
</table>
Note: For USB devices, the easiest way to determine the correct device name is to enable the Show console messages option in System → Advanced. Plug in the USB device and look for a /dev/ugen or /dev/uhid device name in the console messages.

Tip: Some UPS models might be unresponsive with the default polling frequency. This can show in FreeNAS® logs as a recurring error like: libusb_get_interrupt: Unknown error.

If this error occurs, decrease the polling frequency by adding an entry to Auxiliary Parameters (ups.conf): pollinterval = 10. The default polling frequency is two seconds.

`upsc(8)` can be used to get status variables from the UPS daemon such as the current charge and input voltage. It can be run from Shell (page 304) using this syntax:

```
upsc ups@localhost
```

The `upsc(8)` man page gives some other usage examples.

`upscmd(8)` can be used to send commands directly to the UPS, assuming the hardware supports the command being sent. Only users with administrative rights can use this command. These users are created in the Extra users field.

11.17.1 Multiple Computers with One UPS

A UPS with adequate capacity can power multiple computers. One computer is connected to the UPS data port with a serial or USB cable. This master makes UPS status available on the network for other computers. These slave computers are powered by the UPS, but receive UPS status data from the master computer. See the NUT User Manual and NUT User Manual Pages.

11.18 WebDAV

The WebDAV service can be configured to provide a file browser over a web connection. Before starting this service, at least one WebDAV share must be created using Sharing → WebDAV Shares → Add WebDAV Share. Refer to WebDAV Shares (page 202) for instructions on how to create a share and connect to it when the service is configured and started.

Figure 11.20 shows the WebDAV configuration screen. Table 11.16 summarizes the available options.
Fig. 11.20: WebDAV Configuration Screen

Table 11.16: WebDAV Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>drop-down menu</td>
<td>HTTP keeps the connection always unencrypted. HTTPS always encrypts the connection. HTTP+HTTPS allows both types of connections.</td>
</tr>
<tr>
<td>HTTP Port</td>
<td>string</td>
<td>Specify a port for unencrypted connections. Only appears if the selected Protocol is HTTP or HTTP+HTTPS. The default of 8080 is recommended. Do not reuse a port number.</td>
</tr>
<tr>
<td>HTTPS Port</td>
<td>string</td>
<td>Specify a port for encrypted connections. Only appears if the selected Protocol is HTTPS or HTTP+HTTPS. The default of 8081 is recommended. Do not reuse a port number.</td>
</tr>
<tr>
<td>Webdav SSL Certificate</td>
<td>drop-down menu</td>
<td>Select the SSL certificate to use for encrypted connections. Only appears if the selected Protocol is HTTPS or HTTP+HTTPS. To create a certificate, use System → Certificates.</td>
</tr>
<tr>
<td>HTTP Authentication</td>
<td>drop-down menu</td>
<td>Choices are No Authentication, Basic Authentication (unencrypted), or Digest Authentication (encrypted).</td>
</tr>
<tr>
<td>Webdav Password</td>
<td>string</td>
<td>Default is davtest. This is a known value and is recommended to be changed.</td>
</tr>
</tbody>
</table>

267
Warning: The legacy plugins infrastructure has been deprecated and is no longer supported. Plugins installation has been removed from the legacy UI but it can still be used to manage existing plugins. It is recommended to reinstall all legacy plugins using the new UI.

12.1 Installed Plugins

Entries for installed PBI will appear in these locations:

- the Installed tab of Plugins
- the Plugins section of the tree
- the jails section of the tree

The entry in the Installed tab of Plugins displays the plugin name and version, the name of the PBI installed, the name of the jail, whether the application status is ON or OFF, and a button to delete the application and its associated jail.

Note: The Service status of a plugin must be turned to ON before the installed application is available. Before starting the service, check to see if it has a configuration menu by clicking its entry in the Plugins section of the tree. If the application is configurable, this will open a screen that contains the available configuration options. Plugins which are not configurable display a message with a hyperlink for accessing the software. However, that hyperlink does not work until the plugin is started.

Always review the configuration options of a plugin before attempting to start it. Some plugins have options that need to be set before their service will successfully start. If the application has not been configured before, check the website of the application to see what documentation is available.

If the application requires access to the data stored on the FreeNAS® system, click the entry for the associated jail in the jails section of the tree and add a storage as described in Add Storage (page 275).

Access the shell of the jail containing the application by clicking the entry for the associated jail in the jails section of the tree. You can then click its shell icon as described in Managing Jails (page 273).

Once the configuration is complete, click the red OFF button for the entry for the plugin. If the service starts successfully, it will change to a blue ON. If it fails to start, click the jail's Shell icon and type `tail /var/log/messages` to see if any errors were logged.

12.2 Deleting Plugins

Deleting a plugin deletes the associated jail as it is no longer required. Before deleting a plugin, make sure that there is no data or configuration options in the jail that need to be saved. Back up that data before deleting the plugin.
In the example shown in Figure 12.1, Sabnzbd is installed and the user has clicked the *Delete* button. A pop-up message displays. **This is the one and only warning.**

![Deleting an Installed Plugin](image)

Fig. 12.1: Deleting an Installed Plugin
This section describes how to use Jails, which allow users who are comfortable with the command line to have more control over software installation and management.

Warning: The jails infrastructure now uses the iocage backend and the warden backend has been deprecated and is no longer supported. Jail creation has been removed from the legacy UI but it can still be used to manage existing warden jails. It is recommended to recreate all legacy jails using the new UI, copy over any existing configurations, and delete the old jail datasets once the new jails are working as expected. To create new jails, log into the new UI.

By default, a FreeBSD jail (https://en.wikipedia.org/wiki/Freebsd_jail) is created. This provides a very light-weight, operating system-level virtualization. Consider it as another independent instance of FreeBSD running on the same hardware, without all of the overhead usually associated with virtualization. The jail installs the FreeBSD software management utilities so FreeBSD ports can be compiled and FreeBSD packages can be installed from the command line of the jail.

It is important to understand that any users, groups, installed software, and configurations within a jail are isolated from both the FreeNAS® operating system and any other jails running on that system.

The rest of this section describes:
- Jails Configuration (page 270)
- Managing Jails (page 273)
- Starting Installed Software (page 278)

13.1 Jails Configuration

Jails are stored in a volume or dataset. **Using a separate dataset for the jail Root is strongly recommended.** The volume or dataset to be used must already exist or can be created with Volume Manager (page 133).

Note: The Jail Root volume or dataset cannot be created on a Share (page 190).

Begin global jail configuration by choosing **Jails → Configuration** to open the screen shown in Figure 13.1. Jails are automatically installed into their own dataset under the specified path as they are created. For example, if the jail Root is set to /mnt/volume1/dataset1 and a jail named jail1 is created, it is installed into its own dataset named /mnt/volume1/dataset1/jail1.
FreeNAS® 11.2-U8 User Guide, Release 11.2

Fig. 13.1: Global Jail Configuration

Warning: If any Plugins (page 268) are already installed, the Jail Root, IPv4 Network, IPv4 Network Start Address, and IPv4 Network End Address are automatically filled. Double-check that the pre-configured IP address values are appropriate for the jails and do not conflict with addresses used by other systems on the network.

Table 13.1 summarizes the fields in this configuration screen. Refer to the text below the table for more details on how to properly configure the Jail Root and network settings. Some settings are only available in Advanced Mode. To see these settings, either click the Advanced Mode button or configure the system to always display these settings by checking the box Show advanced fields by default in System → Advanced.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jail Root</td>
<td>browse button</td>
<td></td>
<td>Mandatory. Jails cannot be added until this is set.</td>
</tr>
<tr>
<td>IPv4 DHCP</td>
<td>checkbox</td>
<td></td>
<td>Check this box if the network has a DHCP server.</td>
</tr>
<tr>
<td>IPv4 Network</td>
<td>string</td>
<td>✓</td>
<td>The format is IP address of network/CIDR mask.</td>
</tr>
<tr>
<td>IPv4 Network Start Address</td>
<td>string</td>
<td>✓</td>
<td>Enter the first IP address in the reserved range in the format host/CIDR mask.</td>
</tr>
<tr>
<td>IPv4 Network End Address</td>
<td>string</td>
<td>✓</td>
<td>Enter the last IP address in the reserved range in the format host/CIDR mask.</td>
</tr>
<tr>
<td>IPv6 Autoconfigure</td>
<td>checkbox</td>
<td></td>
<td>Check this box if the network has a DHCPv6 server and IPv6 will be used to access jails.</td>
</tr>
<tr>
<td>IPv6 Network</td>
<td>string</td>
<td>✓</td>
<td>Enter the network address for a properly configured IPv6 network.</td>
</tr>
<tr>
<td>IPv6 Network Start Address</td>
<td>string</td>
<td>✓</td>
<td>Enter the first IP address in the reserved range for a properly configured IPv6 network.</td>
</tr>
<tr>
<td>IPv6 Network End Address</td>
<td>string</td>
<td>✓</td>
<td>Enter the last IP address in the reserved range for a properly configured IPv6 network.</td>
</tr>
<tr>
<td>Collection URL</td>
<td>string</td>
<td>✓</td>
<td>Changing the default may break the ability to install jails.</td>
</tr>
</tbody>
</table>

When selecting the Jail Root, ensure that the size of the selected volume or dataset is sufficient to hold the number of jails to be installed as well as any software, log files, and data to be stored within each jail. At a bare minimum, budget at least 2 GiB per jail and do not select a dataset that is less than 2 GiB in size.

Note: When adding storage to a jail, be aware that the path size is limited to 88 characters. Make sure that the length of the volume name plus the dataset name plus the jail name does not exceed this limit.

If the network contains a DHCP server, it is recommended to check the box IPv4 DHCP (or IPv6 Autoconfigure, for a
properly configured IPv6 network). This prevents IP address conflicts on the network as the DHCP server automatically assigns the jail the next available lease and records the lease as in use.

If a static IP address is needed so that users always know the IP address of the jail, enter the start and end address for the IPv4 and/or IPv6 network. The range defined by the start and end addresses will be automatically assigned as jails are created. For example, when creating 5 jails on the 192.168.1.0 network, enter a IPv4 Network Start Address of 192.168.1.100 and a IPv4 Network End Address of 192.168.1.104.

When creating a start and end range on a network that contains a DHCP server, it is important to also reserve those addresses on the DHCP server. Otherwise, the DHCP server is not aware that those addresses are being used by jails. This lead to IP address conflicts and weird networking errors on the network.

FreeNAS® automatically detects and displays the IPv4 Network to which the administrative interface is connected. This setting is important. The IP addresses used by the jails must be pingable from the FreeNAS® system for the jails and any installed software to be accessible. If the network topology requires changing the default value, a default gateway and possibly a static route need to be added to the specified network. After changing this value, ensure that the subnet mask value is correct, as an incorrect mask can make the IP network unreachable. When in doubt, keep the default setting for IPv4 Network. With VMware, make sure that the vswitch is set to “promiscuous mode”. With VirtualBox, make sure Network -> Advanced -> Promiscuous Mode is not set to “Deny”.

After clicking the Save button to save the configuration, the system is ready to create and manage jails as described in the rest of this chapter.

Table 13.2 summarizes the available options. Most settings are only available in Advanced Mode and are not needed if the intent is to create a FreeBSD jail. To see these settings, either click the Advanced Mode button or configure the system to always display these settings by checking the box Show advanced fields by default in System → Advanced.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jail Name</td>
<td>string</td>
<td></td>
<td>Mandatory. Can only contain letters, numbers, dashes, or the underscore character.</td>
</tr>
<tr>
<td>Template</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Contains any created custom templates.</td>
</tr>
<tr>
<td>IPv4 DHCP</td>
<td>checkbox</td>
<td>✓</td>
<td>If unchecked, make sure that the defined address does not conflict with the DHCP server’s pool of available addresses.</td>
</tr>
<tr>
<td>IPv4 address</td>
<td>integer</td>
<td>✓</td>
<td>This and the other IPv4 settings are grayed out if IPv4 DHCP is checked. Enter a unique IP address that is in the local network and not already used by any other computer.</td>
</tr>
<tr>
<td>IPv4 netmask</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Select the subnet mask associated with IPv4 address.</td>
</tr>
<tr>
<td>IPv4 bridge address</td>
<td>integer</td>
<td>✓</td>
<td>Grayed out unless VIMAGE is checked. See NOTE below.</td>
</tr>
<tr>
<td>IPv4 bridge netmask</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Select the subnet mask associated with IPv4 bridge address. Grayed out unless VIMAGE is checked.</td>
</tr>
<tr>
<td>IPv4 default gateway</td>
<td>string</td>
<td>✓</td>
<td>Grayed out unless VIMAGE is checked.</td>
</tr>
<tr>
<td>IPv6 Autoconfigure</td>
<td>checkbox</td>
<td>✓</td>
<td>If unchecked, make sure that the defined address does not conflict with the DHCP server’s pool of available addresses.</td>
</tr>
<tr>
<td>IPv6 address</td>
<td>integer</td>
<td>✓</td>
<td>This and other IPv6 settings are grayed out if IPv6 Autoconfigure is checked. Enter a unique IPv6 address that is in the local network and not already used by any other computer.</td>
</tr>
<tr>
<td>IPv6 prefix length</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Select the prefix length associated with IPv6 address.</td>
</tr>
<tr>
<td>IPv6 bridge address</td>
<td>integer</td>
<td>✓</td>
<td>Grayed out unless VIMAGE is checked. See NOTE below.</td>
</tr>
<tr>
<td>IPv6 bridge prefix length</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Grayed out unless VIMAGE is checked. Select the prefix length associated with IPv6 address.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 13.2 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 default gateway</td>
<td>string</td>
<td>✓</td>
<td>Grayed out unless VIMAGE is checked. Used to set the jail's default gateway IPv6 address.</td>
</tr>
<tr>
<td>MAC</td>
<td>string</td>
<td>✓</td>
<td>Grayed out unless VIMAGE is checked. Unique static MAC addresses must be entered for every jail created if a static MAC address is entered.</td>
</tr>
<tr>
<td>NIC</td>
<td>drop-down</td>
<td>✓</td>
<td>Grayed out if VIMAGE is checked. Can be used to specify the interface to use for jail connections.</td>
</tr>
<tr>
<td>Sysctls</td>
<td>string</td>
<td>✓</td>
<td>Comma-delimited list of sysctls to set inside jail (like <code>allow.sysvipc=1,allow.raw_sockets=1</code>)</td>
</tr>
<tr>
<td>Autostart</td>
<td>checkbox</td>
<td>✓</td>
<td>Uncheck if the jail will be started manually.</td>
</tr>
<tr>
<td>VIMAGE</td>
<td>checkbox</td>
<td>✓</td>
<td>Gives a jail its own virtualized network stack. Requires promiscuous mode be enabled on the interface.</td>
</tr>
<tr>
<td>NAT</td>
<td>checkbox</td>
<td>✓</td>
<td>Grayed out for Linux jails or if VIMAGE is unchecked. Enables Network Address Translation for the jail.</td>
</tr>
</tbody>
</table>

Note: The IPv4 and IPv6 bridge interface is used to bridge the `epair(4)` (https://www.freebsd.org/cgi/man.cgi?query=epair) device, which is automatically created for each started jail, to a physical network device. The default network device is the one that is configured with a default gateway. So, if `em0` is the FreeBSD name of the physical interface and three jails are running, these virtual interfaces are automatically created: `bridge0`, `epair0a`, `epair1a`, and `epair2a`. The physical interface `em0` will be added to the bridge, as well as each epair device. The other half of the epair is placed inside the jail and is assigned the IP address specified for that jail. The bridge interface is assigned an alias of the default gateway for that jail or the bridge IP, if configured; either is correct.

13.2 Managing Jails

Click **Jails** to view and configure the added jails. In the example shown in Figure 13.2, the list entry for the jail named `xdm_1` has been clicked to enable that jail's configuration options. The entry indicates the jail name, IP address, whether it will start automatically at system boot, if it is currently running, and jail type: `standard` for a FreeBSD jail, or `pluginjail` if it was installed using **Plugins** (page 268).
Fig. 13.2: Viewing Jails

From left to right, these configuration icons are available:

- **Edit jail:** edit the jail settings which were described in Table 13.2. After a jail has been created, the jail name and type cannot be changed. These fields are grayed out.

- **Add Storage:** configure the jail to access an area of storage as described in Add Storage (page 275).

- **Start/Stop:** this icon changes appearance depending on the current Status of the jail. When the jail is not running, the icon is green and clicking it starts the jail. When the jail is already running, the icon is red and clicking it stops the jail. A stopped jail and its applications are inaccessible until it is restarted.

- **Restart:** restart the jail.

- **Shell:** access a root command prompt to configure the selected jail from the command line. When finished, type `exit` to close the shell.

- **Delete:** delete the jail and any periodic snapshots of it. The contents of the jail are entirely removed.

Warning: Back up data and programs in the jail before deleting it. There is no way to recover the contents of a jail after deletion.
13.2.1 Accessing a Jail Using SSH

`ssh` can be used to access a jail instead of the jail's `Shell` icon. This requires starting the `sshd` service and creating a user account for `ssh` access. Start by clicking the `Shell` icon for the desired jail.

Find the `sshd_enable=` line in the jail's `/etc/rc.conf` and set it to “YES”:

```
sshd_enable="YES"
```

Then start the SSH daemon:

```
service sshd start
```

The first time the service runs, the jail's RSA key pair is generated and the key fingerprint and random art image displayed.

Add a user account by typing `adduser` and following the prompts. If the user needs superuser privileges, they must be added to the `wheel` group. For those users, enter `wheel` at this prompt:

```
Login group is user1. Invite user1 into other groups? []: wheel
```

After creating the user, set the `root` password so that the new user will be able to use the `su` command to gain superuser privilege. To set the password, type `passwd` then enter and confirm the desired password.

Finally, test from another system that the user can successfully `ssh` in and become the superuser. In this example, a user named `user1` uses `ssh` to access the jail at 192.168.2.3. The first time the user logs in, they will be asked to verify the fingerprint of the host:

```
ssh user1@192.168.2.3
The authenticity of host '192.168.2.3 (192.168.2.3)' can't be established.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.2.3' (RSA) to the list of known hosts.
Password: type_password_here
```

Note: Each jail has its own user accounts and service configuration. These steps must be repeated for each jail that requires SSH access.

13.2.2 Add Storage

It is possible to give a FreeBSD jail access to an area of storage on the FreeNAS® system. This is useful for applications that store a large amount of data or if an application in a jail needs access to the data stored on the FreeNAS® system. One example is transmission, which stores torrents. The storage is added using the `mount_nullfs(8)` (https://www.freebsd.org/cgi/man.cgi?query=mount_nullfs) mechanism, which links data that resides outside of the jail as a storage area within the jail.

To add storage, click the `Add Storage` button for a highlighted jail entry to open the screen shown in Figure 13.3. This screen can also be accessed by expanding the jail name in the tree view and clicking `Storage → Add Storage`.
Browse to the **Source** and **Destination**, where:

- **Source:** is the directory or dataset on the FreeNAS® system which will be accessed by the jail. This directory **must** reside outside of the volume or dataset being used by the jail. This is why it is recommended to create a separate dataset to store jails, so the dataset holding the jails is always separate from any datasets used for storage on the FreeNAS® system.

- **Destination:** select an **existing, empty** directory within the jail to link to the **Source** storage area. If that directory does not exist yet, enter the desired directory name and check the **Create directory** box.

Storage is typically added because the user and group account associated with an application installed inside of a jail needs to access data stored on the FreeNAS® system. Before selecting the **Source**, it is important to first ensure that the permissions of the selected directory or dataset grant permission to the user/group account inside of the jail. This is not the default, as the users and groups created inside of a jail are totally separate from the users and groups of the FreeNAS® system.

The workflow for adding storage usually goes like this:

1. Determine the name of the user and group account used by the application. For example, the installation of the transmission application automatically creates a user account named *transmission* and a group account also named *transmission*. When in doubt, check the files `/etc/passwd` (to find the user account) and `/etc/group` (to find the group account) inside the jail. Typically, the user and group names are similar to the application name. Also, the UID and GID are usually the same as the port number used by the service.

 A **media** user and group (GID 8675309) are part of the base system. Having applications run as this group or user makes it possible to share storage between multiple applications in a single jail, between multiple jails, or even between the host and jails.

2. On the FreeNAS® system, create a user account and group account that match the user and group names used by the application in the jail.

3. Decide whether the jail should have access to existing data or if a new area of storage will be set aside for the jail to use.

4. If the jail will access existing data, edit the permissions of the volume or dataset so the user and group accounts have the desired read and write access. If multiple applications or jails are to have access to the same data, create a new group and add each needed user account to that group.

5. If an area of storage is being set aside for that jail or individual application, create a dataset. Edit the permissions of that dataset so the user and group account has the desired read and write access.

6. Use the **Add Storage** button of the jail and select the configured volume/dataset as the **Source**.
To prevent writes to the storage, check the box Read-Only.

By default, the Create directory box is checked. This means that the directory will automatically be created under the specified Destination path if the directory does not already exist.

After storage has been added or created, it appears in the tree under the specified jail. In the example shown in Figure 13.4, a dataset named tank/data has been chosen as the Source as it contains the files stored on the FreeNAS® system. When the storage was created, the user browsed to /usr/local/ in the Destination field, then entered test as the directory. Since this directory did not already exist, it was created, because the Create directory box was left checked. The resulting storage was added to the freebsd1 entry in the tree as /usr/local/test. The user has clicked this /usr/local/test entry to access the Edit screen.

Fig. 13.4: Example Storage

Storage is normally mounted as it is created. To unmount the storage, uncheck the Mounted? box.

Note: A mounted dataset does not automatically mount any of its child datasets. While the child datasets may appear to be browsable inside the jail, any changes are not visible. Since each dataset is considered to be its own filesystem, each child dataset must have its own mount point. Separate storage must be created for any child datasets which need to be mounted.

To delete the storage, click the Delete button.

Warning: It is important to realize that added storage is really just a pointer to the selected storage directory on the FreeNAS® system. It does not copy that data to the jail. Files that are deleted from the Destination directory are not deleted from the jail.
in the jail are really deleted from the Source directory on the FreeNAS® system. However, removing the jail storage entry only removes the pointer, leaving the data intact but not accessible from the jail.

13.3 Starting Installed Software

After packages or ports are installed, they need to be configured and started. If you are familiar with the software, look for the configuration file in `/usr/local/etc` or a subdirectory of it. Many FreeBSD packages contain a sample configuration file as a reference. If you are unfamiliar with the software, you will need to spend some time at the software's website to learn which configuration options are available and which configuration files require editing.

Most FreeBSD packages that contain a startable service include a startup script which is automatically installed to `/usr/local/etc/rc.d/`. After the configuration is complete, the starting of the service can be tested by running the script with the `onestart` option. As an example, if openvpn is installed into the jail, these commands run its startup script and verify that the service started:

```
/usr/local/etc/rc.d/openvpn onestart
Starting openvpn.

/usr/local/etc/rc.d/openvpn onestatus
openvpn is running as pid 45560.
```

If it produces an error:

```
/usr/local/etc/rc.d/openvpn onestart
Starting openvpn.
/usr/local/etc/rc.d/openvpn: WARNING: failed to start openvpn
```

Run `tail /var/log/messages` to see if any error messages hint at the problem. Most startup failures are related to a misconfiguration: either a typo or a missing option in a configuration file.

After verifying that the service starts and is working as intended, add a line to `/etc/rc.conf` to start the service automatically when the jail is started. The line to start a service always ends in `_enable="YES"` and typically starts with the name of the software. For example, this is the entry for the openvpn service:

```
openvpn_enable="YES"
```

When in doubt, the startup script shows the line to put in `/etc/rc.conf`. This is the description in `/usr/local/etc/rc.d/openvpn`:

```
# This script supports running multiple instances of openvpn.
# To run additional instances link this script to something like
# % ln -s openvpn openvpn_foo

# and define additional openvpn_foo_* variables in one of
# /etc/rc.conf, /etc/rc.conf.local or /etc/rc.conf.d /openvpn_foo

# Below NAME should be substituted with the name of this script. By default
# it is openvpn, so read as openvpn_enable. If you linked the script to
# openvpn_foo, then read as openvpn_foo_enable etc.

# The following variables are supported (defaults are shown).
# You can place them in any of
# /etc/rc.conf, /etc/rc.conf.local or /etc/rc.conf.d/NAME
```
The startup script also indicates if any additional parameters are available:

```bash
# NAME_if=
# driver(s) to load, set to "tun", "tap" or "tun tap"
# it is OK to specify the if_ prefix.
#
# # optional:
# NAME_flags=
# additional command line arguments
# NAME_configfile="/usr/local/etc/openvpn/NAME.conf"
# --config file
# NAME_dir="/usr/local/etc/openvpn"
# --cd directory
```
A Virtual Machine (VM) is an environment on a host computer that can be used as if it were a separate physical computer. VMs can be used to run multiple operating systems simultaneously on a single computer. Operating systems running inside a VM see emulated virtual hardware rather than the actual hardware of the host computer. This provides more isolation than jails (page 270), although there is additional overhead. A portion of system RAM is assigned to each VM, and each VM uses a zvol (page 143) for storage. While a VM is running, these resources are not available to the host computer or other VMs.

FreeNAS® VMs use the bhyve(8) virtual machine software. This type of virtualization requires an Intel processor with Extended Page Tables (EPT) or an AMD processor with Rapid Virtualization Indexing (RVI) or Nested Page Tables (NPT).

To verify that an Intel processor has the required features, use Shell (page 304) to run `grep VT-x /var/run/dmesg.boot`. If the EPT and UG features are shown, this processor can be used with bhyve.

To verify that an AMD processor has the required features, use Shell (page 304) to run `grep POPCNT /var/run/dmesg.boot`. If the output shows the POPCNT feature, this processor can be used with bhyve.

Note: By default, new VMs have the bhyve(8) –H option set. This causes the virtual CPU thread to yield when a HLT instruction is detected, and prevents idle VMs from consuming all of the host’s CPU.

Note: AMD K10 “Kuma” processors include POPCNT but do not support NRIPS, which is required for use with bhyve. Production of these processors ceased in 2012 or 2013.

14.1 Creating VMs

Select VMs → Add VM for the Add VM dialog shown in Figure 14.1:
VM configuration options are described in Table 14.1.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM Type</td>
<td>dropdown menu</td>
<td>Choose between a standard VM or a specialized Docker VM VM.</td>
</tr>
<tr>
<td>Name</td>
<td>string</td>
<td>Enter a name to identify the VM.</td>
</tr>
<tr>
<td>Description</td>
<td>string</td>
<td>Enter a short description of the VM or its purpose.</td>
</tr>
<tr>
<td>Virtual CPUs</td>
<td>integer</td>
<td>Select the number of virtual CPUs to allocate to the VM. The maximum is 16 unless the host CPU limits the maximum. The VM operating system might also have operational or licensing restrictions on the number of CPUs.</td>
</tr>
<tr>
<td>Memory Size (MiB)</td>
<td>integer</td>
<td>Allocate the amount of RAM in mebibytes (https://simple.wikipedia.org/wiki/Mebibyte) for the VM.</td>
</tr>
<tr>
<td>Boot Method</td>
<td>dropdown menu</td>
<td>Select UEFI for newer operating systems, or UEFI-CSM for (Compatibility Support Mode) older operating systems that only understand BIOS booting.</td>
</tr>
<tr>
<td>Autostart</td>
<td>checkbox</td>
<td>Set to start the VM automatically when the system boots.</td>
</tr>
</tbody>
</table>

14.2 Adding Devices to a VM

After creating the VM, click it to select it, then click Devices and Add Device to add virtual hardware to it:
Select the name of the VM from the VM drop-down menu, then select the Type of device to add. These types are available:

- **Network Interfaces** (page 282)
- **Disk Devices** (page 283)
- **Raw Files** (page 283)
- **CD-ROMs** (page 284)
- **VNC Interface** (page 285)

Note: A **Docker VM** (page 287) does not support VNC connections.

Figure 14.3 shows the fields that appear when **Network Interface** is the selected Type.

14.2.1 Network Interfaces

The default **Adapter Type** emulates an Intel e82545 (e1000) Ethernet card for compatibility with most operating systems. **VirtIO** can provide better performance when the operating system installed in the VM supports VirtIO paravirtualized network drivers.
If the system has multiple physical network interface cards, use the *Nic to attach* drop-down menu to specify which physical interface to associate with the VM.

By default, the VM receives an auto-generated random MAC address. To override the default with a custom value, enter the desired address into the *MAC Address* field.

Tip: To check which interface is attached to a VM, start the VM and go to the Shell (page 304). Type `ifconfig` and find the tap (https://en.wikipedia.org/wiki/TUN/TAP) interface that shows the name of the VM in the description.

14.2.2 Disk Devices

Zvols (page 143) are typically used as virtual hard drives. After *creating a zvol* (page 143), associate it with the VM by selecting *Add device*.

![Add device](image)

Fig. 14.4: VM Disk Device

Choose the VM, select a *Type of Disk*, select the created zvol, then set the *Mode*:

- **AHCI** emulates an AHCI hard disk for best software compatibility. This is recommended for Windows VMs.
- **VirtIO** uses paravirtualized drivers and can provide better performance, but requires the operating system installed in the VM to support VirtIO disk devices.

If a specific sector size is required, enter the number of bytes into *Disk sector size*. The default of 0 uses an autotune script to determine the best sector size for the zvol.

14.2.3 Raw Files

Raw Files are similar to **Zvol** (page 143) disk devices, but the disk image comes from a file. These are typically used with existing read-only binary images of drives, like an installer disk image file meant to be copied onto a USB stick.

After obtaining and copying the image file to the *FreeNAS®* system, select *Add device*, choose the VM, select a *Type of Raw File*, browse to the image file, then set the *Mode*:

- **AHCI** emulates an AHCI hard disk for best software compatibility.
- **VirtIO** uses paravirtualized drivers and can provide better performance, but requires the operating system installed in the VM to support VirtIO disk devices.
A Docker VM also has a *password* field. This is the login password for the Docker VM.

If a specific sector size is required, enter the number of bytes into *Disk sectorsize*. The default of 0 uses an autotuner to find and set the best sector size for the file.

14.2.4 CD-ROM Devices

Adding a CD-ROM device makes it possible to boot the VM from a CD-ROM image, typically an installation CD. The image must be present on an accessible portion of the FreeNAS® storage. In this example, a FreeBSD installation image is shown:

Note: VMs from other virtual machine systems can be recreated for use in FreeNAS®. Back up the original VM, then create a new FreeNAS® VM with virtual hardware as close as possible to the original VM. Binary-copy the disk image data into the *zvol* (page 143) created for the FreeNAS® VM with a tool that operates at the level of disk blocks, like `dd(1)` (https://www.freebsd.org/cgi/man.cgi?query=dd). For some VM systems, it is best to back up data, install the operating system from scratch in a new FreeNAS® VM, and restore the data into the new VM.
14.2.5 VNC Interface

VMs set to UEFI booting are also given a VNC (Virtual Network Computing) remote connection. A standard VNC (https://en.wikipedia.org/wiki/Virtual_Network_Computing) client can connect to the VM to provide screen output and keyboard and mouse input. Each standard VM can have a single VNC device. A Docker VM does not support VNC devices.

Note: Using a non-US keyboard with VNC is not yet supported. As a workaround, select the US keymap on the system running the VNC client, then configure the operating system running in the VM to use a keymap that matches the physical keyboard. This will enable passthrough of all keys regardless of the keyboard layout.

Figure 14.7 shows the fields that appear when VNC is the selected Type.

![Fig. 14.7: VM VNC Device](image)

The Resolution drop-down menu can be used to modify the default screen resolution used by the VNC session.

The VNC port can be set to 0, left empty for FreeNAS® to assign a port when the VM is started, or set to a fixed, preferred port number.

Select the IP address for VNC to listen on with the Bind to drop-down menu.

Set Wait to boot to indicate that the VNC client should wait until the VM has booted before attempting the connection.

To automatically pass the VNC password, enter it into the Password field. Note that the password is limited to 8 characters.

To use the VNC web interface, set VNC Web.

Tip: If a RealVNC 5.X Client shows the error RFB protocol error: invalid message type, disable the Adapt to network speed option and move the slider to Best quality. On later versions of RealVNC, select File → Preferences,
click *Expert, ProtocolVersion*, then select 4.1 from the drop-down menu.

14.2.6 Virtual Serial Ports

VMs automatically include a virtual serial port.

- /dev/nmdm1B is assigned to the first VM
- /dev/nmdm2B is assigned to the second VM

And so on. These virtual serial ports allow connecting to the VM console from the *Shell* (page 304).

Tip: The nmdm (https://www.freebsd.org/cgi/man.cgi?query=nmdm) device is dynamically created. The actual nmdm name can differ on each system.

To connect to the first VM:

```
cu -s 9600 -l /dev/nmdm1B
```

See *cu(1)* (https://www.freebsd.org/cgi/man.cgi?query=cu) for more information on operating cu.

14.3 Running VMs

Select VMs to see a list of configured VMs. Configuration and control buttons appear at the bottom of the screen when an individual VM is selected with a mouse click:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Info</th>
<th>Virtual CPUs</th>
<th>Memory Size (MB)</th>
<th>Boot Method</th>
<th>Autostart</th>
</tr>
</thead>
<tbody>
<tr>
<td>samplevm</td>
<td>A sample virtual machine</td>
<td>State: STOPPED VNC Port: 5901</td>
<td>1</td>
<td>2048</td>
<td>UEFI</td>
<td>false</td>
</tr>
</tbody>
</table>

![Fig. 14.8: VM Configuration and Control Buttons](image)

The name, description, running state, VNC port (if present), and other configuration values are shown. Click on an individual VM for additional options.

Some standard buttons are shown for all VMs:

- *Edit* changes VM settings.
- *Delete removes the VM* (page 287).
- *Devices* is used to add and remove devices to this VM.

When a VM is not running, these buttons are available:

- *Start* starts the VM.
- *Clone clones* or copies the VM to a new VM. The new VM is given the same name as the original, with _cloneN appended.

When a VM is already running, these buttons are available:

- *Stop* shuts down the VM.
- *Power off* immediately halts the VM, equivalent to disconnecting the power on a physical computer.
- *Restart* restarts the VM.
• *Vnc via Web* starts a web VNC connection to the VM. The VM must have a VNC device and *VNC Web* enabled in that device.

14.4 Deleting VMs

A VM is deleted by clicking the VM, then *Delete* at the bottom of the screen. A dialog shows any related devices that will also be deleted and asks for confirmation.

Tip: *Zvols* (page 143) used in *disk devices* (page 283) and image files used in *raw file* (page 283) devices are *not* removed when a VM is deleted. These resources can be removed manually after it is determined that the data in them has been backed up or is no longer needed.

14.5 Docker VM

Docker (https://www.docker.com/what-docker) is open source software for automating application deployment inside containers. A container provides a complete filesystem, runtime, system tools, and system libraries, so applications always see the same environment.

FreeNAS® runs the Rancher web interface within the Docker VM.

14.5.1 Docker VM Requirements

The system BIOS *must* have virtualization support enabled for a Docker VM to work properly. On Intel systems this is typically an option called *VT-x*. AMD systems generally have an *SVM* option.

20 GiB of storage space is required for the Docker VM. For setup, the *SSH* (page 259) service must be enabled.

The Docker VM requires 2 GiB of RAM while running.

14.5.2 Create the Docker VM

Figure 14.9 shows the window that appears after going to the *VMs* page, clicking *Add VM*, and selecting Docker VM as the *VM Type*.
Table 14.2: Docker VM Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM Type</td>
<td>drop-down menu</td>
<td>Choose between a standard VM or a specialized Docker VM.</td>
</tr>
<tr>
<td>Name</td>
<td>string</td>
<td>A descriptive name for the Docker VM.</td>
</tr>
<tr>
<td>Description</td>
<td>string</td>
<td>A description of this Docker VM.</td>
</tr>
</tbody>
</table>

Fig. 14.9: Docker VM Configuration

Continued on next page
<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual CPUs</td>
<td>integer</td>
<td>Number of virtual CPUs to allocate to the Docker VM. The maximum is 16 unless the host CPU also limits the maximum. The VM operating system can also have operational or licensing restrictions on the number of CPUs.</td>
</tr>
<tr>
<td>Memory Size (MiB)</td>
<td>integer</td>
<td>Allocate this amount of RAM in MiB for the Docker VM. A minimum 2048 MiB of RAM is required.</td>
</tr>
<tr>
<td>Autostart</td>
<td>checkbox</td>
<td>Set to start this Docker VM when the FreeNAS® system boots.</td>
</tr>
<tr>
<td>Root Password</td>
<td>string</td>
<td>Enter a password to use with the Docker VM root account. The password cannot contain a space.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 14.2 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Docker Disk File</td>
<td>string</td>
<td>Browse to the location to store a new raw file. Add /, a unique name to the end of the path, and .img to create a new raw file with that name. Example: /mnt/pool1/rancherui.img</td>
</tr>
<tr>
<td>Size of Docker Disk File (GiB)</td>
<td>integer</td>
<td>Allocate storage size in GiB for the new raw file. 20 is the minimum recommendation.</td>
</tr>
</tbody>
</table>

Recommendations for the Docker VM:

- Enter *Rancher UI VM* for the *Description*.
- Leave the number of *Virtual CPUs* at 1.
- Enter 2048 for the *Memory Size*.
- Leave 20 as the *Size of Docker Disk File (GiB)*.

Click *OK* to create the virtual machine.

To make any changes to the raw file after creating the Docker VM, click on the *Devices* button for the VM to show the devices attached to that VM. Click on the *RAW* device to select it, then click *Edit*. Figure 14.10 shows the options for editing the Docker VM raw file options.
Fig. 14.10: Changing the Docker VM Password

The raw file options (page 283) section describes the options in this window.
14.5.3 Start the Docker VM

Click VMs, then click on the Docker VM line to select it. Click the Start button and Yes to start the VM.

14.5.4 SSH into the Docker VM

It is possible to SSH into a running Docker VM. Go to the VMs page and find the Docker VM. The Info column shows the Docker VM Com Port. In this example, /dev/nmdm12B is used.

Use an SSH client to connect to the FreeNAS® server. Remember this also requires the SSH (page 259) service to be running. Depending on the FreeNAS® system configuration, it might also require changes to the SSH service settings, like setting Login as Root with Password.

At the FreeNAS® console prompt, connect to the running Docker VM with cu (https://www.freebsd.org/cgi/man.cgi?query=cu), replacing /dev/nmdm12B with the value from the Docker VM Com Port:

```
cu -l /dev/nmdm12B -s 9600
```

If the terminal does not show a rancher login: prompt, press Enter. The Docker VM can take several minutes to start and display the login prompt.

14.5.5 Installing and Configuring the Rancher Server

Using the Docker VM to install and configure the Rancher Server is done from the command line. Open the Shell (page 304) and enter the command cu -l /dev/nmdm12B -s 9600, where /dev/nmdm12B is the Com Port value in the Info column for the Docker VM.

If the terminal does not show a rancher login: prompt after a few moments, press Enter.

Enter rancher as the username, press Enter, then type the password that was entered when the raw file was created above and press Enter again. After logging in, a [rancher@rancher ~]$ prompt is displayed.

Ensure Rancher has functional networking and can ping an outside website.

```
[rancher]@ClientHost ~]$ ping -c 3 google.com
PING google.com (172.217.0.78): 56 data bytes
64 bytes from 172.217.0.78: seq=0 ttl=54 time=18.613 ms
64 bytes from 172.217.0.78: seq=1 ttl=54 time=18.719 ms
64 bytes from 172.217.0.78: seq=2 ttl=54 time=18.788 ms
--- google.com ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 18.613/18.706/18.788 ms
```

If ping returns an error, adjust the VM Network Interface (page 282) and reboot the Docker VM.

Download and install the Rancher server with sudo docker run -d --restart=unless-stopped -p 8080:8080 rancher/server.

If a Cannot connect to the Docker daemon error is shown, enter sudo dockerd and try sudo docker run -d --restart=unless-stopped -p 8080:8080 rancher/server again. Installation time varies with processor and network connection speed. [rancher@ClientHost ~]$ is shown when the installation is finished.

Enter ifconfig eth0 | grep 'inet addr' to view the Rancher IP address. Enter the IP address followed by :8080 into a web browser to connect to the Rancher web interface. For example, if the IP address is 10.231.3.208, enter 10.231.3.208:8080 in the browser.

The Rancher web interface takes a few minutes to start. The web browser might show a connection error while the web interface starts. If a connection has timed out error is shown, wait one minute and refresh the page.
When the Rancher web interface loads, click *Add a host* from the banner across the top of the screen. Verify that *This site's address* is chosen and click *Save*.

Follow the steps shown in the Rancher web interface and copy the full `sudo docker run` command from the text box. Paste it in the Docker VM shell. The Docker VM will finish configuring Rancher. A `[rancher@ClientHost ~]$` prompt is shown when the configuration is complete.

Verify that the configuration is complete. Go to the Rancher web interface and click *INFRASTRUCTURE → Hosts*. When a host with the Rancher IP address is shown, configuration is complete and Rancher is ready to use.

For more information on Rancher, see the Rancher documentation (https://rancher.com/docs/os/v1.x/en/).

14.5.6 Configuring Persistent NFS-Shared Volumes

Rancher supports using a single persistent volume with multiple containers. This volume can also be shared with FreeNAS® using NFS. FreeNAS® must be configured with specific NFS permissions and a Rancher NFS server (https://rancher.com/docs/rancher/v1.6/en/rancher-services/storage-service/rancher-nfs/) must have a properly configured stack scoped volume (https://rancher.com/docs/rancher/v1.6/en/cattle/volumes/#volume-scopes).

A stack scoped volume is data that is managed by a single Rancher stack. The volume is shared by all services that reference it in the stack.

Configure NFS sharing for a stack scoped volume by setting specific options in the command line of the Rancher NFS server and the FreeNAS® system:

- Log in to the Rancher NFS server and modify `/etc/exports`. Add an entry for the NFS shared directory, typically `/nfs`, with several permissions options: `/nfs IP(rw, sync, no_root_squash, no_subtree_check)`. *IP* is the IP address of the client and can also be set to the wildcard `*`.
- In the FreeNAS® web interface, go to *Services → NFS Settings*. Set *Enable NFSv4* and *NFSv3 ownership model for NFSv4*. Click *SAVE* and restart the *NFS* service.
- Add `:nocopy` to the end of the pool to be mounted: `mount -t nfs pool:/mnt/pool1:nocopy ~nfsmounts/pool1_mount`
CHAPTER
FIFTEEN

REPORTING

Reporting displays several graphs, as seen in Figure 15.1. Click the tab for a device type to see those specific graphs.

FreeNAS® uses collectd (https://collectd.org/) to provide reporting statistics. The resulting graphs are grouped into several tabs on the Reporting page:

- **CPU**
 - CPU (https://collectd.org/wiki/index.php/Plugin:CPU) shows the amount of time spent by the CPU in various states such as executing user code, executing system code, and being idle.

- **Disk**
 - Disk (https://collectd.org/wiki/index.php/Plugin:Disk) shows statistics on I/O, percent busy, latency, operations per second, pending I/O requests, and disk temperature.

- **Memory**
 - **Swap** (https://collectd.org/wiki/index.php/Plugin:Swap) displays the amount of free and used swap space.

- **Network**
- **Interface** ([link](https://collectd.org/wiki/index.php/Plugin:Interface)) shows received and transmitted traffic in bits per second for each configured interface.

- **Partition**
 - **Disk space** ([link](https://collectd.org/wiki/index.php/Plugin:DF)) displays free and used space for each volume and dataset. However, the disk space used by an individual zvol is not displayed as it is a block device.

- **System**
 - **Processes and Uptime** ([link](https://collectd.org/wiki/index.php/Plugin:Processes)) displays the number of processes. It is grouped by state.
 - **Uptime** ([link](https://collectd.org/wiki/index.php/Plugin:Uptime)) keeps track of the system uptime, the average running time, and the maximum reached uptime.

- **Target**
 - Target shows bandwidth statistics for iSCSI ports.

- **ZFS**
 - **ZFS** ([link](https://collectd.org/wiki/index.php/Plugin:ZFS_ARC)) shows compressed physical ARC size, hit ratio, demand data, demand metadata, prefetch data, and prefetch metadata.

Reporting data is saved to permit viewing and monitoring usage trends over time. This data is preserved across system upgrades and restarts.

Data files are saved in `/var/db/collectd/rrd/`.

The reporting data file recording method is controlled by the `System → System Dataset Reporting database` option. When deselected, data files are recorded in a temporary filesystem and copied hourly to on-disk files.

When `System → System Dataset Reporting database` is enabled, data files are written directly to the `System Dataset` (page 81).

Warning: Reporting data is frequently written and should not be stored on the boot pool or operating system device.

Use the magnifier buttons next to each graph to increase or decrease the displayed time increment from 10 minutes, hourly, daily, weekly, or monthly. The `<` and `>` buttons can be used to scroll through the output.

Update on using Graphite with FreeNAS ([link](http://cmhramblings.blogspot.com/2015/12/update-on-using-graphite-with-freenas.html)) contains instructions for sending the collected information to a Graphite ([link](http://graphiteapp.org/)) server.
FreeNAS® provides a wizard which helps complete the steps needed to quickly configure FreeNAS® for serving data over a network. The wizard can be run at any time by clicking the *Wizard* icon. Figure 16.1 shows the first wizard configuration screen.

![Figure 16.1: Configuration Wizard](image)

Note: You can exit the wizard at any time by clicking the *Exit* button. However, exiting the wizard will not save any selections. The wizard can always be run again by clicking the *Wizard* icon. Alternately, the FreeNAS® GUI can be used to configure the system, as described in the rest of this Guide.

This screen can be used to change the default language, keyboard map, and timezone. After making your selections, click *Next*. The next screen depends on whether or not the storage disks have already been formatted into a ZFS pool.

Figure 16.2 shows the configuration screen that appears if the storage disks have not yet been formatted.
Note: The wizard will not recognize an encrypted ZFS pool. If your ZFS pool is GELI-encrypted, cancel the wizard and use the instructions in *Importing an Encrypted Volume* (page 147) to import the encrypted volume. You can then rerun the wizard afterwards, if you wish to use it for post-configuration, and it will recognize that the volume has been imported and will not prompt to reformat the disks.

Enter a name for the ZFS pool that conforms to these naming conventions (https://docs.oracle.com/cd/E23824_01/html/821-1448/gbcpt.html). It is recommended to choose a name that will stick out in the logs (e.g. not data or freenas).

Decide if the pool should provide disk redundancy, and if so, which type. The *ZFS Primer* (page 336) discusses RAIDZ redundancy in more detail. If you prefer to make a more complex configuration, click the *Exit* button to close the wizard and instead use *Volume Manager* (page 133).

These redundancy types are available:

- **Automatic**: automatically creates a mirrored, RAIDZ1, or RAIDZ2 pool, depending upon the number of disks. If you prefer to control the type of redundancy, select one of the other options.
- **RAID 10**: creates a striped mirror and requires a minimum of 4 disks.
- **RAIDZ2**: requires a minimum of 4 disks. Up to 2 disks can fail without data loss.
- **RAIDZ1**: requires a minimum of 3 disks. Up to 1 disk can fail without data loss.
- **Stripe**: requires a minimum of 1 disk. Provides no redundancy, meaning if any of the disks in the stripe fails, all data in the stripe is lost.

Once you have made your selection, click *Next* to continue.

If the disks have already been formatted with ZFS and the disks have **not** been encrypted, the next screen will instead prompt to import the volume, as shown in Figure 16.3.
Select the existing volume from the drop-down menu and click Next to continue. The next screen in the wizard is shown in Figure 16.4.

If the FreeNAS® system is on a network that does not contain an Active Directory, LDAP, or NIS server, click Next to skip to the next screen.

However, if the FreeNAS® system is on a network containing an Active Directory, LDAP, or NIS server and you wish to import the users and groups from that server, select the type of directory service in the DirectoryService drop-down menu. The rest of the fields in this screen will vary, depending upon which directory service is selected. Available configuration options for each directory service are summarized in Tables 16.1 through 16.3.

Note: Additional configuration options are available for each directory service. The wizard can be used to set the initial values required to connect to that directory service. You can then review the other available options in Directory Services (page 178) to determine if additional configuration is required.

Table 16.1: Active Directory Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain Name</td>
<td>string</td>
<td>Enter the name of Active Directory domain (e.g. example.com) or child domain (e.g. sales.example.com).</td>
</tr>
<tr>
<td>Domain Account Name</td>
<td>string</td>
<td>Enter the name of the Active Directory administrator account.</td>
</tr>
<tr>
<td>Domain Account Password</td>
<td>string</td>
<td>Enter the password for the Active Directory administrator account.</td>
</tr>
</tbody>
</table>

Table 16.2: LDAP Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname</td>
<td>string</td>
<td>Hostname or IP address of LDAP server.</td>
</tr>
</tbody>
</table>
Table 16.2 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base DN</td>
<td>string</td>
<td>Top level of the LDAP directory tree to be used when searching for resources. Example: \textit{dc=test,dc=org}</td>
</tr>
<tr>
<td>Bind DN</td>
<td>string</td>
<td>Name of the administrative account on the LDAP server. Example: \textit{cn=Manager,dc=test,dc=org}</td>
</tr>
<tr>
<td>Base password</td>
<td>string</td>
<td>Password for the administrative account on the LDAP server.</td>
</tr>
</tbody>
</table>

Table 16.3: NIS Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIS domain</td>
<td>string</td>
<td>Name of the NIS domain.</td>
</tr>
<tr>
<td>NIS servers</td>
<td>string</td>
<td>Enter a comma-delimited list of hostnames or IP addresses.</td>
</tr>
<tr>
<td>Secure mode</td>
<td>checkbox</td>
<td>Set for \texttt{ypbind(8)} (https://www.freebsd.org/cgi/man.cgi?query=ypbind) to refuse to bind to any NIS server that is not running as root on a TCP port number over 1024.</td>
</tr>
<tr>
<td>Manycast</td>
<td>checkbox</td>
<td>Set for \texttt{ypbind} to bind to the server that responds the fastest. This is useful when no local NIS server is available on the same subnet.</td>
</tr>
</tbody>
</table>

The next configuration screen, shown in Figure 16.5, is used to create network shares.

![Wizard](image)

\textit{Share name:} [Input field]

Purpose

- [] Windows (SMB)
- [] Mac OS X (AFP)
- [] Generic Unix (NFS)
- [] Block Storage (iSCSI)

Ownership

- [] Allow Guest
- [] Time Machine

Size: [Input field]

![Buttons]

\textit{Name:} [Input field]

![Buttons]

Fig. 16.5: Network Shares

FreeNAS® supports several types of shares for providing storage data to the clients in a network. The initial wizard can be used to quickly make shares using default permissions which should “just work” for common scenarios. For
more complex scenarios, refer to the section on *Sharing* (page 190).

To create a share using the wizard, enter a name for the share, then select the *Purpose* of the share:

- **Windows (SMB):** this type of share can be accessed by any operating system using a SMB client. Check the box for *Allow Guest* to allow users to access the share without a password. SMB shares created with the wizard can be fine-tuned afterward with *Windows (SMB) Shares* (page 203).

- **Mac OS X (AFP):** this type of share can be accessed by Mac OS X users. Check the box for *Time Machine* if Mac users will be using the FreeNAS® system as a backup device. AFP shares created with the wizard can be fine-tuned afterward with *Apple (AFP) Shares* (page 191).

- **Generic Unix (NFS):** this type of share can be accessed by any operating system using a NFS client. NFS shares created using the wizard can be fine-tuned afterward with *Unix (NFS) Shares* (page 195).

- **Block Storage (iSCSI):** this type of share can be accessed by any operating system using iSCSI initiator software. Enter the size of the block storage to create in the format 20G (for 20 GiB). iSCSI shares created with the wizard can be fine-tuned afterward with *iSCSI* (page 244).

After selecting the *Purpose*, click the *Ownership* button to see the screen shown in **Figure 16.6**.

![Fig. 16.6: Share Permissions](image)

The default permissions for the share are displayed. To create a user or group, enter the desired name, then check the *Create User* box to create that user and the *Create Group* box to create the group. Check or uncheck the boxes in the *Mode* section to set the initial access permissions for the share. When finished, click the *Return* button to return to the share creation screen. Click the *Add* button to finish creating that share, which will then appear in the *Name* frame.

The *Delete* button can be used to remove the share highlighted in the *Name* frame. To edit a share, highlight it, make the change, then press the *Update* button.

When finished making shares, click the *Next* button to advance to the screen shown in **Figure 16.7**.
This screen can be used to configure these settings:

- **Console messages**: check this box if you would like to view system messages at the bottom of the graphical administrative interface. This can be handy when troubleshooting a service that will not start. When using the console message view, if you click the console messages area, it will pop-up as a window, allowing you to scroll through the output and to copy its contents.

- **Root E-mail**: FreeNAS® provides an “Alert” icon in the upper right corner to provide a visual indication of events that warrant administrative attention. The alert system automatically emails the root user account whenever an alert is issued. **It is important** to enter the email address of the person to receive these alerts and other administrative emails. The rest of the email settings in this screen should also be reviewed and edited as necessary. Before leaving this screen, click the “Send Test Mail” button to ensure that email notifications are working correctly.

- **From email**: the from email address to use when sending email notifications.

- **Outgoing mail server**: hostname or IP address of SMTP server.

- **Port to connect to**: port number used by the SMTP server.

- **TLS/SSL**: encryption type used by the SMTP server.

- **Use SMTP Authentication**: check this box if the SMTP server requires authentication.

- **Username**: enter the username if the SMTP server requires authentication.

- **Password**: enter the password if the SMTP server requires authentication.

When finished, click **Next**. A message will indicate that the wizard is ready to perform all of the saved actions. To make changes, click the **Return to Wizard** button to review your edits. If you click the **Exit without saving** button, none of your selections will be saved. To save your edits, click the **Confirm** button. A status bar will indicate when the wizard has completed applying the new settings.

In addition to the settings that you specify, the wizard will automatically enable **S.M.A.R.T. Tests** (page 117), create a boot environment, and add the new boot environment to the boot menu. If you also wish to save a backup of the configuration database to the system being used to access the administrative graphical interface, go to **System**
→ General, click the Save Config button, and browse to the directory where the configuration will be saved. **Always back up your configuration after making any configuration changes.**

The rest of this Guide describes the FreeNAS® graphical interface in more detail. The layout of this Guide follows the order of the menu items in the tree located in the left frame of the graphical interface.

Note: It is important to use the GUI (or the Console Setup menu) for all configuration changes. FreeNAS® uses a configuration database to store its settings. While it is possible to use the command line to modify your configuration, changes made at the command line are not written to the configuration database. This means that any changes made at the command line will not persist after a reboot and will be overwritten by the values in the configuration database during an upgrade.
Clicking *Display System Processes* opens a screen showing the output of `top(1)` (https://www.freebsd.org/cgi/man.cgi?query=top). An example is shown in Figure 17.1.

![Running Processes](image)

Fig. 17.1: System Processes Running on FreeNAS®

The display automatically refreshes itself. The display is read-only.
Beginning with version 8.2.0, the FreeNAS® web interface provides a web shell, making it convenient to run command line tools from the web browser as the root user.

The prompt shows that the current user is root, the hostname is freenas, and the current working directory is ~, the home directory of the logged-in user.

Note: The default shell for a new install of FreeNAS® is zsh (https://www.freebsd.org/cgi/man.cgi?query=zsh). FreeNAS® systems which have been upgraded from an earlier version will continue to use csh as the default shell. The default shell can be changed in Account → Users. Select the root user and click Modify User. Choose the desired shell from the Shell drop-down and click OK.

To change the size of the shell, click the 80x25 drop-down menu and select a different size.
To copy text from the shell, highlight the text, then right-click and select *Copy*. Paste text into the shell by clicking *Paste*, pasting text into the field, and clicking *OK*.

A history of previous commands is available. Use the up and down arrow keys to scroll through previously entered commands. Edit the command if desired, then press *Enter* to re-enter the command.

The Home, End, and Delete keys are supported. Tab completion is also available. Type a few letters and press Tab to complete a command name or filename in the current directory.

Type `exit` to leave the session.

Clicking other web interface menus closes the shell session and stops commands running in the shell. *tmux* (page 330) provides the ability to detach shell sessions and then reattach to them later. Commands continue to run in a detached session.

Note: Not all shell features render correctly in Chrome. Firefox is the recommended browser when using the shell.

Most FreeBSD *command line utilities* (page 316) are available in the *Shell*, including additional troubleshooting applications for FreeNAS®.
Click the *Log Out* entry in the FreeNAS® GUI to log out.
The screen changes back to log in screen shown in Figure 19.1

![Welcome to FreeNAS® GUI](image)

Fig. 19.1: Log in to FreeNAS®
Clicking the Reboot entry in the tree shows the warning message in Figure 20.1. The browser screen color changes to red to indicate that this option will negatively impact current users of the FreeNAS® system.

An additional warning message appears when a restart is attempted on a system with a scrub or resilver in progress. In this case, it is recommended to Cancel the reboot request and to periodically run `zpool status` from Shell until it is verified that the scrub or resilver process is complete. Once complete, the reboot request can be reissued.

Click the Cancel button to cancel the reboot request. Otherwise, click the Reboot button to reboot the system. Rebooting the system disconnects all clients, including the web administration GUI. The URL in the web browser changes to add `/system/reboot` to the end of the IP address. Wait a few minutes for the system to boot, then use the back button in the browser to return to the IP address of the FreeNAS® system. The GUI login screen appears after a successful reboot. If the login screen does not appear, using a monitor and keyboard to physically access the FreeNAS® system is required to determine the problem that is preventing the system from resuming normal operation.
Clicking the *Shutdown* entry in the tree opens the warning message shown in Figure 21.1. The browser window color changes to red to indicate that this command will negatively impact current users of the FreeNAS® system.

![Fig. 21.1: Shutdown Warning Message](image)

If a scrub or resilver is running, a warning is shown. Clicking *Cancel* is recommended. `zpool status` can be run from the *Shell* (page 304) to watch for the scrub or resilver to complete. Then the system can be shut down normally. Confirm the command and click *Shutdown* to shutdown the system. Shutting down the system disconnects all clients, including the web administration GUI. Physical access to the FreeNAS® system is required to turn it back on.
The Support icon, the third icon from the left in the top menubar, provides a shortcut to System → Support. This screen can be used to create a support ticket. Refer to Support (page 98) for detailed usage instructions.
The FreeNAS® User Guide with complete configuration instructions is available by clicking Guide in the FreeNAS® web interface or going directly to https://www.ixsystems.com/documentation/freenas/.
The FreeNAS® alert system provides a visual warning of any conditions that require administrative attention. The Alert button in the far right corner flashes red when there is an outstanding alert. In the example alert shown in Figure 24.1, the system is warning that the S.M.A.R.T. service is not running.

Informational messages have a green OK, warning messages flash yellow, and messages requiring attention are listed as a red CRITICAL. CRITICAL messages are also emailed to the root user account. To remove the flashing alert for a message, deselect the option next to it.

Behind the scenes, an alert daemon checks for various alert conditions, such as volume and disk status, and writes the current conditions to /var/tmp/alert. The daemon retrieves the current alert status every minute and changes the solid green alert icon to flashing red when a new alert is detected.

Current alerts are viewed from the Shell option of the Console Setup Menu (Figure 3.1) or from the Web Shell (Figure 18.1) by running alertcli.py.

Some of the conditions that trigger an alert include:

- used space on a volume, dataset, or zvol goes over 80%; the alert goes red at 95%
- new ZFS Feature Flags (page 339) are available for the pool; this alert can be unchecked if a pool upgrade is not desired at present
- a new update is available
- the system reboots itself
- non-optimal multipath states are detected
- ZFS pool status changes from HEALTHY
- a S.M.A.R.T. error occurs
- the system dataset does not reside on the boot pool
- syslog-ng(8) (https://www.freebsd.org/cgi/man.cgi?query=syslog-ng) is not running
- the system is unable to bind to the WebGUI IPv4 Address set in System → General
- the system can not find an IP address configured on an iSCSI portal
- the NTP server cannot be contacted
- a periodic snapshot or replication task fails
• a VMware login or a VMware-Snapshot (page 176) task fails
• deleting a VMware snapshot fails
• a Certificate Authority or certificate is invalid or malformed
• an update failed, or the system needs to reboot to complete a successful update
• a re-key operation fails on an encrypted pool
• LDAP failed to bind to the domain
• any member interfaces of a lagg interface are not active
• the status of an Avago MegaRAID SAS controller has changed; mfiutil(8) (https://www.freebsd.org/cgi/man.cgi?query=mfiutil) is included for managing these devices
• a scrub is paused
SUPPORT RESOURCES

FreeNAS® has a large installation base and an active user community. This means that many usage questions have already been answered and the details are available on the Internet. If an issue occurs while using FreeNAS®, it can be helpful to spend a few moments searching the Internet for the word FreeNAS with some keywords that describe the error message or the function that is being implemented.

This section discusses resources available to FreeNAS® users:

- *Website and Social Media* (page 313)
- *Forums* (page 313)
- *IRC* (page 314)
- *Videos* (page 314)
- *Professional Support* (page 315)

25.1 Website and Social Media

The FreeNAS® website (http://www.freenas.org/) contains links to all of the available documentation, support, and social media resources. Major announcements are also posted to the main page.

Users are welcome to network on the FreeNAS® social media sites:

- LinkedIn (https://www.linkedin.com/groups/3903140/profile)
- Facebook FreeNAS Community (https://www.facebook.com/freenascommunity)
- Facebook FreeNAS Consortium (please request to be added) (https://www.facebook.com/groups/1707686686200221)
- Twitter (https://twitter.com/freenas)

25.2 Forums

The FreeNAS Forums (https://forums.freenas.org/index.php) are an active online resource where people can ask questions, receive help, and share findings with other FreeNAS® users. New users are encouraged to post a brief message about themselves and how they use FreeNAS® in the Introductions (https://forums.freenas.org/index.php?forums/introductions.25/) forum.

The Resources (https://forums.freenas.org/index.php?resources/) section contains categorized, user-contributed guides on many aspects of building and using FreeNAS® systems.

Language-specific categories are available under International.

- Chinese (https://forums.freenas.org/index.php?forums/chinese-%E4%B8%AD%E6%96%87.60/)
- German - Deutsch (https://forums.freenas.org/index.php?forums/german-deutsch.31/)
To join the forums, create an account with theSignUpNow!link.

Before asking a question on the forums, check theResources to see if the information is already there. See theForum Rules for guidelines on posting your hardware information and how to ask questions that will get a response.

25.3 IRC

To ask a question in real time, use the #freenas channel on IRC Freenode. Depending on the time of day and your time zone, FreeNAS® developers or other users may be available to provide assistance. If no one answers right away, remain on the channel, as other users tend to read the channel history to answer questions as time permits.

Typically, an IRC client is used to access the #freenas IRC channel. Alternately, use webchat from a web browser.

To get the most out of the IRC channel, keep these points in mind:

- Do not ask “Can anyone help me?”. Just ask the question.
- Do not ask a question and then leave. Users who know the answer cannot help you if you disappear.
- If no one answers, the question may be difficult to answer or it has been asked before. Research other resources while waiting for the question to be answered.
- Do not post error messages in the channel. Instead, use a pasting service such as pastebin and paste the resulting URL into the IRC discussion.

25.4 Videos

A series of instructional videos are available for FreeNAS®:

- Install Murmur (Mumble server) on FreeNAS/FreeBSD
- FreeNAS® 9.10 - Certificate Authority & SSL Certificates
- How to Update FreeNAS® 9.10
- FreeNAS® 9.10 LAGG & VLAN Overview
- FreeNAS 9.10 and Samba (SMB) Permissions
- FreeNAS® 11 - What's New
- FreeNAS® 11 - How to Install
25.5 Professional Support

In addition to free community resources, support might be available in your area through third-party consultants. Submit a support inquiry using the form at https://www.ixsystems.com/freenas-commercial-support/.
Several command line utilities which are provided with FreeNAS® are demonstrated in this section. These utilities are used for benchmarking and performance testing:

- **Iperf** (page 316): used for measuring maximum TCP and UDP bandwidth performance
- **Netperf** (page 319): a tool for measuring network performance
- **IOzone** (page 320): filesystem benchmark utility used to perform a broad filesystem analysis
- **arcstat** (page 322): used to gather ZFS ARC statistics

These utilities are specific to RAID controllers:

- **tw_cli** (page 327): used to monitor and maintain 3ware RAID controllers
- **MegaCli** (page 328): used to configure and manage Broadcom MegaRAID SAS family of RAID controllers

This section also describes these utilities:

- **freenas-debug** (page 329): the backend used to dump FreeNAS® debugging information
- **tmux** (page 330): a terminal multiplexer similar to GNU screen
- **Dmidecode** (page 330): reports information about system hardware as described in the system's BIOS

26.1 Iperf

Iperf is a utility for measuring maximum TCP and UDP bandwidth performance. It can be used to chart network throughput over time. For example, it can be used to test the speed of different types of shares to determine which type best performs on the network.

FreeNAS® includes the Iperf server. To perform network testing, install an Iperf client on a desktop system that has network access to the FreeNAS® system. This section demonstrates how to use the *xjperf GUI client* (https://code.google.com/archive/p/xjperf/downloads) as it works on Windows, macOS, Linux, and BSD systems.

Since this client is Java-based, the appropriate **JRE** (http://www.oracle.com/technetwork/java/javase/downloads/index.html) must be installed on the client computer.

Linux and BSD users can install the Iperf package using the package management system for their operating system.

To start *xjperf* on Windows: unzip the downloaded file, start Command Prompt in Run as administrator mode, `cd` to the unzipped folder, and run `jperf.bat`.

To start *xjperf* on macOS, Linux, or BSD, unzip the downloaded file, `cd` to the unzipped directory, `chmod u+x jperf.sh`, and run `./jperf.sh`.

Once the client is ready, start the Iperf server on FreeNAS®.

Note: Beginning with FreeNAS® version 11.1, both **iperf2** (https://sourceforge.net/projects/iperf2/) and **iperf3** (http://software.es.net/iperf/) are pre-installed. To use *iperf2*, use `iperf`. To use *iperf3*, instead type `iperf3`. The examples below are for *iperf2*.
To see the available server options, open Shell and type:

```
iperf --help | more
```

or:

```
iperf3 --help | more
```

For example, to perform a TCP test and start the server in daemon mode (to get the prompt back), type:

```
iperf -sD
```

Server listening on TCP port 5001
TCP window size: 64.0 KByte (default)
Running Iperf Server as a daemon
The Iperf daemon process ID: 4842

Note: The daemon process stops when *Shell* (page 304) closes. Set up the environment, for example, shares configured and started, **before** starting the Iperf process.

From the desktop, open the client. Enter the IP of address of the FreeNAS® system, specify the running time for the test under *Application layer options → Transmit* (the default test time is 10 seconds), and click the *Run Iperf!* button. *Figure 26.1* shows an example of the client running on a Windows system while an SFTP transfer is occurring on the network.
Depending upon the traffic being tested, for example, the type of share running on the network, UDP may need to be tested instead of TCP. To start the Iperf server in UDP mode, use `iperf -sDu` as the `u` specifies UDP; the startup message should indicate that the server is listening for UDP datagrams. If unsure whether the traffic to be tested is UDP or TCP, run this command to determine which services are running on the FreeNAS® system:

```
sockstat -4 | more
```

<table>
<thead>
<tr>
<th>USER</th>
<th>COMMAND</th>
<th>PID</th>
<th>FD</th>
<th>PROTO</th>
<th>LOCAL ADDRESS</th>
<th>FOREIGN ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>root</td>
<td>iperf</td>
<td>4870</td>
<td>6</td>
<td>ud4</td>
<td>*:5001</td>
<td>:</td>
</tr>
<tr>
<td>root</td>
<td>iperf</td>
<td>4842</td>
<td>6</td>
<td>tcp4</td>
<td>*:5001</td>
<td>:</td>
</tr>
<tr>
<td>www</td>
<td>nginx</td>
<td>4827</td>
<td>3</td>
<td>tcp4</td>
<td>127.0.0.1:15956</td>
<td>127.0.0.1:9042</td>
</tr>
<tr>
<td>www</td>
<td>nginx</td>
<td>4827</td>
<td>5</td>
<td>tcp4</td>
<td>192.168.2.11:80</td>
<td>192.168.2.26:56964</td>
</tr>
<tr>
<td>www</td>
<td>nginx</td>
<td>4827</td>
<td>7</td>
<td>tcp4</td>
<td>*:80</td>
<td>:</td>
</tr>
<tr>
<td>root</td>
<td>sshd</td>
<td>3852</td>
<td>5</td>
<td>tcp4</td>
<td>*:22</td>
<td>:</td>
</tr>
<tr>
<td>root</td>
<td>python</td>
<td>2503</td>
<td>5</td>
<td>ud4</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>root</td>
<td>mountd</td>
<td>2363</td>
<td>7</td>
<td>ud4</td>
<td>*:812</td>
<td>:</td>
</tr>
<tr>
<td>root</td>
<td>mountd</td>
<td>2363</td>
<td>8</td>
<td>tcp4</td>
<td>*:812</td>
<td>:</td>
</tr>
<tr>
<td>root</td>
<td>rpcbind</td>
<td>2359</td>
<td>9</td>
<td>ud4</td>
<td>*:111</td>
<td>:</td>
</tr>
<tr>
<td>root</td>
<td>rpcbind</td>
<td>2359</td>
<td>10</td>
<td>ud4</td>
<td>*:886</td>
<td>:</td>
</tr>
<tr>
<td>root</td>
<td>rpcbind</td>
<td>2359</td>
<td>11</td>
<td>tcp4</td>
<td>*:111</td>
<td>:</td>
</tr>
<tr>
<td>root</td>
<td>nginx</td>
<td>2044</td>
<td>7</td>
<td>tcp4</td>
<td>*:80</td>
<td>:</td>
</tr>
<tr>
<td>root</td>
<td>python</td>
<td>2029</td>
<td>3</td>
<td>ud4</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>root</td>
<td>python</td>
<td>2029</td>
<td>4</td>
<td>tcp4</td>
<td>127.0.0.1:9042</td>
<td>:</td>
</tr>
<tr>
<td>root</td>
<td>python</td>
<td>2029</td>
<td>7</td>
<td>tcp4</td>
<td>127.0.0.1:15956</td>
<td>127.0.0.1:9042</td>
</tr>
<tr>
<td>root</td>
<td>ntpd</td>
<td>1548</td>
<td>20</td>
<td>ud4</td>
<td>*:123</td>
<td>:</td>
</tr>
<tr>
<td>root</td>
<td>ntpd</td>
<td>1548</td>
<td>22</td>
<td>ud4</td>
<td>192.168.2.11:123</td>
<td>:</td>
</tr>
</tbody>
</table>
When testing is finished, either type `killall iperf` or close Shell to terminate the Iperf server process.

26.2 Netperf

Netperf is a benchmarking utility that can be used to measure the performance of unidirectional throughput and end-to-end latency.

Before using the `netperf` command, start its server process with this command:

```
netserver
Starting netserver with host 'IN(6)ADDR_ANY' port '12865' and family AF_UNSPEC
```

The following command displays the available options for performing tests with the `netperf` command. The [Netperf Manual](https://hewlettpackard.github.io/netperf/) describes each option in more detail and explains how to perform many types of tests. It is the best reference for understanding how each test works and how to interpret the results. When you are finished with the tests, type `killall netserver` to stop the server process.

```
netperf -h | more
```

Usage: netperf [global options] -- [test options]

Global options:

- `a send,recv` Set the local send,recv buffer alignment
- `A send,recv` Set the remote send,recv buffer alignment
- `B brandstr` Specify a string to be emitted with brief output
- `c [cpu_rate]` Report local CPU usage
- `C [cpu_rate]` Report remote CPU usage
- `d` Increase debugging output
- `D [secs,units]` Display interim results at least every secs seconds using units as the initial guess for units per second
- `f G|M|K|g|m|k` Set the output units
- `F fill_file` Pre-fill buffers with data from fill_file
- `h` Display this text
- `H name|ip,fam` Specify the target machine and/or local ip and family
- `i max,min` Specify the max and min number of iterations (15,1)
- `I lvl[,intvl]` Specify confidence level (95 or 99) (99) and confidence interval in percentage (10)
- `j` Keep additional timing statistics
- `l testlen` Specify test duration (>0 secs) (<0 bytes|trans)
- `L name|ip,fam` Specify the local ip|name and address family
- `o send,recv` Set the local send,recv buffer offsets
- `O send,recv` Set the remote send,recv buffer offset
- `n numcpu` Set the number of processors for CPU util
- `N` Establish no control connection, do 'send' side only
- `p port,lport` Specify netserver port number and/or local port
- `P 0|1` Don't/Do display test headers
- `r` Allow confidence to be hit on result only
- `s seconds` Wait seconds between test setup and test start
- `S` Set SO_KEEPALIVE on the data connection
- `t testname` Specify test to perform
- `T lcpu,rcpu` Request netperf/netserver be bound to local/remote cpu
- `v verbosity` Specify the verbosity level
- `W send,recv` Set the number of send,recv buffers
- `V level` Set the verbosity level (default 1, min 0)
- `V` Display the netperf version and exit

For those options taking two parms, at least one must be specified; specifying one value without a comma will set both parms to that value, specifying a value with a leading comma will set just the second parm, a value with a trailing comma will set just the first. To set each parm to unique values, specify both and separate them with a comma.
For these options taking two parms, specifying one value with no comma will only set the first parms and will leave
the second at the default value. To set the second value it must be preceded with a comma or be a comma-separated
pair. This is to retain previous netperf behavior.

26.3 IOzone

IOzone is a disk and filesystem benchmarking tool. It can be used to test file I/O performance for the following
operations: read, write, re-read, re-write, read backwards, read strided, fread, fwrite, random read, pread, mmap,
aio_read, and aio_write.

FreeNAS® ships with IOzone, meaning that it can be run from Shell. When using IOzone on FreeNAS®, `cd` to a
directory in a volume that you have permission to write to, otherwise an error about being unable to write the
temporary file will occur.

Before using IOzone, read through the [IOzone documentation PDF](http://www.iozone.org/docs/IOzone_msword_98.pdf)
as it describes the tests, the many command line switches, and how to interpret the results.

These resources provide good starting points on which tests to run, when to run them, and how to interpret the results:

- [How To Measure Linux Filesystem I/O Performance With iozone](https://www.cyberciti.biz/tips/linux-filesystem-benchmarking-with-iozone.html)
- [Analyzing NFS Client Performance with IOzone](http://www.iozone.org/docs/NFSClientPerf_revised.pdf)
- [10 iozone Examples for Disk I/O Performance Measurement on Linux](https://www.thegeekstuff.com/2011/05/iozone-examples)

Type the following command to receive a summary of the available switches. As you can see from the number of
options, IOzone is comprehensive so it can take some time to learn how to use the tests effectively.

Starting with version 9.2.1, FreeNAS® enables compression on newly created ZFS pools by default. Since IOzone
creates test data that is compressible, this can skew test results. To configure IOzone to generate incompressible
test data, include the options `-+w 1 -+y 1 -+C 1`.

Alternatively, consider temporarily disabling compression on the ZFS pool or dataset when running IOzone bench-
marks.

Note: If a visual representation of the collected data is preferred, scripts are available to render IOzone's output in
[Gnuplot](http://www.gnuplot.info/).

```
iozone -h | more
iozone: help mode
Usage: iozone[-s filesize_Kb] [-r record_size_Kb] [-f [path]filename] [-h]
  [-1 min_number_procs] [-u max_number_procs] [-v] [-R] [-x] [-o]
  [-d microseconds] [-F path1 path2...] [-V pattern] [-j stride]
  [-S cache_size] [-O] [-L cacheline_size] [-X] [-g maxfilesize_Kb]
  [-J milliseconds] [-X write_telemetry_filename] [-w] [-W]
  [-Y read_telemetry_filename] [-y minrecsize_Kb] [-q maxrecsize_Kb]
  [-u] [-m cluster_filename] [-d] [-x multiplier] [-p # ]
  [-r] [-t] [-+X] [-+Z] [-w percent dedupable] [-+y percent_interior_dedup]
  [-+C percent_dedup_within]
-a Auto mode
-A Auto2 mode
-b Filename Create Excel worksheet file
-B Use mmap() files
-c Include close in the timing calculations
-C Show bytes transferred by each child in throughput testing
```
26.4 arcstat

Arcstat is a script that prints out ZFS ARC (https://en.wikipedia.org/wiki/Adaptive_replacement_cache) statistics. Originally it was a perl script created by Sun. That perl script was ported to FreeBSD and was then ported as a Python script for use on FreeNAS®.

Watching ARC hits/misses and percentages will provide an indication of how well the ZFS pool is fetching from the ARC rather than using disk I/O. Ideally, there will be as many things fetching from cache as possible. Keep the load in mind while reviewing the stats. For random reads, expect a miss and having to go to disk to fetch the data. For cached reads, expect it to pull out of the cache and have a hit.

Like all cache systems, the ARC takes time to fill with data. This means that it will have a lot of misses until the pool has been in use for a while. If there continues to be lots of misses and high disk I/O on cached reads, there is cause to investigate further and tune the system.

The FreeBSD ZFS Tuning Guide (https://wiki.freebsd.org/ZFSTuningGuide) provides some suggestions for commonly tuned sysctl values. It should be noted that performance tuning is more of an art than a science and that any changes made will probably require several iterations of tune and test. Be aware that what needs to be tuned will vary depending upon the type of workload and that what works for one person's network may not benefit yours. In particular, the value of pre-fetching depends upon the amount of memory and the type of workload, as seen in this example:

- Understanding ZFS: Prefetch (http://cuddletech.com/?p=204)

FreeNAS® provides two command line scripts which can be manually run from Shell (page 304):

- arc_summary.py: provides a summary of the statistics
- arcstat.py: used to watch the statistics in real time

The advantage of these scripts is that they can be used to provide real time (right now) information, whereas the current GUI reporting mechanism is designed to only provide graphs charted over time.

This forum post (https://forums.freenas.org/index.php?threads/benchmarking-zfs.7928/) demonstrates some examples of using these scripts with hints on how to interpret the results.
To view the help for arcstat.py:

```sh
decho -h
[=avxp] [-f fields] [-o file] [-s string] [interval [count]]

-h : Print this help message
-a : Print all possible stats
-v : List all possible field headers and definitions
-x : Print extended stats
-f : Specify specific fields to print (see -v)
-o : Redirect output to the specified file
-s : Override default field separator with custom character or string
-p : Disable auto-scaling of numerical fields
```

Examples:

- `arcstat -o /tmp/a.log 2 10`
- `arcstat -s "," -o /tmp/a.log 2 10`
- `arcstat -v`
- `arcstat -f time,miss%,dmis,pmis,mmis arcsz`
- `arcstat.py 1 5`

To view ARC statistics in real time, specify an interval and a count. This command will display every 1 second for a count of five.

```
time read miss miss% dmis dm% pmis pm% mmis mm% arcsz c
06:19:03 7 0 0 0 0 0 0 0 0 153M 6.6G
06:19:04 257 0 0 0 0 0 0 0 0 153M 6.6G
06:19:05 193 0 0 0 0 0 0 0 0 153M 6.6G
06:19:06 193 0 0 0 0 0 0 0 0 153M 6.6G
06:19:07 255 0 0 0 0 0 0 0 0 153M 6.6G
```

Table 26.1 briefly describes the columns in the output.

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>read</td>
<td>total ARC accesses/second</td>
</tr>
<tr>
<td>miss</td>
<td>ARC misses/second</td>
</tr>
<tr>
<td>miss%</td>
<td>ARC miss percentage</td>
</tr>
<tr>
<td>dmis</td>
<td>demand data misses/second</td>
</tr>
<tr>
<td>dm%</td>
<td>demand data miss percentage</td>
</tr>
<tr>
<td>pmis</td>
<td>prefetch misses per second</td>
</tr>
<tr>
<td>pm%</td>
<td>prefetch miss percentage</td>
</tr>
<tr>
<td>mmis</td>
<td>metadata misses/second</td>
</tr>
<tr>
<td>mm%</td>
<td>metadata miss percentage</td>
</tr>
<tr>
<td>arcsz</td>
<td>arc size</td>
</tr>
<tr>
<td>c</td>
<td>arc target size</td>
</tr>
</tbody>
</table>

To receive a summary of statistics, use:

```
decho summary.py
System Memory:

2.36% 93.40 MiB Active, 8.95% 353.43 MiB Inact
8.38% 330.89 MiB Wired, 0.15% 5.90 MiB Cache
80.16% 3.09 GiB Free, 0.00% 0 Bytes Gap
Real Installed: 4.00 GiB
Real Available: 99.31% 3.97 GiB
Real Managed: 97.10% 3.86 GiB
Logical Total: 4.00 GiB
Logical Used: 13.93% 570.77 MiB
Logical Free: 86.07% 3.44 GiB
```
<table>
<thead>
<tr>
<th>Kernel Memory:</th>
<th>87.62 MiB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data:</td>
<td>69.91% 61.25 MiB</td>
</tr>
<tr>
<td>Text:</td>
<td>30.09% 26.37 MiB</td>
</tr>
<tr>
<td>Kernel Memory Map:</td>
<td>3.86 GiB</td>
</tr>
<tr>
<td>Size:</td>
<td>5.11% 201.70 MiB</td>
</tr>
<tr>
<td>Free:</td>
<td>94.89% 3.66 GiB</td>
</tr>
<tr>
<td>ARC Summary:</td>
<td>(HEALTHY)</td>
</tr>
<tr>
<td>Storage pool Version:</td>
<td>5000</td>
</tr>
<tr>
<td>Filesystem Version:</td>
<td>5</td>
</tr>
<tr>
<td>Memory Throttle Count:</td>
<td>0</td>
</tr>
<tr>
<td>ARC Misc:</td>
<td></td>
</tr>
<tr>
<td>Deleted:</td>
<td>8</td>
</tr>
<tr>
<td>Mutex Misses:</td>
<td>0</td>
</tr>
<tr>
<td>Evict Skips:</td>
<td>0</td>
</tr>
<tr>
<td>ARC Size:</td>
<td>5.83% 170.45 MiB</td>
</tr>
<tr>
<td>Target Size:</td>
<td>(Adaptive) 100.00% 2.86 GiB</td>
</tr>
<tr>
<td>Min Size:</td>
<td>(Hard Limit): 12.50% 365.69 MiB</td>
</tr>
<tr>
<td>Max Size:</td>
<td>(High Water): 8:1 2.86 GiB</td>
</tr>
<tr>
<td>ARC Size Breakdown:</td>
<td></td>
</tr>
<tr>
<td>Recently Used Cache Size:</td>
<td>50.00% 1.43 GiB</td>
</tr>
<tr>
<td>Frequently Used Cache Size:</td>
<td>50.00% 1.43 GiB</td>
</tr>
<tr>
<td>ARC Hash Breakdown:</td>
<td></td>
</tr>
<tr>
<td>Elements Max:</td>
<td>5.90k</td>
</tr>
<tr>
<td>Elements Current:</td>
<td>100.00% 5.90k</td>
</tr>
<tr>
<td>Collisions:</td>
<td>72</td>
</tr>
<tr>
<td>Chain Max:</td>
<td>1</td>
</tr>
<tr>
<td>Chains:</td>
<td>23</td>
</tr>
<tr>
<td>ARC Total accesses:</td>
<td>954.06k</td>
</tr>
<tr>
<td>Cache Hit Ratio:</td>
<td>99.18% 946.25k</td>
</tr>
<tr>
<td>Cache Miss Ratio:</td>
<td>0.82% 7.81k</td>
</tr>
<tr>
<td>Actual Hit Ratio:</td>
<td>98.84% 943.00k</td>
</tr>
<tr>
<td>Data Demand Efficiency:</td>
<td>99.20% 458.77k</td>
</tr>
<tr>
<td>CACHE HITS BY CACHE LIST:</td>
<td></td>
</tr>
<tr>
<td>Anonymously Used:</td>
<td>0.34% 3.25k</td>
</tr>
<tr>
<td>Most Recently Used:</td>
<td>3.73% 35.33k</td>
</tr>
<tr>
<td>Most Frequently Used:</td>
<td>95.92% 907.67k</td>
</tr>
<tr>
<td>Most Recently Used Ghost:</td>
<td>0.00% 0</td>
</tr>
<tr>
<td>Most Frequently Used Ghost:</td>
<td>0.00% 0</td>
</tr>
<tr>
<td>CACHE HITS BY DATA TYPE:</td>
<td></td>
</tr>
<tr>
<td>Demand Data:</td>
<td>48.10% 455.10k</td>
</tr>
<tr>
<td>Prefetch Data:</td>
<td>0.00% 0</td>
</tr>
<tr>
<td>Demand Metadata:</td>
<td>51.56% 487.90k</td>
</tr>
<tr>
<td>Prefetch Metadata:</td>
<td>0.34% 3.25k</td>
</tr>
<tr>
<td>CACHE MISSES BY DATA TYPE:</td>
<td></td>
</tr>
<tr>
<td>Demand Data:</td>
<td>46.93% 3.66k</td>
</tr>
<tr>
<td>Prefetch Data:</td>
<td>0.00% 0</td>
</tr>
<tr>
<td>Demand Metadata:</td>
<td>49.76% 3.88k</td>
</tr>
<tr>
<td>Prefetch Metadata:</td>
<td>3.30% 258</td>
</tr>
</tbody>
</table>

ZFS Tunable (sysctl):

- kern.maxusers: 590
- vm.kmem_size: 4141375488
- vm.kmem_size_scale: 1
- vm.kmem_size_min: 0
- vm.kmem_size_max: 1319413950874
- vfs.zfs.vol.unmap_enabled: 1
- vfs.zfs.vol.mode: 2
- vfs.zfs.sync_pass_rewrite: 2
- vfs.zfs.sync_pass_dont_compress: 5
- vfs.zfs.sync_pass_deferred_free: 2
- vfs.zfs.zio.exclude_metadata: 0
- vfs.zfs.zio.use_uma: 1
<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>vfs.zfs.cache_flush_disable</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.zil_replay_disable</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.version.zpl</td>
<td>5</td>
</tr>
<tr>
<td>vfs.zfs.version.spa</td>
<td>5000</td>
</tr>
<tr>
<td>vfs.zfs.version.acl</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.version.ioctl</td>
<td>5</td>
</tr>
<tr>
<td>vfs.zfs.debug</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.super_owner</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.min_auto_ashift</td>
<td>9</td>
</tr>
<tr>
<td>vfs.zfs.max_auto_ashift</td>
<td>13</td>
</tr>
<tr>
<td>vfs.zfs.vdev.write_gap_limit</td>
<td>4096</td>
</tr>
<tr>
<td>vfs.zfs.vdev.read_gap_limit</td>
<td>32768</td>
</tr>
<tr>
<td>vfs.zfs.vdev.aggregation_limit</td>
<td>131072</td>
</tr>
<tr>
<td>vfs.zfs.vdev.trim_max_active</td>
<td>64</td>
</tr>
<tr>
<td>vfs.zfs.vdev.trim_min_active</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.vdev.scrub_max_active</td>
<td>10</td>
</tr>
<tr>
<td>vfs.zfs.vdev.scrub_min_active</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.vdev.async_write_max_active</td>
<td>10</td>
</tr>
<tr>
<td>vfs.zfs.vdev.async_write_min_active</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.vdev.async_read_max_active</td>
<td>3</td>
</tr>
<tr>
<td>vfs.zfs.vdev.async_read_min_active</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.vdev.sync_write_max_active</td>
<td>10</td>
</tr>
<tr>
<td>vfs.zfs.vdev.sync_write_min_active</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.vdev.sync_read_max_active</td>
<td>10</td>
</tr>
<tr>
<td>vfs.zfs.vdev.sync_read_min_active</td>
<td>10</td>
</tr>
<tr>
<td>vfs.zfs.vdev.max_active</td>
<td>1000</td>
</tr>
<tr>
<td>vfs.zfs.vdev.async_write_active_max_dirty_percent60</td>
<td>30</td>
</tr>
<tr>
<td>vfs.zfs.vdev.async_write_active_min_dirty_percent30</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.vdev.mirror.non_rotating_seek_inc1</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.vdev.mirror.non_rotating_inc</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.vdev.mirror.rotating_seek_offset1048576</td>
<td>5</td>
</tr>
<tr>
<td>vfs.zfs.vdev.mirror.rotating_seek_inc</td>
<td>5</td>
</tr>
<tr>
<td>vfs.zfs.vdev.mirror.trim_on_init</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.vdev.larger_ashift_minimal</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.vdev.bio_delete_disable</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.vdev.bio_flush_disable</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.vdev.cache.bshift</td>
<td>16</td>
</tr>
<tr>
<td>vfs.zfs.vdev.cache.size</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.vdev.cache.max</td>
<td>16384</td>
</tr>
<tr>
<td>vfs.zfs.vdev.metaslabs_per_vdev</td>
<td>200</td>
</tr>
<tr>
<td>vfs.zfs.vdev.trim_max_pending</td>
<td>10000</td>
</tr>
<tr>
<td>vfs.zfs.txg.timeout</td>
<td>5</td>
</tr>
<tr>
<td>vfs.zfs.trim.enabled</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.trim.max_interval</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.trim.timeout</td>
<td>30</td>
</tr>
<tr>
<td>vfs.zfs.trim.txg_delay</td>
<td>32</td>
</tr>
<tr>
<td>vfs.zfs.space_map_bkzsz</td>
<td>4096</td>
</tr>
<tr>
<td>vfs.zfs.spa_slop_shift</td>
<td>5</td>
</tr>
<tr>
<td>vfs.zfs.spa_asize_inflation</td>
<td>24</td>
</tr>
<tr>
<td>vfs.zfs.deadman_enabled</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.deadman_checktime_ms</td>
<td>5000</td>
</tr>
<tr>
<td>vfs.zfs.deadman_synctime_ms</td>
<td>1000000</td>
</tr>
<tr>
<td>vfs.zfs.recover</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.spa_load_verify_data</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.spa_load_verify_metadata</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.spa_load_verify_maxinflight</td>
<td>10000</td>
</tr>
<tr>
<td>vfs.zfs.check_hostid</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.mg_fragmentation_threshold</td>
<td>85</td>
</tr>
<tr>
<td>vfs.zfs.mg_noalloc_threshold</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.condense_pct</td>
<td>200</td>
</tr>
</tbody>
</table>
vfs.zfs.metaslab.bias_enabled 1
vfs.zfs.metaslab.lba_weighting_enabled 1
vfs.zfs.metaslab.fragmentation_factor_enabled 1
vfs.zfs.metaslab.preload_enabled 1
vfs.zfs.metaslab.preload_limit 3
vfs.zfs.metaslab.unload_delay 8
vfs.zfs.metaslab.load_pct 50
vfs.zfs.metaslab.min_alloc_size 33554432
vfs.zfs.metaslab.df_free_pct 4
vfs.zfs.metaslab.df_alloc_threshold 131072
vfs.zfs.metaslab.debug_unload 0
vfs.zfs.metaslab.debug_load 0
vfs.zfs.metaslab.fragmentation_threshold 70
vfs.zfs.metaslab.gang_bang 16777217
vfs.zfs.free_bpobj_enabled 1
vfs.zfs.free_max_blocks 18446744073709551615
vfs.zfs.no_scrub_prefetch 0
vfs.zfs.no_scrub_io 0
vfs.zfs.resilver_min_time_ms 3000
vfs.zfs.free_min_time_ms 1000
vfs.zfs.scan_min_time_ms 1000
vfs.zfs.scan_idle 50
vfs.zfs.resilver_delay 2
vfs.zfs.top_maxinflight 32
vfs.zfs.delay_scale 500000
vfs.zfs.delay_min_dirty_percent 60
vfs.zfs.dirty_data_sync 67108864
vfs.zfs.dirty_data_max_percent 10
vfs.zfs.dirty_data_max_max 4294967296
vfs.zfs.dirty_data_max 426512793
vfs.zfs.max_recordsize 1048576
vfs.zfs.zfetch.array_rd_sz 1048576
vfs.zfs.zfetch.max_distance 8388608
vfs.zfs.zfetch.min_sec_reap 2
vfs.zfs.zfetch.max_streams 8
vfs.zfs.prefetch_disable 1
vfs.zfs.mdcomp_disable 0
vfs.zfs.nopwrite_enabled 1
vfs.zfs.dedup.prefetch 1
vfs.zfs.12c_only_size 0
vfs.zfs.mfu_ghost_data_lsize 0
vfs.zfs.mfu_ghost_metadata_lsize 0
vfs.zfs.mfu_ghost_size 0
vfs.zfs.mfu_data_lsize 26300416
vfs.zfs.mfu_metadata_lsize 1780736
vfs.zfs.mfu_size 29428736
vfs.zfs.mru_ghost_data_lsize 0
vfs.zfs.mru_ghost_metadata_lsize 0
vfs.zfs.mru_ghost_size 0
vfs.zfs.mru_data_lsize 122090496
vfs.zfs.mru_metadata_lsize 2235904
vfs.zfs.mru_size 139389440
vfs.zfs.anon_data_lsize 0
vfs.zfs.anon_metadata_lsize 0
vfs.zfs.anon_size 163840
vfs.zfs.12arc_norw 1
vfs.zfs.12arc_feed_again 1
vfs.zfs.12arc_noprefetch 1
vfs.zfs.12arc_feed_min_ms 200
vfs.zfs.12arc_feed_secs 1
When reading the tunable values, 0 means no, 1 typically means yes, and any other number represents a value. To receive a brief description of a “sysctl” value, use `sysctl -d`. For example:

```
sysctl -d vfs.zfs.zio.use_uma
default vfs.zfs.zio.use_uma: Use uma(9) for ZIO allocations
```

The ZFS tunables require a fair understanding of how ZFS works, meaning that reading man pages and searching for the meaning of acronyms is required. **Do not change a tunable’s value without researching it first.** If the tunable takes a numeric value (rather than 0 for no or 1 for yes), do not make one up. Instead, research examples of beneficial values that match your workload.

If any of the ZFS tunables are changed, continue to monitor the system to determine the effect of the change. Using `sysctl` at the command line to test the changes first is recommended. For example, to disable pre-fetch (i.e. change disable to 1 or yes):

```
sysctl vfs.zfs.prefetch_disable=1
default vfs.zfs.prefetch_disable: 0 -> 1
```

The output will indicate the old value followed by the new value. If the change is not beneficial, change it back to the original value. If the change turns out to be beneficial, it can be made permanent by creating a `sysctl` using the instructions in [Tunables](#).

26.5 tw_cli

FreeNAS® includes the `tw_cli` command line utility for providing controller, logical unit, and drive management for AMCC/3ware ATA RAID Controllers. The supported models are listed in the man pages for the `twe(4)` (https://www.freebsd.org/cgi/man.cgi?query=twe) and `twa(4)` (https://www.freebsd.org/cgi/man.cgi?query=twa) drivers.

Before using this command, read its [man page](https://www.cyberciti.biz/files/tw_cli.8.html) as it describes the terminology and provides some usage examples.

When `tw_cli` is entered in Shell, the prompt will change, indicating interactive mode is enabled where all sorts of maintenance commands on the controller and its arrays can be run.

Alternately, you can specify one command to run. For example, to view the disks in the array:

```
tw_cli /c0 show
```

<table>
<thead>
<tr>
<th>Unit</th>
<th>UnitType</th>
<th>Status</th>
<th>%RCmpl</th>
<th>%V/I/M</th>
<th>Stripe</th>
<th>Size(GB)</th>
<th>Cache</th>
<th>AVrfy</th>
</tr>
</thead>
<tbody>
<tr>
<td>u0</td>
<td>RAID-6</td>
<td>OK</td>
<td>-</td>
<td>-</td>
<td>256K</td>
<td>5587.88</td>
<td>RiW</td>
<td>ON</td>
</tr>
<tr>
<td>u1</td>
<td>SPARE</td>
<td>OK</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>931.505</td>
<td>-</td>
<td>OFF</td>
</tr>
<tr>
<td>u2</td>
<td>RAID-10</td>
<td>OK</td>
<td>-</td>
<td>-</td>
<td>256K</td>
<td>1862.62</td>
<td>RiW</td>
<td>ON</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VPort</th>
<th>Status</th>
<th>Unit</th>
<th>Size</th>
<th>Type</th>
<th>Phy</th>
<th>Encl-Slot</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>p8</td>
<td>OK</td>
<td>u0</td>
<td>931.51 GB SAS</td>
<td>-</td>
<td>/c0/e0/slt0</td>
<td>SEAGATE ST31000640SS</td>
<td></td>
</tr>
<tr>
<td>p9</td>
<td>OK</td>
<td>u0</td>
<td>931.51 GB SAS</td>
<td>-</td>
<td>/c0/e0/slt1</td>
<td>SEAGATE ST31000640SS</td>
<td></td>
</tr>
<tr>
<td>p10</td>
<td>OK</td>
<td>u0</td>
<td>931.51 GB SAS</td>
<td>-</td>
<td>/c0/e0/slt2</td>
<td>SEAGATE ST31000640SS</td>
<td></td>
</tr>
<tr>
<td>p11</td>
<td>OK</td>
<td>u0</td>
<td>931.51 GB SAS</td>
<td>-</td>
<td>/c0/e0/slt3</td>
<td>SEAGATE ST31000640SS</td>
<td></td>
</tr>
</tbody>
</table>
Or, to review the event log:

```
   tw_cli /c0 show events
```

<table>
<thead>
<tr>
<th>Ctl</th>
<th>Date</th>
<th>Severity</th>
<th>AEN Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>c0</td>
<td>[Thu Feb 23 2012 14:01:15]</td>
<td>INFO</td>
<td>Battery charging started</td>
</tr>
<tr>
<td>c0</td>
<td>[Thu Feb 23 2012 14:03:02]</td>
<td>INFO</td>
<td>Battery charging completed</td>
</tr>
<tr>
<td>c0</td>
<td>[Sat Feb 25 2012 00:02:18]</td>
<td>INFO</td>
<td>Verify started: unit=0</td>
</tr>
<tr>
<td>c0</td>
<td>[Sat Feb 25 2012 00:02:18]</td>
<td>INFO</td>
<td>Verify started: unit=2,subunit=0</td>
</tr>
<tr>
<td>c0</td>
<td>[Sat Feb 25 2012 00:02:18]</td>
<td>INFO</td>
<td>Verify started: unit=2,subunit=1</td>
</tr>
<tr>
<td>c0</td>
<td>[Sat Feb 25 2012 03:49:35]</td>
<td>INFO</td>
<td>Verify completed: unit=2,subunit=0</td>
</tr>
<tr>
<td>c0</td>
<td>[Sat Feb 25 2012 03:51:39]</td>
<td>INFO</td>
<td>Verify completed: unit=2,subunit=1</td>
</tr>
<tr>
<td>c0</td>
<td>[Sat Feb 25 2012 21:55:59]</td>
<td>INFO</td>
<td>Verify completed: unit=0</td>
</tr>
<tr>
<td>c0</td>
<td>[Thu Mar 01 2012 13:51:09]</td>
<td>INFO</td>
<td>Battery health check started</td>
</tr>
<tr>
<td>c0</td>
<td>[Thu Mar 01 2012 13:51:09]</td>
<td>INFO</td>
<td>Battery health check completed</td>
</tr>
<tr>
<td>c0</td>
<td>[Thu Mar 01 2012 13:51:09]</td>
<td>INFO</td>
<td>Battery charging started</td>
</tr>
<tr>
<td>c0</td>
<td>[Thu Mar 01 2012 13:53:03]</td>
<td>INFO</td>
<td>Battery charging completed</td>
</tr>
<tr>
<td>c0</td>
<td>[Sat Mar 03 2012 00:12:14]</td>
<td>INFO</td>
<td>Verify started: unit=0</td>
</tr>
<tr>
<td>c0</td>
<td>[Sat Mar 03 2012 00:12:24]</td>
<td>INFO</td>
<td>Verify started: unit=2,subunit=0</td>
</tr>
<tr>
<td>c0</td>
<td>[Sat Mar 03 2012 00:12:24]</td>
<td>INFO</td>
<td>Verify started: unit=2,subunit=1</td>
</tr>
<tr>
<td>c0</td>
<td>[Sat Mar 03 2012 04:04:27]</td>
<td>INFO</td>
<td>Verify completed: unit=2,subunit=0</td>
</tr>
<tr>
<td>c0</td>
<td>[Sat Mar 03 2012 04:06:25]</td>
<td>INFO</td>
<td>Verify completed: unit=2,subunit=1</td>
</tr>
<tr>
<td>c0</td>
<td>[Sat Mar 03 2012 16:22:05]</td>
<td>INFO</td>
<td>Verify completed: unit=0</td>
</tr>
<tr>
<td>c0</td>
<td>[Thu Mar 08 2012 13:41:39]</td>
<td>INFO</td>
<td>Battery charging started</td>
</tr>
<tr>
<td>c0</td>
<td>[Thu Mar 08 2012 13:43:42]</td>
<td>INFO</td>
<td>Battery charging completed</td>
</tr>
<tr>
<td>c0</td>
<td>[Sat Mar 10 2012 00:13:00]</td>
<td>INFO</td>
<td>Verify started: unit=0</td>
</tr>
<tr>
<td>c0</td>
<td>[Sat Mar 10 2012 00:13:00]</td>
<td>INFO</td>
<td>Verify started: unit=2,subunit=0</td>
</tr>
<tr>
<td>c0</td>
<td>[Sat Mar 10 2012 00:13:00]</td>
<td>INFO</td>
<td>Verify started: unit=2,subunit=1</td>
</tr>
<tr>
<td>c0</td>
<td>[Sat Mar 10 2012 05:06:38]</td>
<td>INFO</td>
<td>Verify completed: unit=2,subunit=0</td>
</tr>
<tr>
<td>c0</td>
<td>[Sat Mar 10 2012 05:08:57]</td>
<td>INFO</td>
<td>Verify completed: unit=2,subunit=1</td>
</tr>
<tr>
<td>c0</td>
<td>[Sat Mar 10 2012 15:58:15]</td>
<td>INFO</td>
<td>Verify completed: unit=0</td>
</tr>
</tbody>
</table>

If the disks added to the array do not appear in the GUI, try running this command:

```
   tw_cli /c0 rescan
```

Use the drives to create units and export them to the operating system. When finished, run `camcontrol rescan all` and they should now be available in the FreeNAS® GUI.

This forum post (https://forums.freenas.org/index.php?threads/3ware-drive-monitoring.13835/) contains a handy wrapper script that will notify you of errors.

26.6 MegaCli

MegaCli is the command line interface for the Broadcom :MegaRAID SAS family of RAID controllers. FreeNAS® also includes the `mfiutil(8)` (https://www.freebsd.org/cgi/man.cgi?query=mfiutil) utility which can be used to configure
and manage connected storage devices.

The MegaCli command is quite complex with several dozen options. The commands demonstrated in the Emergency Cheat Sheet (http://tools.rapidsoft.de/perc/perc-cheat-sheet.html) can get you started.

26.7 freenas-debug

The FreeNAS® GUI provides an option to save debugging information to a text file using System → Advanced → Save Debug. This debugging information is created by the freenas-debug command line utility and a copy of the information is saved to /var/tmp/fndebug.

This command can be run manually from Shell (page 304) to gather specific debugging information. To see a usage explanation listing all options, run the command without any options:

```
freenas-debug
Usage: /usr/local/bin/freenas-debug <options>
Where options are:
  -A Dump all debug information
  -B Dump System Configuration Database
  -C Dump SMB Configuration
  -D Dump Domain Controller Configuration
  -I Dump IPMI Configuration
  -M Dump SATA DOMs Information
  -N Dump NFS Configuration
  -S Dump SMART Information
  -T Loader Configuration Information
  -Z Remove old debug information
  -a Dump Active Directory Configuration
  -c Dump (AD|LDAP) Cache
  -e Email debug log to this comma-delimited list of email addresses
  -f Dump AFP Configuration
  -g Dump GEOM Configuration
  -h Dump Hardware Configuration
  -i Dump iSCSI Configuration
  -j Dump Jail Information
  -l Dump LDAP Configuration
  -n Dump Network Configuration
  -s Dump SSL Configuration
  -t Dump System Information
  -v Dump Boot System File Verification Status and Inconsistencies
  -y Dump Sysctl Configuration
  -z Dump ZFS Configuration
```

Individual tests can be run alone. For example, when troubleshooting an Active Directory configuration, use:

```
freenas-debug -a
```

To collect the output of every module, use -A:

```
freenas-debug -A
```

For collecting debug information about a single volume, use zdb with -U /data/zfs/zpool.cache followed by the name of the volume (ZFS pool):

```
zdb -U /data/zfs/zpool.cache volume1
```

See the zdb(8) manual page (https://www.freebsd.org/cgi/man.cgi?query=zdb) for more information.
26.8 tmux

tmux is a terminal multiplexer which enables a number of terminals to be created, accessed, and controlled from a single *screen*. *tmux* is an alternative to GNU *screen*. Similar to *screen*, *tmux* can be detached from a screen and continue running in the background, then later reattached. Unlike *Shell* (page 304), *tmux* allows you to have access to a command prompt while still providing access to the graphical administration screens.

To start a session, simply type `tmux`. As seen in Figure 26.2, a new session with a single window opens with a status line at the bottom of the screen. This line shows information on the current session and is used to enter interactive commands.

![Fig. 26.2: tmux Session](image)

To create a second window, press `Ctrl+b` then `.`. To close a window, type `exit` within the window.

tmux(1) lists all of the key bindings and commands for interacting with *tmux* windows and sessions.

If *Shell* (page 304) is closed while *tmux* is running, it will detach its session. The next time Shell is open, run `tmux attach` to return to the previous session. To leave the *tmux* session entirely, type `exit`. If multiple windows are running, `exit` out of each first.

These resources provide more information about using *tmux*:

- A tmux Crash Course (https://robots.thoughtbot.com/a-tmux-crash-course)
- TMUX - The Terminal Multiplexer (http://blog.hawkhost.com/2010/06/28/tmux-the-terminal-multiplexer/)

26.9 Dmidecode

Dmidecode reports hardware information as reported by the system BIOS. Dmidecode does not scan the hardware, it only reports what the BIOS told it to. A sample output can be seen here (http://www.nongnu.org/dmidecode/sample/dmidecode.txt).

To view the BIOS report, type the command with no arguments:
dmidecode(8) (https://linux.die.net/man/8/dmidecode) describes the supported strings and types.

26.10 Midnight Commander

Midnight Commander is a program used to manage files from the shell. Open the application by running the command `mc`. The arrow keys are used to navigate and select files. The function keys are used to perform operations such as renaming, editing and copying files. These resources provide more information about using mc:

- Midnight Commander wikipedia page (https://en.wikipedia.org/wiki/Midnight_Commander)
- Midnight Commander website (https://midnight-commander.org/)
- `mc(1)` (https://linux.die.net/man/1/mc)
- Basic Tutorial (http://linuxcommand.org/lc3_adv_mc.php)
CONTRIBUTING TO FREE NAS®

FreeNAS® is an open source community, relying on the input and expertise of its users to help grow and improve FreeNAS®. When you take time to assist the community, your contributions benefit everyone who uses FreeNAS®.

This section describes some areas of participation to get you started. It is by no means an exhaustive list. If you have an idea that you think would benefit the FreeNAS® community, bring it up on one of the resources mentioned in Support Resources (page 313).

This section demonstrates how you can:

- Help with Translation (page 332)

27.1 Translation

Not everyone speaks English, and having a complete translation of the user interface into native languages can make FreeNAS® much more useful to communities around the world.

FreeNAS® uses Weblate (https://weblate.org/en/) to manage the translation of text shown in the FreeNAS® graphical administrative interface. Weblate provides an easy-to-use web-based editor and commenting system, making it possible for individuals to assist with translation or comment on existing translations.

To see the status of translations, open https://weblate.trueos.org/projects/freenas/, as shown in Figure 27.1.

![Weblate Interface](https://weblate.trueos.org/projects/freenas/)

Fig. 27.1: FreeNAS® Translation System

To assist with translating FreeNAS®, create an account by clicking the Register button. Enter the information requested, then a confirmation email will be sent. Follow the link in the email to set a password and complete the
account creation. The Dashboard screen is shown after logging in:

![Weblate Dashboard](image)

Fig. 27.2: Weblate Dashboard

Click *Manage your languages* to choose languages for translation. Select languages, then click *Save*. Click the *Dashboard* link at the top of the screen to go back to the dashboard, then choose *Your languages* from the drop-down menu:

![Selected Languages](image)

Fig. 27.3: Selected Languages

Projects are a collection of text to be translated. In this example, the Django and DjangoJS projects have both been partially translated into Spanish. Click one of the entries under *Project* to help translate that project.

The *Overview* screen shows the current translation status along with categories of translatable strings:
Click on a category of string, like *Strings needing action*, to see the translation screen:
Enter translations here, clicking *Save* to save the work. The controls at the top of the screen can be used to skip forward and back in the list of strings to be translated. Click *Dashboard* at the top of the screen to return to the Dashboard.

All assistance with translations helps to benefit the FreeNAS® community. Thank you!
ZFS is an advanced, modern filesystem that was specifically designed to provide features not available in traditional UNIX filesystems. It was originally developed at Sun with the intent to open source the filesystem so that it could be ported to other operating systems. After the Oracle acquisition of Sun, some of the original ZFS engineers founded OpenZFS (http://open-zfs.org/wiki/Main_Page) to provide continued, collaborative development of the open source version.

Here is an overview of the features provided by ZFS:

- **ZFS is a transactional, Copy-On-Write (COW)** (https://en.wikipedia.org/wiki/ZFS#Copy-on-write_transactional_model) filesystem. For each write request, a copy is made of the associated disk blocks and all changes are made to the copy rather than to the original blocks. When the write is complete, all block pointers are changed to point to the new copy. This means that ZFS always writes to free space, most writes are sequential, and old versions of files are not unlinked until a complete new version has been written successfully. ZFS has direct access to disks and bundles multiple read and write requests into transactions. Most filesystems cannot do this, as they only have access to disk blocks. A transaction either completes or fails, meaning there will never be a write-hole (https://blogs.oracle.com/bonwick/raid-z) and a filesystem checker utility is not necessary. Because of the transactional design, as additional storage capacity is added, it becomes immediately available for writes. To rebalance the data, one can copy it to re-write the existing data across all available disks. As a 128-bit filesystem, the maximum filesystem or file size is 16 exabytes.

- **ZFS was designed to be a self-healing filesystem.** As ZFS writes data, it creates a checksum for each disk block it writes. As ZFS reads data, it validates the checksum for each disk block it reads. Media errors or “bit rot” can cause data to change, and the checksum no longer matches. When ZFS identifies a disk block checksum error on a pool that is mirrored or uses RAIDZ, it replaces the corrupted data with the correct data. Since some disk blocks are rarely read, regular scrubs should be scheduled so that ZFS can read all of the data blocks to validate their checksums and correct any corrupted blocks. While multiple disks are required in order to provide redundancy and data correction, ZFS will still provide data corruption detection to a system with one disk. FreeNAS® automatically schedules a monthly scrub for each ZFS pool and the results of the scrub are displayed by selecting the Volume (page 132) and clicking Volume Status. Checking scrub results provides an early indication of potential disk problems.

Unlike traditional UNIX filesystems, **it is not necessary to define partition sizes when filesystems are created.** Instead, a group of disks, known as a vdev, are built into a ZFS pool. Filesystems are created from the pool as needed. As more capacity is needed, identical vdevs can be striped into the pool. In FreeNAS®, Volume Manager (page 133) is used to create or extend ZFS pools. After a pool is created, it can be divided into dynamically-sized datasets or fixed-size zvols as needed. Datasets can be used to optimize storage for the type of data being stored as permissions and properties such as quotas and compression can be set on a per-dataset level. A zvol is essentially a raw, virtual block device which can be used for applications that need raw-device semantics such as iSCSI device extents.

- **ZFS supports real-time data compression.** Compression happens when a block is written to disk, but only if the written data will benefit from compression. When a compressed block is accessed, it is automatically decompressed. Since compression happens at the block level, not the file level, it is transparent to any applications accessing the compressed data. ZFS pools created on FreeNAS® version 9.2.1 or later use the recommended LZ4 compression algorithm.

- **ZFS provides low-cost, instantaneous snapshots** of the specified pool, dataset, or zvol. Due to COW, snapshots initially take no additional space. The size of a snapshot increases over time as changes to the files in the snapshot are written to disk. Snapshots can be used to provide a copy of data at the point in time the snapshot was created. When a file is deleted, its disk blocks are added to the free list; however, the blocks for that file in any existing
snapshots are not added to the free list until all referencing snapshots are removed. This makes snapshots a clever way to keep a history of files, useful for recovering an older copy of a file or a deleted file. For this reason, many administrators take snapshots often, store them for a period of time, and store them on another system. Such a strategy allows the administrator to roll the system back to a specific time. If there is a catastrophic loss, an off-site snapshot can restore the system up to the last snapshot interval, within 15 minutes of the data loss, for example. Snapshots are stored locally but can also be replicated to a remote ZFS pool. During replication, ZFS does not do a byte-for-byte copy but instead converts a snapshot into a stream of data. This design means that the ZFS pool on the receiving end does not need to be identical and can use a different RAIDZ level, volume size, or compression settings.

ZFS boot environments provide a method for recovering from a failed upgrade. In FreeNAS®, a snapshot of the dataset the operating system resides on is automatically taken before an upgrade or a system update. This saved boot environment is automatically added to the GRUB boot loader. Should the upgrade or configuration change fail, simply reboot and select the previous boot environment from the boot menu. Users can also create their own boot environments in System → Boot as needed, for example before making configuration changes. This way, the system can be rebooted into a snapshot of the system that did not include the new configuration changes.

ZFS provides a write cache in RAM as well as a ZFS Intent Log (ZIL (http://www.freenas.org/blog/zfs-zil-and-slog-demystified/)). The ZIL is a storage area that temporarily holds *synchronous* writes until they are written to the ZFS pool (https://pthree.org/2013/04/19/zfs-administration-appendix-a-visualizing-the-zfs-intent-log/). Adding a fast (low-latency), power-protected SSD as a SLOG (Separate Log) device permits much higher performance. This is a necessity for NFS over ESXi, and highly recommended for database servers or other applications that depend on synchronous writes. More detail on SLOG benefits and usage is available in these blog and forum posts:

- The ZFS ZIL and SLOG Demystified (http://www.freenas.org/blog/zfs-zil-and-slog-demystified/)
- ZFS Intent Log (http://nex7.blogspot.com/2013/04/zfs-intent-log.html)

Synchronous writes are relatively rare with SMB, AFP, and iSCSI, and adding a SLOG to improve performance of these protocols only makes sense in special cases. The zilstat utility can be run from Shell (page 304) to determine if the system will benefit from a SLOG. See this website (http://www.richardelling.com/Home/scripts-and-programs-1/zilstat) for usage information.

ZFS currently uses 16 GiB of space for SLOG. Larger SSDs can be installed, but the extra space will not be used. SLOG devices cannot be shared between pools. Each pool requires a separate SLOG device. Bandwidth and throughput limitations require that a SLOG device must only be used for this single purpose. Do not attempt to add other caching functions on the same SSD, or performance will suffer.

In mission-critical systems, a mirrored SLOG device is highly recommended. Mirrored SLOG devices are required for ZFS pools at ZFS version 19 or earlier. The ZFS pool version is checked from the Shell (page 304) with zpool get version poolname. A version value of - means the ZFS pool is version 5000 (also known as Feature Flags) or later.

ZFS provides a read cache in RAM, known as the ARC, which reduces read latency. FreeNAS® adds ARC stats to top(1) (https://www.freebsd.org/cgi/man.cgi?query=top) and includes the arc_summary.py and arcstat.py tools for monitoring the efficiency of the ARC. If an SSD is dedicated as a cache device, it is known as an L2ARC (http://www.brendangregg.com/blog/2008-07-22/zfs-l2arc.html). Additional read data is cached here, which can increase random read performance. L2ARC does not reduce the need for sufficient RAM. In fact, L2ARC needs RAM to function. If there is not enough RAM for a adequately-sized ARC, adding an L2ARC will not increase performance. Performance actually decreases in most cases, potentially causing system instability. RAM is always faster than disks, so always add as much RAM as possible before considering whether the system can benefit from an L2ARC device.

When applications perform large amounts of random reads on a dataset small enough to fit into L2ARC, read performance can be increased by adding a dedicated cache device. SSD cache devices only help if the active data is larger than system RAM but small enough that a significant percentage fits on the SSD. As a general rule, L2ARC should not be added to a system with less than 32 GiB of RAM, and the size of an L2ARC should not exceed ten times the amount of RAM. In some cases, it may be more efficient to have two separate pools: one on SSDs for active data, and another on hard drives for rarely used content. After adding an L2ARC device, monitor its effectiveness using tools such as arcstat. To increase the size of an existing L2ARC, stripe another cache device with it. The GUI will always stripe L2ARC, not mirror it, as the contents of L2ARC are recreated at boot. Failure of an individual SSD from an L2ARC pool will not affect the integrity of the pool, but may have an impact on read performance, depending
on the workload and the ratio of dataset size to cache size. Note that dedicated L2ARC devices cannot be shared between ZFS pools.

ZFS was designed to provide redundancy while addressing some of the inherent limitations of hardware RAID such as the write-hole and corrupt data written over time before the hardware controller provides an alert. ZFS provides three levels of redundancy, known as RAIDZ, where the number after the RAIDZ indicates how many disks per vdev can be lost without losing data. ZFS also supports mirrors, with no restrictions on the number of disks in the mirror. ZFS was designed for commodity disks so no RAID controller is needed. While ZFS can also be used with a RAID controller, it is recommended that the controller be put into JBOD mode so that ZFS has full control of the disks.

When determining the type of ZFS redundancy to use, consider whether the goal is to maximize disk space or performance:

- **RAIDZ1** maximizes disk space and generally performs well when data is written and read in large chunks (128K or more).
- **RAIDZ2** offers better data availability and significantly better mean time to data loss (MTTDL) than RAIDZ1.
- A mirror consumes more disk space but generally performs better with small random reads. For better performance, a mirror is strongly favored over any RAIDZ, particularly for large, uncachable, random read loads.
- Using more than 12 disks per vdev is not recommended. The recommended number of disks per vdev is between 3 and 9. With more disks, use multiple vdevs.
- Some older ZFS documentation recommends that a certain number of disks is needed for each type of RAIDZ in order to achieve optimal performance. On systems using LZ4 compression, which is the default for FreeNAS® 9.2.1 and higher, this is no longer true.

These resources can also help determine the RAID configuration best suited to the specific storage requirements:

Warning: RAID AND DISK REDUNDANCY ARE NOT A SUBSTITUTE FOR A RELIABLE BACKUP STRATEGY. BAD THINGS HAPPEN AND A GOOD BACKUP STRATEGY IS STILL REQUIRED TO PROTECT VALUABLE DATA. See Periodic Snapshot Tasks (page 158) and Replication Tasks (page 160) to use replicated ZFS snapshots as part of a backup strategy.

ZFS manages devices. When an individual drive in a mirror or RAIDZ fails and is replaced by the user, ZFS adds the replacement device to the vdev and copies redundant data to it in a process called **resilvering.** Hardware RAID controllers usually have no way of knowing which blocks were in use and must copy every block to the new device. ZFS only copies blocks that are in use, reducing the time it takes to rebuild the vdev. Resilvering is also interruptable. After an interruption, resilvering resumes where it left off rather than starting from the beginning.

While ZFS provides many benefits, there are some caveats:

- At 90% capacity, ZFS switches from performance- to space-based optimization, which has massive performance implications. For maximum write performance and to prevent problems with drive replacement, add more capacity before a pool reaches 80%.
- When considering the number of disks to use per vdev, consider the size of the disks and the amount of time required for resilvering, which is the process of rebuilding the vdev. The larger the size of the vdev, the longer the resilvering time. When replacing a disk in a RAIDZ, it is possible that another disk will fail before the resilvering process completes. If the number of failed disks exceeds the number allowed per vdev for the type of RAIDZ, the data in the pool will be lost. For this reason, RAIDZ1 is not recommended for drives over 1 TiB in size.
- Using drives of equal sizes is recommended when creating a vdev. While ZFS can create a vdev using disks of differing sizes, its capacity will be limited by the size of the smallest disk.
For those new to ZFS, the Wikipedia entry on ZFS (https://en.wikipedia.org/wiki/Zfs) provides an excellent starting point to learn more about its features. These resources are also useful for reference:

- Becoming a ZFS Ninja (video) (https://www.youtube.com/watch?v=6_K55Ira1Cs)
- A Crash Course on ZFS (http://www.bsdnow.tv/tutorials/zfs)
- The Zettabyte Filesystem (https://www.youtube.com/watch?v=ptY6-K78McY)

28.1 ZFS Feature Flags

To differentiate itself from Oracle ZFS version numbers, OpenZFS uses feature flags. Feature flags are used to tag features with unique names to provide portability between OpenZFS implementations running on different platforms, as long as all of the feature flags enabled on the ZFS pool are supported by both platforms. FreeNAS® uses OpenZFS and each new version of FreeNAS® keeps up-to-date with the latest feature flags and OpenZFS bug fixes. See zpool-features(7) (https://www.freebsd.org/cgi/man.cgi?query=zpool-features) for a complete listing of all OpenZFS feature flags available on FreeBSD.
An open source, community-supported FreeNAS® driver for OpenStack is available at https://github.com/ixsystems/cinder.
VMware’s vStorage APIs for Array Integration, or VAAI, allows storage tasks such as large data moves to be offloaded from the virtualization hardware to the storage array. These operations are performed locally on the NAS without transferring bulk data over the network.

30.1 VAAI for iSCSI

VAAI for iSCSI supports these operations:

- **Atomic Test and Set (ATS)** allows multiple initiators to synchronize LUN access in a fine-grained manner rather than locking the whole LUN and preventing other hosts from accessing the same LUN simultaneously.

- **Clone Blocks (XCOPY)** copies disk blocks on the NAS. Copies occur locally rather than over the network. The operation is similar to Microsoft ODX (https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/hh831628(v=ws.11)).

- **LUN Reporting** allows a hypervisor to query the NAS to determine whether a LUN is using thin provisioning.

- **Stun** pauses running virtual machines when a volume runs out of space. The space issue can then be fixed and the virtual machines can continue rather than reporting write errors.

- **Threshold Warning** the system reports a warning when a configurable capacity is reached. In FreeNAS®, this threshold can be configured at the pool level when using zvols (see Table 10.6) or at the extent level (see Table 10.11) for both file- and device-based extents. Typically, the warning is set at the pool level, unless file extents are used, in which case it must be set at the extent level.

- **Unmap** informs FreeNAS® that the space occupied by deleted files should be freed. Without unmap, the NAS is unaware of freed space created when the initiator deletes files. For this feature to work, the initiator must support the unmap command.

- **Zero Blocks or Write Same** zeros out disk regions. When allocating virtual machines with thick provisioning, the zero write is done locally, rather than over the network. This makes virtual machine creation and any other zeroing of disk regions much quicker.
A REST (https://en.wikipedia.org/wiki/Representational_state_transfer) API is provided to be used as an alternate mechanism for remotely controlling a FreeNAS® system.

REST provides an easy-to-read, HTTP implementation of functions, known as resources, which are available beneath a specified base URL. Each resource is manipulated using the HTTP methods defined in RFC 2616 (https://tools.ietf.org/html/rfc2616.html), such as GET, PUT, POST, or DELETE.

As shown in Figure 31.1, an online version of the API is available at api.freenas.org (http://api.freenas.org).

![API Documentation](https://api.freenas.org)

Fig. 31.1: API Documentation

31.1 APIv2

A new API was released with FreeNAS® 11.1. The previous API is still present and in use because it is feature-complete. Documentation for the new API is available on the FreeNAS® system at the /api/docs/ URL. For example, if the FreeNAS® system is at IP address 192.168.1.119, enter http://192.168.1.119/api/docs/ in a browser to see the API documentation. Work is under way to make the new API feature-complete. The new APIv2 uses WebSockets (https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API).
This advanced technology makes it possible to open interactive communication sessions between web browsers and servers, allowing event-driven responses without the need to poll the server for a reply. When APIv2 is feature complete, the FreeNAS® documentation will include relevant examples that make use of the new API.

31.2 A Simple API Example

The **api** directory of the FreeNAS® github repository https://github.com/freenas/freenas/tree/master/examples/api contains some API usage examples. This section provides a walkthrough of the `newuser.py` script, shown below, as it provides a simple example that creates a user.

A FreeNAS® system running at least version 9.2.0 is required when creating a customized script based on this example. To test the scripts directly on the FreeNAS® system, create a user account and select an existing volume or dataset for the user’s **Home Directory**. After creating the user, start the SSH service using Services → Control Services. That user will now be able to **ssh** to the IP address of the FreeNAS® system to create and run scripts. Alternately, scripts can be tested on any system with the required software installed as shown in the previous section.

To customize this script, copy the contents of this example into a filename that ends in `.py`. The text that is highlighted in red below can be modified in the new version to match the needs of the user being created. The text in black should not be changed. After saving changes, run the script by typing `python scriptname.py`. If all goes well, the new user account will appear in Account → Users → View Users in the FreeNAS® GUI.

Here is the example script with an explanation of the line numbers below it.

```python
import json
import requests
r = requests.post('https://freenas.mydomain/api/v1.0/account/users/',
auth=('root', 'freenas'),
headers={'Content-Type': 'application/json'},
```
verify=False,
data=json.dumps(
 {'bsdusr_uid': '1100',
 'bsdusr_username': 'myuser',
 'bsdusr_mode': '755',
 'bsdusr_creategroup': 'True',
 'bsdusr_password': '12345',
 'bsdusr_shell': '/usr/local/bin/bash',
 'bsdusr_full_name': 'Full Name',
 'bsdusr_email': 'name@provider.com'},
}
)
print(r.text)

Where:

Lines 1-2: import the Python modules used to make HTTP requests and handle data in JSON format.

Line 4: replace freenas.mydomain with the Hostname value in System → System Information. Note that the script will fail if the machine running it is not able to resolve that hostname. Change https to http to use HTTP rather than HTTPS to access the FreeNAS® system.

Line 5: replace freenas with the password used to access the FreeNAS® system.

Line 7: if you are using HTTPS and want to force validation of the SSL certificate, change False to True.

Lines 8-16: set the values for the user being created. The Users resource (http://api.freenas.org/resources/account.html#users) describes this in more detail. Allowed parameters are listed in the JSON Parameters section of that resource. Since this resource creates a FreeBSD user, the values entered must be valid for a FreeBSD user account.

Table 31.1 summarizes acceptable values. This resource uses JSON, so the boolean values are True or False.

<table>
<thead>
<tr>
<th>JSON Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bsdusr_username</td>
<td>string</td>
<td>Enter a maximum of 32 characters. A maximum of 8 is recommended for interoperability. The username can include numerals but cannot include a space.</td>
</tr>
<tr>
<td>bsdusr_full_name</td>
<td>string</td>
<td>This field can contain spaces and uppercase characters.</td>
</tr>
<tr>
<td>bsdusr_password</td>
<td>string</td>
<td>The password can include a mix of upper and lowercase letters, characters, and numbers.</td>
</tr>
<tr>
<td>bsdusr_uid</td>
<td>integer</td>
<td>By convention, user accounts have an ID greater than 1000 with a maximum allowable value of 65,535.</td>
</tr>
<tr>
<td>bsdusr_group</td>
<td>integer</td>
<td>Specify the numeric ID of the group to create if bsdusr_creategroup is set to False.</td>
</tr>
<tr>
<td>bsdusr_creategroup</td>
<td>boolean</td>
<td>Set to True to create a primary group with the same numeric ID as bsdusr_uid.</td>
</tr>
<tr>
<td>bsdusr_mode</td>
<td>string</td>
<td>Sets default numeric UNIX permissions for the home directory of the user.</td>
</tr>
<tr>
<td>bsdusr_shell</td>
<td>string</td>
<td>Specify the full path to a UNIX shell that is installed on the system.</td>
</tr>
<tr>
<td>bsdusr_password_disabled</td>
<td>boolean</td>
<td>The user is not allowed to log in when set to True.</td>
</tr>
<tr>
<td>bsdusr_locked</td>
<td>boolean</td>
<td>The user is not allowed to log in when set to True.</td>
</tr>
<tr>
<td>bsdusr_sudo</td>
<td>boolean</td>
<td>sudo is enabled for the user when set to True.</td>
</tr>
<tr>
<td>bsdusr_sshpubkey</td>
<td>string</td>
<td>Enter the contents of the SSH authorized keys file.</td>
</tr>
</tbody>
</table>

Note: When using boolean values, JSON returns raw lowercase values but Python uses uppercase values. So use True or False in Python scripts even though the example JSON responses in the API documentation are displayed as true or false.
31.3 A More Complex Example

This section provides a walk-through of a more complex example found in the `startup.py` script. Use the search-bar within the API documentation to quickly locate the JSON parameters used here. This example defines a class and several methods to create a ZFS volume, create a ZFS dataset, share the dataset over CIFS, and enable the CIFS service. Responses from some methods are used as parameters in other methods. In addition to the import lines seen in the previous example, two additional Python modules are imported to provide parsing functions for command line arguments:

```python
import argparse
import sys
```

It then creates a `Startup` class which is started with the hostname, username, and password provided by the user via the command line:

```python
class Startup(object):
    def __init__(self, hostname, user, secret):
        self._hostname = hostname
        self._user = user
        self._secret = secret
        self._ep = 'http://%s/api/v1.0' % hostname

    def request(self, resource, method='GET', data=None):
        if data is None:
            data = ''
        r = requests.request(method, 'http://%s%s' % (self._ep, resource),
                              data=json.dumps(data),
                              headers={'Content-Type': 'application/json'},
                              auth=(self._user, self._secret),)

        if r.ok:
            try:
                return r.json()
            except:
                return r.text
        raise ValueError(r)
```

A `get_disks` method is defined to get all the disks in the system as a `disk_name` response. The `create_pool` method uses this information to create a ZFS pool named `tank` which is created as a stripe. The `volume_name` and `layout` JSON parameters are described in the "Storage Volume" resource of the API documentation:

```python
def _get_disks(self):
    disks = self.request('storage/disk')
    return [disk['disk_name'] for disk in disks]

def create_pool(self):
    disks = self._get_disks()
    self.request('storage/volume', method='POST', data={
        'volume_name': 'tank',
        'layout': {
            'vdevtype': 'stripe', 'disks': disks},
    })
```

The `create_dataset` method is defined which creates a dataset named `MyShare`:

```python
def create_dataset(self):
    self.request('storage/volume/tank/datasets', method='POST', data={
        'name': 'MyShare',
    })
```
The `create_cifs_share` method is used to share `/mnt/tank/MyShare` with guest-only access enabled. The `cifs_name`, `cifs_path`, `cifs_guestonly` JSON parameters, as well as the other allowable parameters, are described in the “Sharing CIFS” resource of the API documentation:

```python
def create_cifs_share(self):
    self.request('sharing/cifs', method='POST', data={'
        'cifs_name': 'My Test Share',
        'cifs_path': '/mnt/tank/MyShare',
        'cifs_guestonly': True
    })
```

Finally, the `service_start` method enables the CIFS service. The `srv_enable` JSON parameter is described in the Services resource.

```python
def service_start(self, name):
    self.request('services/services/%s' % name, method='PUT', data={'
        'srv_enable': True,
    })
```