CONTENTS

Welcome ... 8
Typographic Conventions .. 10

1 Introduction .. 11
1.1 New Features in 11.1 ... 11
1.2 Changes Since 11.1 ... 13
 1.2.1 U1 ... 13
 1.2.2 U2 ... 13
 1.2.3 U3 ... 14
 1.2.4 U5 ... 14
 1.2.5 U6 ... 14
 1.2.6 U6.3 ... 14
 1.2.7 U7 ... 14
1.3 Path and Name Lengths ... 15
1.4 Hardware Recommendations ... 16
 1.4.1 RAM .. 16
 1.4.2 The Operating System Device 17
 1.4.3 Storage Disks and Controllers 17
 1.4.4 Network Interfaces .. 18
1.5 Getting Started with ZFS ... 19

2 Installing and Upgrading ... 20
2.1 Getting FreeNAS® ... 20
2.2 Preparing the Media ... 20
 2.2.1 On FreeBSD or Linux ... 21
 2.2.2 On Windows ... 21
 2.2.3 macOS .. 21
2.3 Performing the Installation .. 22
2.4 Installation Troubleshooting .. 30
2.5 Upgrading ... 31
 2.5.1 Caveats .. 31
 2.5.2 Initial Preparation ... 31
 2.5.3 Upgrading Using the ISO 32
 2.5.4 Upgrading From the GUI 34
 2.5.5 If Something Goes Wrong 34
 2.5.6 Upgrading a ZFS Pool ... 35
2.6 Virtualization .. 36
 2.6.1 VirtualBox ... 37
 2.6.2 VMware ESXi .. 45

3 Booting .. 52
3.1 Obtaining an IP Address .. 53
3.2 Logging In ... 54
3.3 Initial Configuration ... 55
Welcome

This Guide covers the installation and use of FreeNAS® 11.1.

The FreeNAS® User Guide is a work in progress and relies on the contributions of many individuals. If you are interested in helping us to improve the Guide, read the instructions in the README (https://github.com/freenas/freenas-docs/blob/master/README.md). IRC Freenode users are welcome to join the #freenas channel where you will find other FreeNAS® users.

The FreeNAS® User Guide is freely available for sharing and redistribution under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/). This means that you have permission to copy, distribute, translate, and adapt the work as long as you attribute iXsystems as the original source of the Guide.

FreeNAS® and the FreeNAS® logo are registered trademarks of iXsystems.

Active Directory® is a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

Apple, Mac and Mac OS are trademarks of Apple Inc., registered in the U.S. and other countries.

Broadcom is a trademark of Broadcom Corporation.

Chelsio® is a registered trademark of Chelsio Communications.

Cisco® is a registered trademark or trademark of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

Django® is a registered trademark of Django Software Foundation.

Facebook® is a registered trademark of Facebook Inc.

FreeBSD® and the FreeBSD® logo are registered trademarks of the FreeBSD Foundation®.

Intel, the Intel logo, Pentium Inside, and Pentium are trademarks of Intel Corporation in the U.S. and/or other countries.

LinkedIn® is a registered trademark of LinkedIn Corporation.

Linux® is a registered trademark of Linus Torvalds.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.
Typographic Conventions

The FreeNAS® 11.1 User Guide uses these typographic conventions:

<table>
<thead>
<tr>
<th>Item</th>
<th>Visual Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphical elements: buttons, icons, fields, columns, and boxes</td>
<td>Click the Import CA button.</td>
</tr>
<tr>
<td>Menu selections</td>
<td>Select System → Information.</td>
</tr>
<tr>
<td>Commands</td>
<td>Use the scp command.</td>
</tr>
<tr>
<td>File names and volume and dataset names</td>
<td>Locate the /etc/rc.conf file.</td>
</tr>
<tr>
<td>Keyboard keys</td>
<td>Press the Enter key.</td>
</tr>
<tr>
<td>Important points</td>
<td>This is important.</td>
</tr>
<tr>
<td>Values entered into fields, or device names</td>
<td>Enter 127.0.0.1 in the address field.</td>
</tr>
</tbody>
</table>
FreeNAS® is an embedded open source network-attached storage (NAS) operating system based on FreeBSD and released under a 2-clause BSD license (https://opensource.org/licenses/BSD-2-Clause). A NAS has an operating system optimized for file storage and sharing.

FreeNAS® provides a browser-based, graphical configuration interface. The built-in networking protocols provide storage access to multiple operating systems. A plugin system is provided for extending the built-in features by installing additional software.

1.1 New Features in 11.1

FreeNAS® 11.1 is a feature release, which includes several new significant features, many improvements and bug fixes to existing features, and version updates to the operating system, base applications, and drivers. Users are encouraged to Update (page 79) to this release in order to take advantage of these improvements and bug fixes.

These base applications and drivers have been updated or added:

- The base operating system has been updated to FreeBSD 11.1-STABLE. This brings in many new features and drivers (https://www.freebsd.org/releases/11.1R/relnotes.html). Improvements have been made to the \em{em}(4) (https://www.freebsd.org/cgi/man.cgi?query=en), \ixl(4) (https://www.freebsd.org/cgi/man.cgi?query=ixl), \ixgbe(4) (https://www.freebsd.org/cgi/man.cgi?query=ixgbe), and \mps(4) (https://www.freebsd.org/cgi/man.cgi?query=mps) drivers. Additionally, the \netmap(4) (https://www.freebsd.org/cgi/man.cgi?query=netmap) kernel module has been added to the build as some NIC drivers depend upon it.
- There have been many improvements to OpenZFS, including a significant speed improvement when listing a large number of snapshots and deleting multiple snapshots or large files.
- The algorithm used for scrubs and resolvers has received many improvements which are most noticeable on fragmented pools.
- Samba 4.7 has been patched to address these security vulnerabilities (https://www.samba.org/samba/history/samba-4.7.3).
- The Dojo Toolkit has been updated to version 1.12.2.
- OpenVPN has been updated to version 2.4.3 (https://github.com/OpenVPN/openvpn/blob/release/2.4/Changes.rst#version-243).
- Iperf version 3.2 (http://software.es.net/iperf/) has been added. To use this version, specify \texttt{iperf3} instead of \texttt{iperf}.
- IoCage has been updated to version 0.9.10.
- The new middleware now uses Python asyncio which simplifies asynchronous code and makes it more readable.
- The SNMP MIB has many improvements, including the ability to send SNMP traps for new alerts.
- The system now sends an email when a scrub finishes.
- \texttt{mmv} (https://packages.debian.org/unstable/utilis/mmv) has been added. It can be used from the command line to safely move or copy multiple files using patterns, without any unexpected deletion of files due to target name collisions.
- \s3cmd (http://s3tools.org/s3cmd) has been added back as a CLI alternative to S3 (page 234).
The `zfs-stats` (http://www.vx.sk/zfs-stats/) CLI utility has been added. Type `zfs-stats` to see command usage.

The hardware watchdog has been reenabled for recent firmware versions of AsrockRack C2750D4I. The BMC bug which required the watchdog to be disabled is resolved with the 00.35.00 or newer BMC firmware version.

The system issues an alert if the system reboots itself.

These major features are new in this version:

- Scrubs can be paused and resumed from the command line. Scrub pause state and progress are periodically synced to disk. If the system is restarted or the pool is exported during a paused scrub, the scrub remains paused until it is resumed. When resumed, the scrub picks up from the place where it was last checkpointed to disk. Paused scrubs can be resumed with `zpool scrub`. Scrubs can be paused manually with `zpool scrub -p`. A future version of FreeNAS® will add a button to the UI to resume or pause a scrub.

- **Cloud Credentials** (page 82) has been added to **System** (page 63). This can be used to provide a secure connection to a cloud service providers. Supported services include Amazon S3, Azure Blob Storage, Backblaze B2, and Google Cloud Storage.

- **Cloud Sync** (page 93) has been added to **Tasks** (page 93) and can be used to synchronize files or directories to remote cloud storage providers with a specified transfer mode.

- The Server Side Encryption drop-down menu appears on **Tasks → Cloud Sync → Add Cloud Sync** when an S3 provider is selected.

- **Resilver Priority** (page 159) has been added to **Storage** (page 124). This provides the ability to run resilvering at a higher priority at configurable times and days of the week.

- The **Netdata** (page 229) real-time performance and monitoring system has been added to **Services** (page 216).

- **Virtual Machines** (page 276) have received significant improvements, including:
 - support for non-US keyboards.
 - the ability to restart a VM and to clone a VM.
 - the ability to specify the NIC used by the VM as well as the MAC address for the VM NIC. These options can be set with **VMs → Devices → Network Interface**.
 - the ability to specify the sector size used by the emulated disk has been added to **VMs → Devices → Disk**.
 - the ability to edit the VNC screen resolution, select the IP address to bind to, set the VNC password, and select the option to use the Web version of VNC. These options can be set with **VMs → Devices → VNC**.

These screens have changed:

- The **Change E-mail** button has been removed from **Account → Users**.

- Each device in a mirrored boot pool now displays a **Detach** button in **System → Boot → Status**. This can be used to remove a device from the boot pool.

- The **Enable Console Menu** in **System → Advanced** has been renamed to **Show Text Console Without Password Prompt**.

- The **Report CPU usage in percentage** checkbox has been added to **System → Advanced**.

- The FreeNAS-11-Nightlies-SDK train has been added and the FreeNAS-9.3-STABLE train has been removed from **System → Update**.

- The **Send Test Alert** button has been added to **System → Alert Services → Edit**.

- The **Subject Alternate Names** field has been added to **System → CAs → Create Internal CA, System → CAs → Create Intermediate CA, System → Certificates → Create Internal Certificate, and System → Certificates → Create Certificate Signing Request screens**.

- The **Sign CSR** button has been added to **System → CAs**.

- The ability to edit an existing certificate's Name, Certificate, and Private Key fields has been added to **System → Certificates → View**.

- An **Enabled** checkbox has been added to **Tasks → Init/Shutdown Scripts**.

- The **Additional domains** field has been added to **Network → Global Configuration**. This allows up to six additional DNS search domains with the caveat that adding more domains may negatively impact DNS lookup time.
• The Identify Light button has been added to Network → IPMI to make it easier to identify a system in a rack by flashing its IPMI LED light.

• The Priority Code Point (CoS) field has been added to Network → VLANs → Add VLAN. This can be useful in datacenter environments to classify storage traffic on a given VLAN interface using IEEE 802.1p Class of Service (COS).

• The Read-Only drop-down menu has been added to Storage → Datasets → Add Dataset → Advanced Mode.

• The Promote Dataset button has been added to Storage → Volumes.

• The Replication column has been removed from Storage → Snapshots.

• The Time Machine Quota checkbox has been added to Sharing → Apple (AFP) Shares → Add Apple (AFP) Share.

• The Access Based Share Enumeration checkbox has been added to Sharing → SMB (Windows) Shares → Add SMB (Windows) Share.

• The Home Share Time Machine checkbox has been added to Services → AFP.

• The CheckIP Server SSL, CheckIP Server, CheckIP Path, and Use SSL fields have been added to Services → DDNS. The Forced update period and Auxiliary parameters fields have been removed. In addition, several dozen DDNS providers have been added to the Provider drop-down menu.

• The Certificate drop-down menu has been added to Services → S3 in order to configure encrypted S3 connections.

• The Server minimum protocol and Server maximum protocol fields have been removed from Services → SMB.

• The Log Level drop-down menu has been added to Services → SNMP. It defaults to the Error log level.

• The No Communication Warning Time field has been added to Services → UPS. This can be used to configure the frequency of email notifications during the loss of UPS communications.

• The No Authentication choice has been added to the Services → WebDAV → HTTP Authentication drop-down menu.

1.2 Changes Since 11.1

FreeNAS® uses a “rolling release” model instead of point releases. The Update (page 79) mechanism makes it easy to keep up-to-date with the latest security fixes, bug fixes, and new features. Some updates affect the user interface, so this section lists any functional changes that have occurred since 11.1 was released.

Note: The screenshots in this documentation assume that the system has been fully updated to the latest STABLE version of FreeNAS® 11.1-U7. If a screen on the system is not the same as shown in this guide, make sure that all updates have been applied.

1.2.1 U1

• RancherOS has been updated to version 1.1.3 (https://github.com/rancher/os/releases/tag/v1.1.3).

• Smartmontools has been updated to 6.6 (https://www.smartmontools.org/browser/tags/RELEASE_6_6/smartmontools/NEWS).

• The Factory Restore button in System → General has been renamed to Reset Configuration to Defaults.

1.2.2 U2

• System Update has been removed from the Console Setup Menu (page 52).

• System → Information shows the system serial number on systems supplied or certified by iXsystems.

• ZFS Sync write synchronization settings have been added to Create Dataset (page 131) and Create zvol (page 134).

• Midnight Commander has been updated to version 4.8.20 (http://midnight-commander.org/wiki/NEWS-4.8.20).
1.2.3 U3

1.2.4 U5

- Adds preliminary support for Self-Encrypting Drives (page 73).
- The ATA Security User and SED Password fields have been added to System → Advanced.
- The Password for SED field has been added to Storage → Volumes → View Disks.

1.2.5 U6

- Samba 4.7 has been patched to address recent CVEs (https://www.samba.org/samba/latest_news.html#4.8.4).
- The em (https://www.freebsd.org/cgi/man.cgi?query=em&apropos=0&sektion=4), igb (https://www.freebsd.org/cgi/man.cgi?query=igb&apropos=0&sektion=4), ixgbe (https://www.freebsd.org/cgi/man.cgi?query=ixgbe&apropos=0&sektion=4) and ixl (https://www.freebsd.org/cgi/man.cgi?query=ixl&apropos=0&sektion=4) Intel drivers have been patched to resolve a performance degradation issue that occurs when the MTU is set to 9000 (9k jumbo clusters). Before configuring 9k jumbo clusters for cxgbe (https://www.freebsd.org/cgi/man.cgi?query=cxgbe&apropos=0&sektion=4) create a Tunables (page 76) with a Variable of hw.cxgbe.largest_rx_cluster, a Type of Loader, and a Value of 4096. The cxgb (https://www.freebsd.org/cgi/man.cgi?query=cxgb&apropos=0&sektion=4) driver does not support jumbo clusters and should not use an MTU greater than 4096.
- The Endpoint URL has been added to System -> Cloud Credentials -> Add Cloud Credential but only appears when Amazon S3 is selected as the Provider. This can be used to configure a connection to another S3-compatible service, such as Wasabi.
- The User Base and Group Base fields have been removed from Directory Services → Active Directory → Advanced Mode.

1.2.6 U6.3

1.2.7 U7

- Samba 4.7 has been patched to address recent CVEs (https://www.samba.org/samba/latest_news.html#4.9.3).
- The ixnas VFS module has been added to and the aio_pthread VFS module has been removed from Sharing → Windows (SMB) → VFS Objects.
- The Enable SMB1 support checkbox has been added to Services → SMB. However, users are cautioned to not use SMB1 (https://www.ixsystems.com/blog/library/do-not-use-smb1/).
1.3 Path and Name Lengths

Names of files, directories, and devices are subject to some limits imposed by the FreeBSD operating system. The limits shown here are for names using plain-text characters that each occupy one byte of space. Some UTF-8 characters take more than a single byte of space, and using those characters reduces these limits proportionally. System overhead can also reduce the length of these limits by one or more bytes.

<table>
<thead>
<tr>
<th>Type</th>
<th>Maximum Length</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>File Paths</td>
<td>1024 bytes</td>
<td>Total file path length (PATH_MAX). The full path includes directory sepa-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rator slash characters, subdirectory names, and the name of the file itself.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For example, the path /mnt/tank/mydataset/mydirectory/myfile.txt is 42 bytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>long. Using very long file or directory names can be problematic. A complete</td>
</tr>
<tr>
<td></td>
<td></td>
<td>path with long directory and file names can exceed the 1024-byte limit,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>preventing direct access to that file until the directory names or filename</td>
</tr>
<tr>
<td></td>
<td></td>
<td>are shortened or the file is moved into a directory with a shorter total path</td>
</tr>
<tr>
<td></td>
<td></td>
<td>length.</td>
</tr>
<tr>
<td>File and Directory Names</td>
<td>255 bytes</td>
<td>Individual directory or file name length (NAME_MAX).</td>
</tr>
<tr>
<td>Mounted Filesystem Paths</td>
<td>88 bytes</td>
<td>Mounted filesystem path length (MNAMELEN). Longer paths can prevent a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>device from being mounted or data from being accessible.</td>
</tr>
<tr>
<td>Device Filesystem Paths</td>
<td>63 bytes</td>
<td>devfs(8) (https://www.freebsd.org/cgi/man.cgi?query=devfs&sektion=8) device path lengths (SPECNAMELEN). Longer paths can prevent a device from being created.</td>
</tr>
</tbody>
</table>

Note: 88 bytes is equal to 88 ASCII characters. The number of characters will vary when using Unicode.

Warning: If the mounted path length for a snapshot exceeds 88 bytes the data in the snapshot will be safe but inaccessible. When the mounted path length of the snapshot is less than the 88 byte limit, the data will be accessible again.

The 88 byte limit affects automatic and manual snapshot mounts in slightly different ways:

- **Automatic mount:** ZFS temporarily mounts a snapshot whenever a user attempts to view or search the files within the snapshot. The mountpoint used will be in the hidden directory .zfs/snapshot/name within the same ZFS dataset. For example, the snapshot mypool/dataset/snap1@snap2 is mounted at /mnt/mypool/dataset/.zfs/snapshot/snap2/. If the length of this path exceeds 88 bytes the snapshot will not be automatically mounted by ZFS and the snapshot contents will not be visible or searchable. This can be resolved by renaming the ZFS pool or dataset containing the snapshot to shorter names (mypool or dataset), or by shortening the second part of the snapshot name (snap2), so that the total mounted path length does not exceed 88 bytes. ZFS will automatically perform any necessary unmount or remount of the file system as part of the rename operation. After renaming, the snapshot data will be visible and searchable again.

- **Manual mount:** If the same example snapshot is mounted manually from the CLI, using mount -t zfs mypool/dataset/snap1@snap2 /mnt/mymountpoint the path /mnt/mountpoint/ must not exceed 88 bytes, but the length of the snapshot name will be irrelevant. When renaming a manual mountpoint, any object mounted on the mountpoint must be manually unmounted (using the umount command in the CLI) before renaming the mountpoint and can be remounted afterwards.

Note: A snapshot that cannot be mounted automatically by ZFS, can still be mounted manually from the CLI using a shorter mountpoint path. This makes it possible to mount and access snapshots that cannot be accessed automatically in other ways, such as from the GUI or from features such as “File History” or “Versions”.

1.4 Hardware Recommendations

FreeNAS® 11.1 is based on FreeBSD 11.1 and supports the same hardware found in the FreeBSD Hardware Compatibility List (https://www.freebsd.org/releases/11.1R/hardware.html). Supported processors are listed in section 2.1 amd64 (https://www.freebsd.org/releases/11.1R/hardware.html#proc). FreeNAS® is only available for 64-bit processors. This architecture is called amd64 by AMD and Intel 64 by Intel.

Note: FreeNAS® boots from a GPT partition. This means that the system BIOS must be able to boot using either the legacy BIOS firmware interface or EFI.

1.4.1 RAM

The best way to get the most out of a FreeNAS® system is to install as much RAM as possible. More RAM allows ZFS to provide better performance. The FreeNAS® Forums (https://forums.freenas.org/index.php) provide anecdotal evidence from users on how much performance can be gained by adding more RAM.

General guidelines for RAM:

- A minimum of 8 GB of RAM is required.
- Additional features require additional RAM, and large amounts of storage require more RAM for cache. An old, somewhat overstated guideline is 1 GB of RAM per terabyte of disk capacity.
- To use Active Directory with many users, add an additional 2 GB of RAM for the winbind internal cache.
- For iSCSI, install at least 16 GB of RAM if performance is not critical, or at least 32 GB of RAM if good performance is a requirement.
- Jails (page 257) are very memory-efficient, but can still use memory that would otherwise be available for ZFS. If the system will be running many jails, or a few resource-intensive jails, adding 1 to 4 additional gigabytes of RAM can be helpful. This memory is shared by the host and will be used for ZFS when not being used by jails.
- Virtual Machines (page 276) require additional RAM beyond any amounts listed here. Memory used by virtual machines is not available to the host while the VM is running, and is not included in the amounts described above. For example, a system that will be running two VMs that each need 1 GB of RAM requires an additional 2 GB of RAM.
- When installing FreeNAS® on a headless system, disable the shared memory settings for the video card in the BIOS.
- For ZFS deduplication, ensure the system has at least 5 GB of RAM per terabyte of storage to be deduplicated.

If the hardware supports it, install ECC RAM. While more expensive, ECC RAM is highly recommended as it prevents in-flight corruption of data before the error-correcting properties of ZFS come into play, thus providing consistency for the checksumming and parity calculations performed by ZFS. If your data is important, use ECC RAM. This Case Study (http://research.cs.wisc.edu/adsl/Publications/zfs-corruption-fast10.pdf) describes the risks associated with memory corruption.

Do not use FreeNAS® to store data without at least 8 GB of RAM. Many users expect FreeNAS® to function with less memory, just at reduced performance. The bottom line is that these minimums are based on feedback from many users. Requests for help in the forums or IRC are sometimes ignored when the installed system does not have at least 8 GB of RAM because of the abundance of information that FreeNAS® may not behave properly with less memory.
1.4.2 The Operating System Device

The FreeNAS® operating system is installed to at least one device that is separate from the storage disks. The device can be a SSD, USB memory stick, or DOM (Disk on Module). Installation to a hard drive is discouraged as that drive is then not available for data storage.

Note: To write the installation file to a USB stick, two USB ports are needed, each with an inserted USB device. One USB stick contains the installer, while the other USB stick is the destination for the FreeNAS® installation. Be careful to select the correct USB device for the FreeNAS® installation. FreeNAS® cannot be installed onto the same device that contains the installer. After installation, remove the installer USB stick. It might also be necessary to adjust the BIOS configuration to boot from the new FreeNAS® boot device.

When determining the type and size of the target device where FreeNAS® is to be installed, keep these points in mind:

- The absolute bare minimum size is 8 GB. That does not provide much room. The recommended minimum is 16 GB. This provides room for the operating system and several boot environments created by updates. More space provides room for more boot environments and 32 GB or more is preferred.
- SSDs (Solid State Disks) are fast and reliable, and make very good FreeNAS® operating system devices. Their one disadvantage is that they require a disk connection which might be needed for storage disks. Even a relatively large SSD (120 or 128 GB) is useful as a boot device. While it might appear that the unused space is wasted, that space is instead used internally by the SSD for wear leveling. This makes the SSD last longer and provides greater reliability.
- When planning to add your own boot environments, budget about 1 GB of storage per boot environment. Consider deleting older boot environments after making sure they are no longer needed. Boot environments can be created and deleted using System → Boot.
- Use quality, name-brand USB sticks, as ZFS will quickly reveal errors on cheap, poorly-made sticks.
- For a more reliable boot disk, use two identical devices and select them both during the installation. This will create a mirrored boot device.

Note: Current versions of FreeNAS® run directly from the operating system device. Early versions of FreeNAS® ran from RAM, but that has not been the case for years.

1.4.3 Storage Disks and Controllers

The Disk section (https://www.freebsd.org/releases/11.1R/hardware.html#disk) of the FreeBSD Hardware List lists the supported disk controllers. In addition, support for 3ware 6 Gbps RAID controllers has been added along with the CLI utility tw_cli for managing 3ware RAID controllers.

FreeNAS® supports hot pluggable drives. Using this feature requires enabling AHCI in the BIOS.

Reliable disk alerting and immediate reporting of a failed drive can be obtained by using an HBA such as an Broadcom MegaRAID controller or a 3Ware twa-compatible controller.

Note: Upgrading the firmware of Broadcom SAS HBAs to the latest version is recommended.

Some Highpoint RAID controllers do not support pass-through of S.M.A.R.T. data or other disk information, potentially including disk serial numbers. It is best to use a different disk controller with FreeNAS®.

Note: The system is configured to prefer the mrsas(4) (https://www.freebsd.org/cgi/man.cgi?query=mrsas) driver for controller cards like the Dell PERC H330 and H730 which are supported by several drivers. Although not recommended, the mfi(4)
The `mfi` driver can be used instead by removing the loader `Tunable` (page 76): `hw.mfi.mrsas_enable` or setting the Value to 0.

Suggestions for testing disks before adding them to a RAID array can be found in this forum post (https://forums.freenas.org/index.php?threads/checking-new-hdds-in-raid.12082/#post-55936). Additionally, `badblocks` (https://linux.die.net/man/8/badblocks) is installed with FreeNAS® for testing disks.

If the budget allows optimization of the disk subsystem, consider the read/write needs and RAID requirements:

- For steady, non-contiguous writes, use disks with low seek times. Examples are 10K or 15K SAS drives which cost about $1/GB. An example configuration would be six 600 GB 15K SAS drives in a RAID 10 which would yield 1.8 TB of usable space, or eight 600 GB 15K SAS drives in a RAID 10 which would yield 2.4 TB of usable space.

For ZFS, `Disk Space Requirements for ZFS Storage Pools` (https://docs.oracle.com/cd/E19253-01/819-5461/6n7ht6r12/index.html) recommends a minimum of 16 GB of disk space. Due to the way that ZFS creates swap, it is not possible to format less than 3 GB of space with ZFS. However, on a drive that is below the minimum recommended size, a fair amount of storage space is lost to swap: for example, on a 4 GB drive, 2 GB will be reserved for swap.

ZFS vdevs, groups of disks that act like a single device, can be created using disks of different sizes. However, the capacity available on each disk is limited to the same capacity as the smallest disk in the group. For example, a vdev with one 2 TB and two 4 TB disks will only be able to use 2 TB of space on each disk. In general, use disks that are the same size for the best space usage and performance.

The `ZFS Drive Size and Cost Comparison spreadsheet` (https://forums.freenas.org/index.php?threads/zfs-drive-size-and-cost-comparison-spreadsheet.38092/) is available to compare usable space provided by different quantities and sizes of disks.

1.4.4 Network Interfaces

The `Ethernet section` (https://www.freebsd.org/releases/11.1R/hardware.html#ethernet) of the FreeBSD Hardware Notes indicates which interfaces are supported by each driver. While many interfaces are supported, FreeNAS® users have seen the best performance from Intel and Chelsio interfaces, so consider these brands when purchasing a new NIC. Realtek cards often perform poorly under CPU load as interfaces with these chipsets do not provide their own processors.

At a minimum, a GigE interface is recommended. While GigE interfaces and switches are affordable for home use, modern disks can easily saturate their 110 MB/s throughput. For higher network throughput, multiple GigE cards can be bonded together using the LACP type of `Link Aggregations` (page 117). The Ethernet switch must support LACP, which means a more expensive managed switch is required.

When network performance is a requirement and there is some money to spend, use 10 GigE interfaces and a managed switch. Managed switches with support for LACP and jumbo frames are preferred, as both can be used to increase network throughput. Refer to the `10 Gig Networking Primer` (https://forums.freenas.org/index.php?threads/10-gig-networking-primer.25749/) for more information.

Note: At present, these are not supported: InfiniBand, FibreChannel over Ethernet, or wireless interfaces.

Both hardware and the type of shares can affect network performance. On the same hardware, SMB is slower than FTP or NFS because Samba is single-threaded (https://www.samba.org/samba/docs/old/Samba3-Developers-Guide/architecture.html). So a fast CPU can help with SMB performance.

Wake on LAN (WOL) support depends on the FreeBSD driver for the interface. If the driver supports WOL, it can be enabled using `ifconfig(8)` (https://www.freebsd.org/cgi/man.cgi?query=ifconfig). To determine if WOL is supported on a particular interface, use the interface name with the following command. In this example, the capabilities line indicates that WOL is supported for the re0 interface:
If WOL support is shown but not working for a particular interface, create a bug report using the instructions in Support (page 90).

1.5 Getting Started with ZFS

Readers new to ZFS should take a moment to read the ZFS Primer (page 327).
The FreeNAS® operating system must be installed on a separate device from the drives which hold the storage data. In other words, with only one disk drive, the FreeNAS® graphical interface is available, but there is no place to store any data. And storing data is, after all, the whole point of a NAS system. Home users experimenting with FreeNAS® can install FreeNAS® on an inexpensive USB thumb drive and use the computer disks for storage.

This section describes:

- Getting FreeNAS® (page 20)
- Preparing the Media (page 20)
- Performing the Installation (page 22)
- Installation Troubleshooting (page 30)
- Upgrading (page 31)
- Virtualization (page 36)

2.1 Getting FreeNAS®

The latest STABLE version of FreeNAS® 11.1 can be downloaded from https://download.freenas.org/11/latest/.

Note: FreeNAS® requires 64-bit hardware.

The download page contains an .iso file. This is a bootable installer that can be written to either a CD or USB flash as described in Preparing the Media (page 20).

The .iso file has an associated sha256.txt file which is used to verify the integrity of the downloaded file. The command to verify the checksum varies by operating system:

- on a BSD system use the command `sha256 name_of_file`
- on a Linux system use the command `sha256sum name_of_file`
- on a Mac system use the command `shasum -a 256 name_of_file`
- Windows or Mac users can install additional utilities like HashCalc (http://www.slavasoftware.com/hashcalc/) or HashTab (http://implbits.com/products/hashtab/)

The value produced by running the command must match the value shown in the sha256.txt file. Checksum values that do not match indicate a corrupted installer file that should not be used.

2.2 Preparing the Media

The FreeNAS® installer can run from either a CD or a USB memory stick.

A CD burning utility is needed to write the .iso file to a CD.
The `.iso` file can also be written to a USB memory stick. The method used to write the file depends on the operating system. Examples for several common operating systems are shown below.

Note: To install from a USB stick to another USB stick, two USB ports are needed, each with an inserted USB device. One USB stick contains the installer. The other USB stick is the destination for the FreeNAS® installation. Take care to select the correct USB device for the FreeNAS® installation. It is not possible to install FreeNAS® onto the same USB stick containing the installer. After installation, remove the installer USB stick. It might also be necessary to adjust the BIOS configuration to boot from the new FreeNAS® USB stick.

Ensure the boot device order in the BIOS is set to boot from the device containing the FreeNAS® installer media, then boot the system to start the installation.

2.2.1 On FreeBSD or Linux

On a FreeBSD or Linux system, the `dd` command is used to write the `.iso` file to an inserted USB thumb drive. This example demonstrates writing the image to the first USB device (`/dev/da0`) connected to a FreeBSD system. Substitute the filename of the `.iso` file and the device name of the device to write.

```
dd if=FreeNAS-11.0-RELEASE.iso of=/dev/da0 bs=64k
```

When using the `dd` command:

- `if=` refers to the input file, or the name of the file to write to the device.
- `of=` refers to the output file; in this case, the device name of the flash card or removable USB drive. Note that USB device numbers are dynamic, and the target device might be da1 or da2 or another name depending on which devices are attached. Before attaching the target USB drive, use `ls /dev/da*`. Then attach the target USB drive, wait ten seconds, and run `ls /dev/da*` again to see the new device name and number of the target USB drive. On Linux, use `/dev/sdX`, where X refers to the letter of the USB device.
- `bs=` refers to the block size, the amount of data to write at a time. The larger 64K block size shown here helps speed up writes to the USB drive.

2.2.2 On Windows

Image Writer (https://launchpad.net/win32-image-writer/) and Rufus (http://rufus.akeo.ie/) can be used for writing images to USB sticks on Windows.

2.2.3 macOS

Insert the USB thumb drive. In the Finder, go to Applications → Utilities → Disk Utility. Unmount any mounted partitions on the USB thumb drive. Check that the USB thumb drive has only one partition, or partition table errors will be shown on boot. If needed, use Disk Utility to set up one partition on the USB drive. Selecting Free space when creating the partition works fine.

Determine the device name of the inserted USB thumb drive. From TERMINAL, navigate to the Desktop, then type this command:
This shows which devices are available to the system. Locate the target USB stick and record the path. To determine the correct path for the USB stick, remove the device, run the command again, and compare the difference. Once sure of the device name, navigate to the Desktop from TERMINAL, unmount the USB stick, and use the `dd` command to write the image to the USB stick. In this example, the USB thumb drive is `/dev/disk1`. It is first unmounted. The `dd` command is used to write the image to the faster "raw" version of the device (note the extra `r` in `/dev/rdisk1`). When running these commands, substitute the name of the installation file and the correct path to the USB thumb drive.

```
diskutil unmountDisk /dev/disk1
Unmount of all volumes on disk1 was successful

dd if=FreeNAS-11.0-RELEASE.iso of=/dev/rdisk1 bs=64k
```

Note: If the error "Resource busy" is shown when the `dd` command is run, go to Applications → Utilities → Disk Utility, find the USB thumb drive, and click on its partitions to make sure all of them are unmounted. If the error "dd: /dev/disk1: Permission denied" is shown, run the `dd` command by typing `sudo dd if=FreeNAS-11.0-RELEASE.iso of=/dev/rdisk1 bs=64k`. This will prompt for the password.

The `dd` command can take some minutes to complete. Wait until the prompt returns and a message is displayed with information about how long it took to write the image to the USB drive.

2.3 Performing the Installation

With the installation media inserted, boot the system from that media. The FreeNAS® installer GRUB menu is displayed as is shown in Figure 2.1.
FreeNAS

Fig. 2.1: Grub Menu

Tip: The Serial Enabled option is useful on systems which do not have a keyboard or monitor, but are accessed through a serial port, Serial over LAN, or IPMI (page 115).

Note: If the installer does not boot, verify that the installation device is listed first in the boot order in the BIOS. When booting from a CD, some motherboards may require connecting the CD device to SATA0 (the first connector) to boot from CD. If the installer stalls during bootup, double-check the SHA256 hash of the .iso file. If the hash does not match, re-download the file. If the hash is correct, burn the CD again at a lower speed or write the file to a different USB stick.

The installer will start automatically after a few seconds, or an option can be chosen by moving the highlight bar to it with the up and down arrow keys and pressing Enter. After booting, the installer menu is displayed as shown in Figure 2.2.
Press Enter to select the default option, Install/Upgrade. The next menu, shown in Figure 2.3, lists all available drives. This includes any inserted USB thumb drives, which have names beginning with da.

Note: A minimum of 8 GB of RAM is required and the installer will present a warning message if less than 8 GB is detected.

In this example, the user is performing a test installation using VirtualBox and has created a 16 GB virtual disk to hold the operating system.
Fig. 2.3: Selecting the Install Drive

Use the arrow keys to highlight the destination USB drive, SSD, DOM (Disk on Module), or virtual disk. Press the **spacebar** to select it. To mirror the boot device, move to the second device and press **spacebar** to select it also. After making these selections, press **Enter**. The warning shown in Figure 2.4 is displayed, a reminder not to install the operating system on a drive that is meant for storage. Press **Enter** to continue on to the screen shown in Figure 2.6.
Note: A minimum of 8 GB of space on the boot device is required. However, 32 GB is recommended to provide room for future additions and boot environments. When using mirrored boot devices, it is best to use devices of the same size. If the device sizes are different, the mirror is limited to the size of the smaller device.

The installer recognizes existing installations of previous versions of FreeNAS® 8.x or 9.x. When an existing installation is present, the menu shown in Figure 2.5 is displayed. To overwrite an existing installation, use the arrows to move to Fresh Install and press Enter twice to continue to the screen shown in Figure 2.6.
The screen shown in Figure 2.6 prompts for the root password which is used to log in to the administrative graphical interface.
Setting a password is mandatory and the password cannot be blank. Since this password provides access to the administrative GUI, it should be hard to guess. Enter the password, press the down arrow key, and confirm the password. Then press Enter to continue with the installation.

Note: For security reasons, the SSH service and root SSH logins are disabled by default. Unless these are set, the only way to access a shell as root is to gain physical access to the console menu or to access the web shell within the administrative GUI. This means that the FreeNAS® system should be kept physically secure and that the administrative GUI should be behind a properly configured firewall and protected by a secure password.

FreeNAS® can be configured to boot with the standard BIOS boot mechanism or UEFI booting as shown Figure 2.7. BIOS booting is recommended for legacy and enterprise hardware. UEFI is used on newer consumer motherboards.
Fig. 2.7: Choose UEFI or BIOS Booting

FreeNAS Boot Mode

FreeNAS can be booted in either BIOS or UEFI mode.

BIOS mode is recommended for legacy and enterprise hardware, whereas UEFI may be required for newer consumer motherboards.

Boot Options

- [Boot via UEFI]
- [Boot via BIOS]

Note: Most UEFI systems can also boot in BIOS mode if CSM (Compatibility Support Module) is enabled in the UEFI setup screens.

The message in Figure 2.8 is shown after the installation is complete.
2.4 Installation Troubleshooting

If the system does not boot into FreeNAS®, there are several things that can be checked to resolve the situation. Check the system BIOS and see if there is an option to change the USB emulation from CD/DVD/floppy to hard drive. If it still will not boot, check to see if the card/drive is UDMA compliant.

If the system BIOS does not support EFI with BIOS emulation, see if it has an option to boot using legacy BIOS mode. When the system starts to boot but hangs with this repeated error message:

```
runInterruptDrivenHooks: still waiting after 60 seconds for xpt_config
```

Go into the system BIOS and look for an onboard device configuration for a 1394 Controller. If present, disable that device and try booting again.

If the system starts to boot but hangs at a mountroot> prompt, follow the instructions in Workaround/Semi-Fix for Mountroot Issues with 9.3 (https://forums.freenas.org/index.php?threads/workaround-semi-fix-for-mountroot-issues-with-9-3.26071/).

If the burned image fails to boot and the image was burned using a Windows system, wipe the USB stick before trying a second burn using a utility such as Active@ KillDisk (http://how-to-erase-hard-drive.com/). Otherwise, the second burn attempt will fail as Windows does not understand the partition which was written from the image file. Be very careful to specify the correct USB stick when using a wipe utility!
2.5 Upgrading

FreeNAS® provides flexibility for keeping the operating system up-to-date:

1. Upgrades to major releases, for example from version 9.3 to 9.10, can still be performed using either an ISO or the graphical administrative interface. Unless the Release Notes for the new major release indicate that the current version requires an ISO upgrade, either upgrade method can be used.

2. Minor releases have been replaced with signed updates. This means that it is not necessary to wait for a minor release to update the system with a system update or newer versions of drivers and features. It is also no longer necessary to manually download an upgrade file and its associated checksum to update the system.

3. The updater automatically creates a boot environment, making updates a low-risk operation. Boot environments provide the option to return to the previous version of the operating system by rebooting the system and selecting the previous boot environment from the boot menu.

This section describes how to perform an upgrade from an earlier version of FreeNAS® to 11.1. After 11.1 has been installed, use the instructions in Update (page 79) to keep the system updated.

2.5.1 Caveats

Be aware of these caveats before attempting an upgrade to 11.1:

• Warning: upgrading the ZFS pool can make it impossible to go back to a previous version. For this reason, the update process does not automatically upgrade the ZFS pool, though the Alert (page 304) system shows when newer feature flags are available for a pool. Unless a new feature flag is needed, it is safe to leave the pool at the current version and uncheck the alert. If the pool is upgraded, it will not be possible to boot into a previous version that does not support the newer feature flags.

• The Wizard (page 289) does not recognize an encrypted ZFS pool. If the ZFS pool is GELI-encrypted and the Wizard (page 289) starts after the upgrade, cancel the Wizard (page 289) and use the instructions in Importing an Encrypted Pool (page 137) to import the encrypted volume. The Wizard (page 289) can be run afterward for post-configuration. It will then recognize that the volume has been imported and not prompt to reformat the disks.

• Upgrading the firmware of Broadcom SAS HBAs to the latest version is recommended.

• If upgrading from 9.3.x, please read the FAQ: Updating from 9.3 to 9.10 (https://forums.freenas.org/index.php?threads/faq-updating-from-9-3-to-9-10.54260/) first.

• Upgrades from FreeNAS® 0.7x are not supported. The system has no way to import configuration settings from 0.7x versions of FreeNAS®. The configuration must be manually recreated. If supported, the FreeNAS® 0.7x volumes or disks must be manually imported.

• Upgrades on 32-bit hardware are not supported. However, if the system is currently running a 32-bit version of FreeNAS® and the hardware supports 64-bit, the system can be upgraded. Any archived reporting graphs will be lost during the upgrade.

• UFS is not supported. If the data currently resides on one UFS-formatted disk, create a ZFS volume using other disks after the upgrade, then use the instructions in Import Disk (page 136) to mount the UFS-formatted disk and copy the data to the ZFS volume. With only one disk, back up its data to another system or media before the upgrade, format the disk as ZFS after the upgrade, then restore the backup. If the data currently resides on a UFS RAID of disks, it is not possible to directly import that data to the ZFS volume. Instead, back up the data before the upgrade, create a ZFS volume after the upgrade, then restore the data from the backup.

• The VMware Tools VMXNET3 drivers are no longer supported. Configure and use the vmx(4) (https://www.freebsd.org/cgi/man.cgi?query=vmx) driver instead.

2.5.2 Initial Preparation

Before upgrading the operating system, perform the following steps:

1. Back up the FreeNAS® configuration in System → General → Save Config.
2. If any volumes are encrypted, remember to set the passphrase and download a copy of the encryption key and the latest recovery key. After the upgrade is complete, use the instructions in Importing an Encrypted Pool (page 137) to import the encrypted volume.

3. Warn users that the FreeNAS® shares will be unavailable during the upgrade; scheduling the upgrade for a time that will least impact users is recommended.

4. Stop all services in Services → Control Services.

2.5.3 Upgrading Using the ISO

To perform an upgrade using this method, download http://download.freenas.org/latest/ the .iso to the computer that will be used to prepare the installation media. Burn the downloaded .iso file to a CD or USB thumb drive using the instructions in Preparing the Media (page 20).

Insert the prepared media into the system and boot from it. After the media finishes booting into the installation menu, press Enter to select the default option of 1 Install/Upgrade. The installer presents a screen showing all available drives.

Warning: All drives are shown, including boot drives and storage drives. Only choose boot drives when upgrading. Choosing the wrong drives to upgrade or install will cause loss of data. If unsure about which drives contain the FreeNAS® operating system, reboot and remove the install media. In the FreeNAS® GUI, use System → Boot to identify the boot drives. More than one drive is shown when a mirror has been used.

Move to the drive where FreeNAS® is installed and press the Spacebar to mark it with a star. If a mirror has been used for the operating system, mark all of the drives where the FreeNAS® operating system is installed. Press Enter when done.

The installer recognizes earlier versions of FreeNAS® installed on the boot drive or drives and presents the message shown in Figure 2.9.

![Fig. 2.9: Upgrading a FreeNAS® Installation](image)

32
Note: If Fresh Install is chosen, the backup of the configuration data must be restored using System → General → Upload Config after booting into the new operating system.

To perform an upgrade, press Enter to accept the default of Upgrade Install. The installer recommends installing the operating system on a disk not used for storage.

The updated system can be installed in a new boot environment, or the entire boot device can be formatted to start fresh. Installing into a new boot environment preserves the old code, allowing a roll-back to previous versions if necessary. Formatting the boot device is usually not necessary but can reclaim space. User data and settings are preserved when installing to a new boot environment and also when formatting the boot device. Move the highlight to one of the options and press Enter to start the upgrade.

The installer unpacks the new image and displays the menu shown in Figure 2.11. The database file that is preserved and migrated contains the FreeNAS® configuration settings.
Press Enter. FreeNAS® indicates that the upgrade is complete and a reboot is required. Press OK, highlight 3 Reboot System, then press Enter to reboot the system. If the upgrade installer was booted from CD, remove the CD.

During the reboot there can be a conversion of the previous configuration database to the new version of the database. This happens during the “Applying database schema changes” line in the reboot cycle. This conversion can take a long time to finish, sometimes fifteen minutes or more, and can cause the system to reboot again. The system will start normally afterwards. If database errors are shown but the graphical administrative interface is accessible, go to Settings → General and use the Upload Config button to upload the configuration that was saved before starting the upgrade.

2.5.4 Upgrading From the GUI

To perform an upgrade using this method, go to System → Update.

After the update is complete, the connection will be lost temporarily as the FreeNAS® system reboots into the new version of the operating system. The FreeNAS® system will normally receive the same IP address from the DHCP server. Refresh the browser after a moment to see if the system is accessible.

2.5.5 If Something Goes Wrong

If an update fails, an alert is issued and the details are written to /data/update.failed.

To return to a previous version of the operating system, physical or IPMI access to the FreeNAS® console is needed. Reboot the system and watch for the boot menu. In the example shown in Figure 2.12, the first boot menu entry, FreeNAS (default), refers to the initial installation, before the update was applied. The second boot entry, FreeNAS-1415259326, refers to the current version of the operating system, after the update was applied. This second entry is highlighted and begins with a star, indicating that this is the environment the system will boot unless another entry is manually selected. Both entries include a date and timestamp showing when that boot environment was created.
To boot into the previous version of the operating system, use the up or down arrow to select it and press **Enter**.

If a boot device fails and the system no longer boots, don’t panic. The data is still on the disks and there is still a copy of the saved configuration. The system can be recovered with a few steps:

1. Perform a fresh installation on a new boot device.
2. Import the volumes in Storage → Auto Import Volume.
3. Restore the configuration in System → General → Upload Config.

Note: It is not possible to restore a saved configuration that is newer than the installed version. For example, if a reboot into an older version of the operating system is performed, a configuration that was created in a later version cannot be restored.

2.5.6 Upgrading a ZFS Pool

In FreeNAS®, ZFS pools can be upgraded from the graphical administrative interface.

Before upgrading an existing ZFS pool, be aware of these caveats first:

- the pool upgrade is a one-way street, meaning that if you change your mind you cannot go back to an earlier ZFS version or downgrade to an earlier version of the software that does not support those feature flags.
- before performing any operation that may affect the data on a storage disk, always back up all data first and verify the integrity of the backup. While it is unlikely that the pool upgrade will affect the data, it is always better to be safe than sorry.
- upgrading a ZFS pool is optional. Do not upgrade the pool if the the possibility of reverting to an earlier version of FreeNAS® or repurposing the disks in another operating system that supports ZFS is desired. It is not necessary to upgrade the pool unless the end user has a specific need for the newer ZFS feature flags. If a pool is upgraded to the
latest feature flags, it will not be possible to import that pool into another operating system that does not yet support those feature flags.

To perform the ZFS pool upgrade, go to Storage → Volumes → View Volumes and highlight the volume (ZFS pool) to upgrade. Click the Upgrade button as shown in Figure 2.13.

Note: If the Upgrade button does not appear, the pool is already at the latest feature flags and does not need to be upgraded.

![Fig. 2.13: Upgrading a ZFS Pool](image)

The warning serves as a reminder that a pool upgrade is not reversible. Click OK to proceed with the upgrade.

The upgrade itself only takes a few seconds and is non-disruptive. It is not necessary to stop any sharing services to upgrade the pool. However, it is best to upgrade when the pool is not being heavily used. The upgrade process will suspend I/O for a short period, but is nearly instantaneous on a quiet pool.

2.6 Virtualization

To install or run FreeNAS® within a virtual environment, create a virtual machine that meets these minimum requirements:

- at least 8192 MB (8 GB) base memory size
- a virtual disk at least 8 GB in size to hold the operating system and boot environments
- at least one additional virtual disk at least 4 GB in size to be used as data storage
- a bridged network adapter

This section demonstrates how to create and access a virtual machine within VirtualBox and VMware ESXi environments.
2.6.1 VirtualBox

VirtualBox [https://www.virtualbox.org/] is an open source virtualization program originally created by Sun Microsystems. VirtualBox runs on Windows, BSD, Linux, Macintosh, and OpenSolaris. It can be configured to use a downloaded FreeNAS:sup:®.iso file, and makes a good testing environment for practicing configurations or learning how to use the features provided by FreeNAS®.

To create the virtual machine, start VirtualBox and click the New button, shown in Figure 2.14, to start the new virtual machine wizard.

![Fig. 2.14: Initial VirtualBox Screen](image)

Click the Next button to see the screen in Figure 2.15. Enter a name for the virtual machine, click the Operating System drop-down menu and select BSD, and select FreeBSD (64-bit) from the Version dropdown.
Fig. 2.15: Type in a Name and Select the Operating System for the New Virtual Machine

Click Next to see the screen in Figure 2.16. The base memory size must be changed to at least 8192 MB. When finished, click Next to see the screen in Figure 2.17.

Fig. 2.16: Select the Amount of Memory Reserved for the Virtual Machine
Click Create to launch the Create Virtual Hard Drive Wizard shown in Figure 2.18.

Select VDI and click the Next button to see the screen in Figure 2.19.
Choose either Dynamically allocated or Fixed-size storage. The first option uses disk space as needed until it reaches the maximum size that is set in the next screen. The second option creates a disk the full amount of disk space, whether it is used or not. Choose the first option to conserve disk space; otherwise, choose the second option, as it allows VirtualBox to run slightly faster. After selecting Next, the screen in Figure 2.20 is shown.
This screen is used to set the size (or upper limit) of the virtual disk. Increase the default size to 8 GB. Use the folder icon to browse to a directory on disk with sufficient space to hold the virtual disk files. Remember that there will be a system disk of at least 8 GB and at least one data storage disk of at least 4 GB.

After making a selection and pressing Next, a summary of the configuration options chosen is shown. Use the Back button to return to a previous screen if any values need to be modified. Otherwise, click Finish to complete the wizard. The new virtual machine is listed in the left frame, as shown in the example in Figure 2.21.
Create the virtual disks to be used for storage. Click the Storage hyperlink in the right frame to access the storage screen seen in Figure 2.22.
Click the Add Attachment button, select Add Hard Disk from the pop-up menu, then click the Create New Disk button. This launches the Create New Virtual Hard Drive Wizard (seen in Figure 2.18 and 2.19). This disk will be used for storage, so create a size appropriate to your needs, making sure that it is at least 4 GB. To practice with RAID configurations, create as many virtual disks as needed. Two disks can be created on each IDE controller. For additional disks, click the Add Controller button to create another controller for attaching additional disks.

Create a device for the installation media. Highlight the word “Empty”, then click the CD icon as shown in Figure 2.23.
Click Choose a virtual CD/DVD disk file... to browse to the location of the .iso file. If the .iso was burned to CD, select the detected Host Drive.

Depending on the extensions available in the host CPU, it might not be possible to boot the VM from .iso. If “your CPU does not support long mode” is shown when trying to boot the .iso, the host CPU either does not have the required extension or AMD-V/VT-x is disabled in the system BIOS.

Note: If there is a kernel panic when booting into the ISO, stop the virtual machine. Then, go to System and check the box Enable IO APIC.

To configure the network adapter, go to Settings → Network. In the Attached to drop-down menu select Bridged Adapter, then choose the name of the physical interface from the Name drop-down menu. In the example shown in Figure 2.24, the Intel Pro/1000 Ethernet card is attached to the network and has a device name of em0.
After configuration is complete, click the Start arrow and install FreeNAS® as described in Performing the Installation (page 22). Once FreeNAS® is installed, press F12 when the VM starts to boot to access the boot menu. Select the primary hard disk as the boot option. To permanently boot from disk, remove the CD/DVD device in Storage or uncheck CD/DVD-ROM in the Boot Order section of System.

2.6.2 VMware ESXi

ESXi is a bare-metal hypervisor architecture created by VMware Inc. Commercial and free versions of the VMware vSphere Hypervisor operating system (ESXi) are available from the VMware website (https://www.vmware.com/products/esxi-and-esx.html). After the operating system is installed on supported hardware, use a web browser to connect to its IP address. The welcome screen provides a link to download the VMware vSphere client which is used to create and manage virtual machines.

Once the VMware vSphere client is installed, use it to connect to the ESXi server. To create a new virtual machine, click File → New → Virtual Machine. The New Virtual Machine Wizard will launch as shown in Figure 2.25.
Click Next and enter a name for the virtual machine. Click Next and highlight a datastore. An example is shown in Figure 2.26. Click Next. In the screen shown in Figure 2.27, click Other, then select a FreeBSD 64-bit architecture.
Fig. 2.26: Select Datastore

![Create New Virtual Machine](image)

Storage
Select a destination storage for the virtual machine files

<table>
<thead>
<tr>
<th>Name</th>
<th>Drive Type</th>
<th>Capacity</th>
<th>Provisioned</th>
<th>Free</th>
<th>Type</th>
<th>Thin Provisioned</th>
</tr>
</thead>
<tbody>
<tr>
<td>datastore1</td>
<td>Non-SSD</td>
<td>227.25 GB</td>
<td>752.00 MB</td>
<td>226.52 GB</td>
<td>VMFS3</td>
<td>Supported</td>
</tr>
<tr>
<td>FN1-DS1</td>
<td>SSD</td>
<td>1023.75 GB</td>
<td>65.11 GB</td>
<td>1009.59 GB</td>
<td>VMFS5</td>
<td>Supported</td>
</tr>
<tr>
<td>FN1-NFS1</td>
<td>Unknown</td>
<td>2.78 TB</td>
<td>96.00 KB</td>
<td>2.78 TB</td>
<td>NFS</td>
<td>Supported</td>
</tr>
<tr>
<td>FN1-NFS10G</td>
<td>Unknown</td>
<td>1.33 TB</td>
<td>121.32 GB</td>
<td>1.30 TB</td>
<td>NFS</td>
<td>Supported</td>
</tr>
</tbody>
</table>

- **Configuration**
- **Name and Location**
- **Storage**
 - Guest Operating System
 - Network
 - Create a Disk
 - Ready to Complete

- **VM Storage Profile**
 - Select a destination storage for the virtual machine files
 - Name: datastore1
 - Drive Type: Non-SSD
 - Capacity: 227.25 GB
 - Provisioned: 752.00 MB
 - Free: 226.52 GB
 - Type: VMFS3
 - Thin Provisioned: Supported

- **Disable Storage DRS for this virtual machine**

- **Select a datastore:**
 - Name: datastore1
 - Drive Type: Non-SSD
 - Capacity: 227.25 GB
 - Provisioned: 752.00 MB
 - Free: 226.52 GB
 - Type: VMFS3
 - Thin Provisioned: Supported
Click Next and create a virtual disk file of 8 GB to hold the FreeNAS® operating system, as shown in Figure 2.28.
Click Next and Finish. The new virtual machine is listed in the left frame. Right-click the virtual machine and select Edit Settings to access the screen shown in Figure 2.29.
Increase the Memory Configuration to at least 8192 MB.

To create a storage disk, click Hard disk 1 → Add. In the Device Type menu, highlight Hard Disk and click Next. Select Create a new virtual disk and click Next. In the screen shown in Figure 2.30, select the size of the disk. To dynamically allocate space as needed, check the box Allocate and commit space on demand (Thin Provisioning). Click Next, then Next, then Finish to create the disk. Repeat to create the amount of storage disks needed to meet your requirements.
For ESX 5.0, Workstation 8.0, or Fusion 4.0 or higher, additional configuration is needed so that the virtual HPET setting does not prevent the virtual machine from booting.

If ESX is running, while in Edit Settings, click Options → Advanced → General → Configuration Parameters. Change hpet0.present from true to false, then click OK twice to save the setting.

For Workstation or Player, while in Edit Settings, click Options → Advanced → File Locations. Locate the path for the Configuration file named filename.vmx. Open that file in a text editor, change hpet0.present from true to false, and save the change.
CHAPTER THREE

BOOTING

The Console Setup menu, shown in Figure 3.1, appears at the end of the boot process. If the FreeNAS® system has a keyboard and monitor, this Console Setup menu can be used to administer the system.

Note: When connecting to the FreeNAS® system with SSH or the web Shell (page 297), the Console Setup menu is not shown by default. It can be started by the root user or another user with root permissions by typing /etc/netcli.

The Console Setup menu can be disabled by unchecking Enable Console Menu in System → Advanced.

![Console setup menu screenshot](image)

Fig. 3.1: Console Setup Menu

The menu provides these options:

1) Configure Network Interfaces provides a configuration wizard to set up the system's network interfaces.
2) Configure Link Aggregation is for creating or deleting link aggregations.
3) Configure VLAN Interface is used to create or delete VLAN interfaces.
4) Configure Default Route is used to set the IPv4 or IPv6 default gateway. When prompted, enter the IP address of the default gateway.
5) Configure Static Routes prompts for the destination network and gateway IP address. Re-enter this option for each static route needed.
6) Configure DNS prompts for the name of the DNS domain and the IP address of the first DNS server. When adding multiple DNS servers, press Enter to enter the next one. Press Enter twice to leave this option.
7) Reset Root Password is used to reset a lost or forgotten root password. Select this option and follow the prompts to set the password.

8) Reset Configuration to Defaults Caution! This option deletes all of the configuration settings made in the administrative GUI and is used to reset a FreeNAS® system back to defaults. Before selecting this option, make a full backup of all data and make sure all encryption keys and passphrases are known! After this option is selected, the configuration is reset to defaults and the system reboots. Storage → Volumes → Import Volume can be used to re-import volumes.

9) Shell starts a shell for running FreeBSD commands. To leave the shell, type `exit`.

10) Reboot reboots the system.

11) Shut Down shuts down the system.

Note: The numbering and quantity of options on this menu can change due to software updates, service agreements, or other factors. Please carefully check the menu before selecting an option, and keep this in mind when writing local procedures.

3.1 Obtaining an IP Address

During boot, FreeNAS® automatically attempts to connect to a DHCP server from all live network interfaces. If it successfully receives an IP address, the address is displayed so it can be used to access the graphical user interface. The example in Figure 3.1 shows a FreeNAS® system that is accessible at http://192.168.1.119.

Some FreeNAS® systems are set up without a monitor, making it challenging to determine which IP address has been assigned. On networks that support Multicast DNS (mDNS), the hostname and domain can be entered into the address bar of a browser. By default, this value is freenas.local.

If the FreeNAS® server is not connected to a network with a DHCP server, use the console network configuration menu to manually configure the interface as shown here. In this example, the FreeNAS® system has one network interface, em0.

```
Enter an option from 1–12: 1
1) em0
Select an interface (q to quit): 1
Reset network configuration (y/n) n
Configure interface for DHCP? (y/n) n
Configure IPv4? (y/n) y
Interface name: (press enter, the name can be blank)
Several input formats are supported
   Example 1 CIDR Notation:
      192.168.1.1/24
   Example 2 IP and Netmask separate:
      IP: 192.168.1.1
      Netmask: 255.255.255.0, or /24 or 24
      IPv4 Address: 192.168.1.108/24
      Saving interface configuration: Ok
      Configure IPv6? (y/n) n
      Restarting network: ok
...

The web user interface is at
http://192.168.1.108
```

After the system has an IP address, enter that address into a graphical web browser from a computer connected to the same network as the FreeNAS® system.
3.2 Logging In

The password for the root user is requested as shown in Figure 3.2.

![Welcome to FreeNAS® 11](image)

Fig. 3.2: Enter the Root Password

Enter the password chosen during the installation. The administrative GUI is displayed as shown in Figure 3.3.

![FreeNAS® Graphical Configuration Menu](image)

Fig. 3.3: FreeNAS® Graphical Configuration Menu

If the FreeNAS® system does not respond to the IP address or mDNS name entered in a browser:

- If proxy settings are enabled in the browser configuration, disable them and try connecting again.
• If the page does not load, check whether the FreeNAS® system's IP address responds to a ping from another computer on the same network. If the FreeNAS® IP address is in a private IP address range, it can only be accessed from within that private network.

• If the user interface loads but is unresponsive or seems to be missing menu items, try a different web browser. IE9 has known issues and does not display the graphical administrative interface correctly if compatibility mode is turned on. Firefox (https://www.mozilla.org/en-US/firefox/all/) is recommended.

• If An error occurred! messages are shown when attempting to configure an item in the GUI, make sure that the browser is set to allow cookies from the FreeNAS® system.

This blog post (http://fortysomethinggeek.blogspot.com/2012/10/ipad-iphone-connect-with-freenas-or-any.html) describes some applications which can be used to access the FreeNAS® system from an iPad or iPhone.

3.3 Initial Configuration

The first time the FreeNAS® GUI is accessed, the Wizard (page 289) starts automatically to help configure the FreeNAS® device quickly and easily.
The Account Configuration section of the administrative GUI describes how to manually create and manage users and groups. This section contains these entries:

- **Groups** (page 56): used to manage UNIX-style groups on the FreeNAS® system.
- **Users** (page 59): used to manage UNIX-style accounts on the FreeNAS® system.

Each entry is described in more detail in this section.

4.1 Groups

The Groups interface provides management of UNIX-style groups on the FreeNAS® system.

Note: It is unnecessary to recreate the network users or groups when a directory service is running on the same network. Instead, import the existing account information into FreeNAS®. Refer to *Directory Services* (page 167) for details.

This section describes how to create a group and assign user accounts to it. The next section, **Users** (page 59), describes creating user accounts.

Click Groups → View Groups to see a screen like *Figure 4.1.*
Fig. 4.1: Group Management

The Groups page lists all groups, including those built-in and used by the operating system. The table displays group names, group IDs (GID), built-in groups, and if `sudo` is permitted. Clicking a group entry causes a Members button to appear. Click the button to view and modify the group membership.

The Add Group button opens the screen shown in Figure 4.2. Table 4.1 summarizes the available options when creating a group.

Table 4.1

<table>
<thead>
<tr>
<th>Group ID</th>
<th>Group Name</th>
<th>Built-In Group</th>
<th>Permit Sudo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>wheel</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>1</td>
<td>daemon</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>2</td>
<td>kmem</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>3</td>
<td>sys</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>4</td>
<td>tty</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>5</td>
<td>operator</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>6</td>
<td>mail</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>7</td>
<td>bin</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>8</td>
<td>news</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>9</td>
<td>men</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>13</td>
<td>games</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>14</td>
<td>ftp</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>20</td>
<td>staff</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>22</td>
<td>sshd</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>25</td>
<td>smmsp</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>26</td>
<td>mainnull</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>31</td>
<td>guest</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>53</td>
<td>bind</td>
<td>true</td>
<td>false</td>
</tr>
</tbody>
</table>

Fig. 4.2: Creating a New Group
Table 4.1: Group Creation Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group ID</td>
<td>string</td>
<td>The next available group ID is suggested. UNIX groups containing user accounts typically have an ID greater than 1000 and groups required by a service have an ID equal to the default port number used by the service. Example: the sshd group has an ID of 22.</td>
</tr>
<tr>
<td>Group Name</td>
<td>string</td>
<td>Required. Enter a descriptive name for the new group.</td>
</tr>
<tr>
<td>Permit Sudo</td>
<td>checkbox</td>
<td>Set to allow group members to use sudo (https://www.sudo.ws/). When using sudo, a user is prompted for their own password.</td>
</tr>
<tr>
<td>Allow repeated GIDs</td>
<td>checkbox</td>
<td>Set to allow multiple groups to share the same group id (GID). This is useful when a GID is already associated with the UNIX permissions for existing data, but is generally not recommended.</td>
</tr>
</tbody>
</table>

After a group and users are created, users can be added to a group. Highlight the group where users will be assigned, then click the Members button. Highlight the user in the Member users list. This shows all user accounts on the system. Click >> to move that user to the right frame. The user accounts which appear in the right frame are added as members of the group.

Figure 4.3, shows user1 added as a member of group data1.

![Fig. 4.3: Assigning a User to a Group](image)

The Delete Group button deletes a group. The pop-up message asks whether all members of that group should also be deleted. Note that the built-in groups do not provide a Delete Group button.
4.2 Users

FreeNAS® supports users, groups, and permissions, allowing flexibility in configuring which users have access to the data stored on FreeNAS®. To assign permissions to shares, one of these options must be done:

1. Create a guest account for all users, or create a user account for every user in the network where the name of each account is the same as a login name used on a computer. For example, if a Windows system has a login name of bobsmith, create a user account with the name bobsmith on FreeNAS®. A common strategy is to create groups with different sets of permissions on shares, then assign users to those groups.

2. If the network uses a directory service, import the existing account information using the instructions in Directory Services (page 167).

Account → Users → View Users lists all system accounts installed with the FreeNAS® operating system, as shown in Figure 4.4.

Fig. 4.4: Managing User Accounts
Each account entry indicates the user ID, username, primary group ID, home directory, default shell, full name, whether it is a built-in user that came with the FreeNAS® installation, the email address, if logins are disabled, if the user account is locked, whether the user is allowed to use `sudo`, and if the user connects from a Windows 8 or newer system. To reorder the list, click the desired column name. An arrow indicates which column controls the view sort order. Click the arrow to reverse the sort order.

Click a user account to cause these buttons to appear:

- Modify User: used to modify the account's settings, as listed in Table 4.2.
- Change E-mail: used to change the email address associated with the account.

Note: Setting the the email address for the built-in root user account is recommended as important system messages are sent to the root user. For security reasons, password logins are disabled for the root account and changing this setting is discouraged.

Except for the root user, the accounts that come with FreeNAS® are system accounts. Each system account is used by a service and should not be used as a login account. For this reason, the default shell on system accounts is `nologin(8)` (https://www.freebsd.org/cgi/man.cgi?query=nologin). For security reasons and to prevent breakage of system services, do not modify the system accounts.

The Add User button opens the screen shown in Figure 4.5. Some settings are only available in Advanced Mode. To see these settings, either click Advanced Mode or configure the system to always display these settings by setting Show advanced fields by default in System → Advanced. Table 4.2 summarizes the options which are available when user accounts are created or modified.

Warning: When using Active Directory (page 167), Windows user passwords must be set from within Windows.

![Add User](image)
Table 4.2: User Account Configuration

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User ID</td>
<td>integer</td>
<td></td>
<td>Grayed out if the user already exists. When creating an account, the next numeric ID is suggested. User accounts typically have an ID greater than 1000 and system accounts have an ID equal to the default port number used by the service.</td>
</tr>
<tr>
<td>Username</td>
<td>string</td>
<td></td>
<td>Grayed out if the user already exists. Maximum 16 characters, though a maximum of 8 is recommended for interoperability. Cannot begin with a hyphen –, if a $ is used it can only be the last character, and it cannot contain a space, tab, or the characters , : + & # % ^ & () ! @ ~ ? < > =.</td>
</tr>
<tr>
<td>Create a new primary group</td>
<td>checkbox</td>
<td></td>
<td>A primary group with the same name as the user is created automatically. Unset to select a different primary group name.</td>
</tr>
<tr>
<td>Primary Group</td>
<td>drop-down</td>
<td></td>
<td>Unset Create a new primary group to access this menu. For security reasons, FreeBSD does not give a user su permissions if wheel is their primary group. To give a user su access, add them to the wheel group in Auxiliary groups.</td>
</tr>
<tr>
<td>Create Home Directory In</td>
<td>browse button</td>
<td></td>
<td>Browse to the name of an existing volume or dataset that the user will be assigned permission to access.</td>
</tr>
<tr>
<td>Home Directory Mode</td>
<td>checkboxes</td>
<td>✓</td>
<td>Sets default Unix permissions of the user's home directory. This is read-only for built-in users.</td>
</tr>
<tr>
<td>Shell</td>
<td>drop-down</td>
<td></td>
<td>Select the shell to use for local and SSH logins. See Table 4.3 for an overview of available shells.</td>
</tr>
<tr>
<td>Full Name</td>
<td>string</td>
<td></td>
<td>Required. This field may contain spaces.</td>
</tr>
<tr>
<td>E-mail</td>
<td>string</td>
<td></td>
<td>The email address associated with the account.</td>
</tr>
<tr>
<td>Password</td>
<td>string</td>
<td></td>
<td>Required unless Disable password login is set. Cannot contain a ?.</td>
</tr>
<tr>
<td>Password confirmation</td>
<td>string</td>
<td></td>
<td>This must match the value of Password.</td>
</tr>
<tr>
<td>Disable password login</td>
<td>checkbox</td>
<td></td>
<td>Set to disable password logins and authentication to SMB shares. To undo this setting, create a password for the user by clicking Modify User for the user in the View Users screen. Setting this grays out Lock user and Permit Sudo.</td>
</tr>
<tr>
<td>Lock user</td>
<td>checkbox</td>
<td></td>
<td>Set to prevent the user from logging in until this box is unset. Setting this grays out Disable password login.</td>
</tr>
<tr>
<td>Permit Sudo</td>
<td>checkbox</td>
<td></td>
<td>Set to give group members permission to use sudo (https://www.sudo.ws/). When using sudo, a user is prompted for their own password.</td>
</tr>
<tr>
<td>Microsoft Account</td>
<td>checkbox</td>
<td></td>
<td>Set this when the user is connecting from a Windows 8 or newer system.</td>
</tr>
<tr>
<td>SSH Public Key</td>
<td>string</td>
<td></td>
<td>Enter or paste the user's public SSH key to be used for key-based authentication. Do not paste the private key!</td>
</tr>
<tr>
<td>Auxiliary groups</td>
<td>mouse selection</td>
<td></td>
<td>Highlight groups to add the user. Click the >> to add the user to the highlighted groups.</td>
</tr>
</tbody>
</table>

Note: Some fields cannot be changed for built-in users and will be grayed out.
Table 4.3: Available Shells

<table>
<thead>
<tr>
<th>Shell</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>netcli.sh</td>
<td>User is shown the Console Setup menu (Figure 3.1) on connection, even if it is disabled in System → Advanced → Enable Console Menu. The user must be root or have root permissions (effective user ID 0, like toor).</td>
</tr>
<tr>
<td>csh</td>
<td>C shell (https://en.wikipedia.org/wiki/C_shell)</td>
</tr>
<tr>
<td>sh</td>
<td>Bourne shell (https://en.wikipedia.org/wiki/Bourne_shell)</td>
</tr>
<tr>
<td>tcsh</td>
<td>Enhanced C shell (https://en.wikipedia.org/wiki/Tcsh)</td>
</tr>
<tr>
<td>nologin</td>
<td>Use when creating a system account or to create a user account that can authenticate with shares but which cannot login to the FreeNAS system using ssh.</td>
</tr>
<tr>
<td>bash</td>
<td>Bourne Again shell (https://en.wikipedia.org/wiki/Bash_%28Unix_shell%29)</td>
</tr>
<tr>
<td>ksh93</td>
<td>Korn shell (http://www.kornshell.com/)</td>
</tr>
<tr>
<td>mksh</td>
<td>mirBSD Korn shell (https://www.mirbsd.org/mksh.htm)</td>
</tr>
<tr>
<td>scponly</td>
<td>Select scponly (https://github.com/scponly/scponly/wiki) to restrict the user's SSH usage to only the scp and sftp commands.</td>
</tr>
<tr>
<td>zsh</td>
<td>Z shell (http://www.zsh.org/)</td>
</tr>
<tr>
<td>git-shell</td>
<td>restricted git shell (https://git-scm.com/docs/git-shell)</td>
</tr>
</tbody>
</table>

Built-in user accounts needed by the system cannot be removed. A Remove User button appears for custom users that were added by the system administrator. If the user to be removed is the last user in a custom group, an option is presented to delete the group as well.
The System section of the administrative GUI contains these entries:

- **Information** (page 63) provides general FreeNAS® system information such as hostname, operating system version, platform, and uptime
- **General** (page 64) configures general settings such as HTTPS access, the language, and the timezone
- **Boot** (page 67) creates, renames, and deletes boot environments
- **Advanced** (page 71) configures advanced settings such as the serial console, swap space, and console messages
- **Email** (page 74) configures the email address to receive notifications
- **System Dataset** (page 76) configures the location where logs and reporting graphs are stored
- **Tunables** (page 76) provides a front-end for tuning in real-time and to load additional kernel modules at boot time
- **Update** (page 79) performs upgrades and checks for system updates
- **Cloud Credentials** (page 82) is used to enter connection credentials for remote cloud service providers
- **Alert Services** (page 83) configures services used to notify the administrator about system events.
- **CAs** (page 84): import or create internal or intermediate CAs (Certificate Authorities)
- **Certificates** (page 87): import existing certificates or create self-signed certificates
- **Support** (page 90): report a bug or request a new feature.

Each of these is described in more detail in this section.

5.1 Information

System → Information displays general information about the FreeNAS® system. An example is seen in Figure 5.1.

The information includes the hostname, the build version, type of CPU (platform), the amount of memory, the current system time, the system's uptime, the number of users connected at the console or by serial, telnet, or SSH connections, and the current load average. On systems supplied or certified by iXsystems, an additional Serial Number field showing the hardware serial number is displayed.

To change the system's hostname, click the Edit button, type in the new hostname, and click OK. The hostname must include the domain name. If the network does not use a domain name, add .local after the hostname.
System Information

Hostname
Build FreeNAS-11.1-U7
Platform Intel(R) Atom(TM) CPU C2750 @ 2.40 GHz
Memory 32703MB
System Time Wed, 16 Jan 2019 09:08:31 -0800
Uptime 9:08AM up 7 days, 2:32, 0 users
Load Average 0.14, 0.11, 0.08
System Serial
System Product FreeNAS MINI-2.0

Fig. 5.1: System Information Tab

5.2 General

System → General is shown in Figure 5.2.
Table 5.1 summarizes the settings that can be configured using the General tab:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>drop-down menu</td>
<td>protocol to use when connecting to the administrative GUI from a browser; if modified from the default of HTTP to HTTPS or to HTTP+HTTPS, select the certificate to use in Certificate; if you do not have a certificate, first create a CA (in CAS (page 84)), then the certificate itself (in Certificates (page 87))</td>
</tr>
<tr>
<td>Certificate</td>
<td>drop-down menu</td>
<td>required for HTTPS; browse to the location of the certificate to use for encrypted connections</td>
</tr>
<tr>
<td>WebGUI IPv4 Address</td>
<td>drop-down menu</td>
<td>choose from a list of recent IP addresses to limit the one to use when accessing the administrative GUI; the built-in HTTP server will automatically bind to the wildcard address of 0.0.0.0 (any address) and will issue an alert if the specified address becomes unavailable</td>
</tr>
<tr>
<td>WebGUI IPv6 Address</td>
<td>drop-down menu</td>
<td>choose from a list of recent IPv6 addresses to limit the one to use when accessing the administrative GUI; the built-in HTTP server will automatically bind to any address and will issue an alert if the specified address becomes unavailable</td>
</tr>
<tr>
<td>WebGUI HTTP Port</td>
<td>integer</td>
<td>allows configuring a non-standard port for accessing the administrative GUI over HTTP; changing this setting might also require changing a Firefox configuration setting (https://www.redbrick.dcu.ie/~d_fens/articles/Firefox:_This_Address_is_Restricted)</td>
</tr>
<tr>
<td>WebGUI HTTPS Port</td>
<td>integer</td>
<td>allows configuring a non-standard port for accessing the administrative GUI over HTTPS</td>
</tr>
</tbody>
</table>
Table 5.1 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebGUI HTTP –> HTTPS Redirect</td>
<td>checkbox</td>
<td>when this box is checked, HTTP connections are automatically redirected to HTTPS if HTTPS is selected in Protocol, otherwise such connections will fail</td>
</tr>
<tr>
<td>Language</td>
<td>drop-down menu</td>
<td>select the localization from the drop-down menu and reload the browser; view the status of localization at weblate.trueos.org (https://weblate.trueos.org/projects/freenas/)</td>
</tr>
<tr>
<td>Console Keyboard Map</td>
<td>drop-down menu</td>
<td>select the keyboard layout</td>
</tr>
<tr>
<td>Timezone</td>
<td>drop-down menu</td>
<td>select the timezone from the drop-down menu</td>
</tr>
<tr>
<td>Syslog level</td>
<td>drop-down menu</td>
<td>when Syslog server is defined, only logs matching this level are sent</td>
</tr>
<tr>
<td>Syslog server</td>
<td>string</td>
<td>IP address_or_hostname:optional_port_number of remote syslog server to send logs to; once set, log entries are written to both the console and the remote server</td>
</tr>
</tbody>
</table>

After making any changes, click the Save button.

This screen also contains these buttons:

Reset Configuration to Defaults: reset the configuration database to the default base version. This does not delete user SSH keys or any other data stored in a user's home directory. Since configuration changes stored in the configuration database are erased, this option is useful when a mistake has been made or to return a test system to the original configuration.

Save Config: save a backup copy of the current configuration database in the format hostname-version-architecture to the computer accessing the administrative interface. Saving the configuration after making any configuration changes is highly recommended. FreeNAS® automatically backs up the configuration database to the system dataset every morning at 3:45. However, this backup does not occur if the system is shut down at that time. If the system dataset is stored on the boot pool and the boot pool becomes unavailable, the backup will also not be available. The location of the system dataset can be viewed or set using System → System Dataset.

Note: SSH (page 243) keys are not stored in the configuration database and must be backed up separately.

There are two types of passwords. User account passwords for the base operating system are stored as hashed values, do not need to be encrypted to be secure, and are saved in the system configuration backup. Other passwords, like iSCSI CHAP passwords, Active Directory bind credentials, and cloud credentials are stored in an encrypted form to prevent them from being visible as plain text in the saved system configuration. The key or seed for this encryption is normally stored only on the boot device. When Save Config is chosen, a dialog gives the option to Export Password Secret Seed with the saved configuration, allowing the configuration file to be restored to a different boot device where the decryption seed is not already present. Configuration backups containing the seed must be physically secured to prevent decryption of passwords and unauthorized access.

Warning: The Export Password Secret Seed option is off by default and should only be used when making a configuration backup that will be stored securely. After moving a configuration to new hardware, media containing a configuration backup with a decryption seed should be securely erased before reuse.

Upload Config: allows browsing to the location of a previously saved configuration file to restore that configuration. The screen turns red as an indication that the system will need to reboot to load the restored configuration.

NTP Servers: The network time protocol (NTP) is used to synchronize the time on the computers in a network. Accurate time is necessary for the successful operation of time sensitive applications such as Active Directory or other directory services. By default, FreeNAS® is pre-configured to use three public NTP servers. If your network is using a directory service, ensure that the FreeNAS® system and the server running the directory service have been configured to use the same NTP servers.

Available NTP servers can be found at https://support.ntp.org/bin/view/Servers/NTPPoolServers. For time accuracy, choose NTP servers that are geographically close to the FreeNAS® system's physical location.
NTP servers are added by clicking NTP Servers → Add NTP Server to open the screen shown in Figure 5.3. Table 5.2 summarizes the options available when adding an NTP server. ntp.conf(5) (https://www.freebsd.org/cgi/man.cgi?query=ntp.conf) explains these options in more detail.

![NTP Server Configuration Options](image)

Table 5.2: NTP Servers Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>string</td>
<td>name of NTP server</td>
</tr>
<tr>
<td>Burst</td>
<td>checkbox</td>
<td>recommended when Max. Poll is greater than 10; only use on your own servers i.e. do not use with a public NTP server</td>
</tr>
<tr>
<td>IBurst</td>
<td>checkbox</td>
<td>speeds the initial synchronization (seconds instead of minutes)</td>
</tr>
<tr>
<td>Prefer</td>
<td>checkbox</td>
<td>should only be used for NTP servers that are known to be highly accurate, such as those with time monitoring hardware</td>
</tr>
<tr>
<td>Min. Poll</td>
<td>integer</td>
<td>power of 2 in seconds; cannot be lower than 4 or higher than Max. Poll</td>
</tr>
<tr>
<td>Max. Poll</td>
<td>integer</td>
<td>power of 2 in seconds; cannot be higher than 17 or lower than Min. Poll</td>
</tr>
<tr>
<td>Force</td>
<td>checkbox</td>
<td>forces the addition of the NTP server, even if it is currently unreachable</td>
</tr>
</tbody>
</table>

5.3 Boot

FreeNAS® supports a ZFS feature known as multiple boot environments. With multiple boot environments, the process of the operating system becomes a low-risk operation. The updater automatically creates a snapshot of the current boot environment and adds it to the boot menu before applying the update. If the update fails, reboot the system and select the previous boot environment from the boot menu to instruct the system to go back to that system state.

Note: Boot environments are separate from the configuration database. Boot environments are a snapshot of the operating system at a specified time. When a FreeNAS® system boots, it loads the specified boot environment, or operating system, then reads the configuration database in order to load the current configuration values. If the intent is to make configuration
changes rather than operating system changes, make a backup of the configuration database first using System → General → Save Config.

As seen in Figure 5.4, two boot environments are created when FreeNAS® is installed. The system will boot into the default boot environment and users can make their changes and update from this version. The other boot environment, named Initial-Install can be booted into if the system needs to be returned to a pristine, non-configured version of the installation.

If the Wizard (page 289) was used, a third boot environment called Wizard-date is also created, indicating the date and time the Wizard (page 289) was run.

<table>
<thead>
<tr>
<th>Name</th>
<th>Active</th>
<th>Created</th>
<th>Keep</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>On Reboot: Now</td>
<td>2017-10-18 02:16:00</td>
<td>No</td>
</tr>
<tr>
<td>Initial-Install</td>
<td></td>
<td>2017-10-18 02:22:00</td>
<td>No</td>
</tr>
</tbody>
</table>

Fig. 5.4: Viewing Boot Environments

Each boot environment entry contains this information:

- Name: the name of the boot entry as it will appear in the boot menu.
- Active: indicates which entry will boot by default if the user does not select another entry in the boot menu.
- Created: indicates the date and time the boot entry was created.
- Keep: indicates whether or not this boot environment can be pruned if an update does not have enough space to proceed. Click Keep for an entry if that boot environment should not be automatically pruned.

Highlight an entry to view the configuration buttons for it. These configuration buttons are shown:

- Rename: used to change the name of the boot environment.
- Keep/Unkeep: used to toggle whether or not the updater can prune (automatically delete) this boot environment if there is not enough space to proceed with the update.
- Clone: used to create a copy of the highlighted boot environment.
- Delete: used to delete the highlighted entry, which also removes that entry from the boot menu. Since you cannot delete an entry that has been activated, this button will not appear for the active boot environment. If you need to delete an entry that is currently activated, first activate another entry, which will clear the On reboot field of the currently activated entry. Note that this button will not be displayed for the default boot environment as this entry is needed in order to return the system to the original installation state.
- Activate: only appears on entries which are not currently set to Active. Changes the selected entry to the default boot entry on next boot. Its status changes to On Reboot and the current Active entry changes from On Reboot, Now to Now, indicating that it was used on the last boot but will not be used on the next boot.

The buttons above the boot entries can be used to:

- Create: a manual boot environment. A pop-up menu prompts for entry of a Name for the boot environment. When entering the name, only alphanumeric characters, underscores, and dashes are allowed.
- Scrub Boot: can be used to perform a manual scrub of the boot devices. By default, the boot device is scrubbed every 7 days. To change the default interval, change the number in the Automatic scrub interval (in days) field. The date and results of the last scrub are also listed in this screen. The condition of the boot device should be listed as HEALTHY.
- Status: click this button to see the status of the boot devices. Figure 5.5, shows only one boot device, which is ONLINE.
If the system has a mirrored boot pool, there will be a Detach button in addition to the Replace button. To remove a device from the boot pool, highlight the device and click its Detach button. Alternately, if one of the boot devices has an OFFLINE Status, click the device to replace, then click Replace to rebuild the boot mirror.

Note that you cannot replace the boot device if it is the only boot device as it contains the operating system itself.

Figure 5.6 shows a sample boot menu.
The first entry is the active boot environment, or the one that the system has been configured to boot into. To boot into a different boot environment, press the spacebar to pause this screen, use the down arrow to select Boot Environment Menu, and press Enter. A menu displays the other available boot environments. Use the up/down arrows to select the desired boot environment and press Enter to boot into it. To always boot into that boot environment, go to System → Boot, highlight that entry, and click the Activate button.

5.3.1 Mirroring the Boot Device

If the system is currently booting from one device, you can add another device to create a mirrored boot device. This way, if one device fails, the system still has a copy of the boot file system and can be configured to boot from the remaining device in the mirror.

Note: When adding another boot device for a mirror, the new device must have at least the same capacity as the existing boot device. Larger capacity devices can be added, but the mirror will only have the capacity of the smallest device. Different models of devices which advertise the same nominal size are not necessarily the same actual size. For this reason, adding another of the same model of boot device is recommended.

In the example shown in Figure 5.7, the user has clicked System → Boot → Status to display the current status of the boot device. The example indicates that there is currently one device, ada0p2, its status is ONLINE, and it is currently the only boot device as indicated by the word stripe. To create a mirrored boot device, click either the entry called freenas-boot or stripe, then click the Attach button. If another device is available, it appears in the Member disk drop-down menu. Select the desired device.

The Use all disk space checkbox gives control of how much of the new device is made available to ZFS. The default is unchecked, and the new device will be partitioned to the same size as the existing device. If either device in the mirror fails, it can be replaced with another of the same size as the original boot device.

When Use all disk space is checked, the entire capacity of the new device is used. If the original boot device fails and is removed, the boot mirror will consist of just the newer drive, and will grow to whatever capacity it provides. However, new
devices added to this mirror must now be as large as the new capacity. Click Attach Disk to attach the new disk to the mirror.

<table>
<thead>
<tr>
<th>Name</th>
<th>Read</th>
</tr>
</thead>
<tbody>
<tr>
<td>freenas-boot</td>
<td>0</td>
</tr>
<tr>
<td>stripe</td>
<td>0</td>
</tr>
<tr>
<td>ada0p2</td>
<td>0</td>
</tr>
</tbody>
</table>

![Attach Disk](image)

Fig. 5.7: Mirroring a Boot Device

After the mirror is created, the Status screen indicates that it is now a mirror. The number of devices in the mirror are shown, as seen in the example in **Figure 5.8**.

![Boot Status Table](image)

Fig. 5.8: Viewing the Status of a Mirrored Boot Device

5.4 Advanced

System → Advanced is shown in **Figure 5.9**. The configurable settings are summarized in **Table 5.3**.
Fig. 5.9: Advanced Screen

Table 5.3: Advanced Configuration Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show Text Console without Password Prompt</td>
<td>checkbox</td>
<td>unchecking this box replaces the console menu shown in Figure 3.1 with a login prompt</td>
</tr>
<tr>
<td>Use Serial Console</td>
<td>checkbox</td>
<td>do not check this box if the serial port is disabled</td>
</tr>
<tr>
<td>Serial Port Address</td>
<td>string</td>
<td>serial port address in hex</td>
</tr>
<tr>
<td>Serial Port Speed</td>
<td>drop-down menu</td>
<td>select the speed used by the serial port</td>
</tr>
<tr>
<td>Enable screen saver</td>
<td>checkbox</td>
<td>enable or disable the console screen saver</td>
</tr>
<tr>
<td>Enable powerd (Power Saving Daemon)</td>
<td>checkbox</td>
<td>powerd(8) (https://www.freebsd.org/cgi/man.cgi?query=powerd) monitors the system state and sets the CPU frequency accordingly</td>
</tr>
<tr>
<td>Swap size</td>
<td>non-zero integer representing GB</td>
<td>by default, all data disks are created with this amount of swap; this setting does not affect log or cache devices as they are created without swap</td>
</tr>
<tr>
<td>Show console messages in the footer</td>
<td>checkbox</td>
<td>display console messages in real time at bottom of browser; click the console to bring up a scrollable screen; check the Stop refresh box in the scrollable screen to pause updating and uncheck the box to continue to watch the messages as they occur</td>
</tr>
<tr>
<td>Show tracebacks in case of fatal errors</td>
<td>checkbox</td>
<td>provides a pop-up of diagnostic information when a fatal error occurs</td>
</tr>
</tbody>
</table>
Table 5.3 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show advanced fields by default</td>
<td>checkbox</td>
<td>several GUI menus provide an Advanced Mode button to access additional features; enabling this shows these features by default</td>
</tr>
<tr>
<td>Enable autotune</td>
<td>checkbox</td>
<td>enables Autotune (page 73) which attempts to optimize the system depending upon the hardware which is installed</td>
</tr>
<tr>
<td>Enable debug kernel</td>
<td>checkbox</td>
<td>when checked, next boot uses a debug version of the kernel</td>
</tr>
<tr>
<td>Enable automatic upload of kernel crash dumps and daily telemetry</td>
<td>checkbox</td>
<td>when checked, kernel crash dumps and telemetry (some system stats, collectd RRDs, and select syslog messages) are automatically sent to the development team for diagnosis</td>
</tr>
<tr>
<td>MOTD banner</td>
<td>string</td>
<td>message to be shown when a user logs in with SSH</td>
</tr>
<tr>
<td>Periodic Notification User</td>
<td>drop-down</td>
<td>user to receive security output emails; this output runs nightly but only sends an email when the system reboots or encounters an error</td>
</tr>
<tr>
<td>Report CPU usage in percentage</td>
<td>checkbox</td>
<td>when checked, CPU usage is reported as percentages in Reporting (page 287)</td>
</tr>
<tr>
<td>Remote Graphite Server hostname</td>
<td>string</td>
<td>IP address or hostname of a remote server running Graphite (http://graphiteapp.org/)</td>
</tr>
<tr>
<td>Use FQDN for logging</td>
<td>checkbox</td>
<td>when checked, include the Fully-Qualified Domain Name in logs to precisely identify systems with similar hostnames</td>
</tr>
<tr>
<td>ATA Security User</td>
<td>drop-down</td>
<td>specifies the command account used by legacy Self-Encrypting Drives (page 73); choices are User or Master</td>
</tr>
<tr>
<td>SED Password</td>
<td>string</td>
<td>global password used to unlock Self-Encrypting Drives (page 73)</td>
</tr>
</tbody>
</table>

Click the Save button after making any changes.

This tab also contains this button:

Save Debug: used to generate a text file of diagnostic information. After the debug data is collected, the system prompts for a location to save the generated ASCII text file.

5.4.1 Autotune

FreeNAS® provides an autotune script which optimizes the system depending on the installed hardware. For example, if a ZFS volume exists on a system with limited RAM, the autotune script automatically adjusts some ZFS sysctl values in an attempt to minimize ZFS memory starvation issues. It should only be used as a temporary measure on a system that hangs until the underlying hardware issue is addressed by adding more RAM. Autotune will always slow such a system, as it caps the ARC.

The Enable autotune checkbox in System → Advanced is unchecked by default. Check this box to run the autotuner at boot time. If you would like the script to run immediately, the system must be rebooted.

If the autotune script adjusts any settings, the changed values appear in System → Tunables. These values can be modified and overridden. Note that deleting tunables that were created by autotune only affects the current session, as autotune-set tunables are recreated at boot.

When attempting to increase the performance of the FreeNAS® system, and particularly when the current hardware may be limiting performance, try enabling autotune.

For those who wish to see which checks are performed, the autotune script is located in `/usr/local/bin/autotune`.

5.4.2 Self-Encrypting Drives

FreeNAS® version 11.1-U5 introduced Self-Encrypting Drive (SED) support.

Three types of SED devices are supported:

- Legacy interface for older ATA devices (not recommended for security-critical environments)
- TCG OPAL 2 standard for newer consumer-grade devices (HDD or SSD over PCIe or SATA)
- TCG Enterprise standard for newer enterprise-grade SAS devices
The FreeNAS® middleware implements the security capabilities of camcontrol (https://www.freebsd.org/cgi/man.cgi?query=camcontrol) (for legacy devices) and sedutil-cli (https://www.mankier.com/8/sedutil-cli) (for TCG devices). When managing SED devices from the command line, it is important to use sedutil-cli (rather than camcontrol) in order to access the full capabilities of the device. FreeNAS® provides the sedhelper wrapper script to ease SED device administration from the command line.

By default, SED devices are not locked until the administrator explicitly configures a global or per-device password and initializes the devices.

Once configured, the system automatically unlocks all SEDs during the boot process, without requiring manual intervention. This allows a pool to contain a mix of SED and non-SED devices.

A password-protected SED device protects the data stored on the device when the device is physically removed from the FreeNAS® system. This allows secure disposal of the device without having to first wipe its contents. If the device is instead removed to be repurposed on another system, it can only be unlocked if the password is known.

Warning: It is important to remember the password! Without it, the device is unlockable and its data remains unavailable. While it is possible to specify the PSID number on the label of the device with the sedutil-cli command, doing so will erase the contents of the device rather than unlock it. Always record SED passwords whenever they are configured or modified and store them in a safe place!

When SED devices are detected during system boot, the middleware checks for global and device-specific passwords. Devices with their own password are unlocked with their password and any remaining devices, without a device-specific password, are unlocked using the global password.

To configure a global password, go to System → Advanced → SED Password and input the password. Be sure to record the password and store it in a safe place!

To determine which devices support SED and their device names:

```
sedutil-cli --scan
```

In the results:
- no indicates a non-SED device
- 1 indicates a legacy TCG OPAL 1 device
- 2 indicates a modern TCG OPAL 2 device
- E indicates a TCG Enterprise device

To specify a password for a device, go to Storage → View Disks. Highlight the device name for the confirmed SED device and click Edit. Input and confirm the password in the Password for SED and Confirm SED Password fields. Disks that have a configured password will show bullets in their row of the Password for SED column of Storage → View Disks. Conversely, the rows in that column will be empty for disks that do not support SED or which will be unlocked using the global password.

Next, remember to initialize the devices:

```
sedhelper setup password
```

This command ensures that all detected SED disks are properly setup using the specified password.

This command can be used to unlock all available SED disks:

```
sedhelper unlock
```

5.5 Email

An automatic script sends a nightly email to the root user account containing important information such as the health of the disks. **Alert** (page 304) events are also emailed to the root user account. Problems with **Scrubs** (page 160) are reported separately in an email sent at 03:00AM.
The administrator typically does not read email directly on the FreeNAS® system. Instead, these emails are usually sent to an external email address where they can be read more conveniently. It is important to configure the system so it can send these emails to the administrator's remote email account so they are aware of problems or status changes.

The first step is to set the remote address where email will be sent. Select Account → Users, click on root to highlight that user, then click Modify User. In the E-mail field, enter the email address on the remote system where email is to be sent, like admin@example.com. Click OK to save the settings.

Additional configuration is performed with System → Email, shown in Figure 5.10.

![Email Screen](Fig. 5.10: Email Screen)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>From email</td>
<td>root@freenas.local</td>
<td>the envelope From address shown in the email; this can be set to assist with filtering mail on the receiving system</td>
</tr>
<tr>
<td>Outgoing mail server</td>
<td>string</td>
<td>hostname or IP address of SMTP server to use for sending this email</td>
</tr>
<tr>
<td>Port to connect to</td>
<td>integer</td>
<td>SMTP port number, typically 25, 465 (secure SMTP), or 587 (submission)</td>
</tr>
<tr>
<td>TLS/SSL</td>
<td>drop-down menu</td>
<td>encryption type; choices are Plain, SSL, or TLS</td>
</tr>
<tr>
<td>Use SMTP Authentication</td>
<td>checkbox</td>
<td>enable/disable SMTP AUTH (https://en.wikipedia.org/wiki/SMTP_Authentication) using PLAIN SASL; if checked, enter the required Username and Password</td>
</tr>
<tr>
<td>Username</td>
<td>string</td>
<td>enter the username if the SMTP server requires authentication</td>
</tr>
<tr>
<td>Password</td>
<td>string</td>
<td>enter the password if the SMTP server requires authentication</td>
</tr>
<tr>
<td>Password Confirmation</td>
<td>string</td>
<td>enter the same password again for confirmation</td>
</tr>
</tbody>
</table>

Click the Send Test Mail button to verify that the configured email settings are working. If the test email fails, double-check that the E-mail field of the root user is correctly configured by clicking the Modify User button for the root account in Account → Users → View Users.
Configuring email for TLS/SSL email providers is described in Are you having trouble getting FreeNAS to email you in Gmail? (https://forums.freenas.org/index.php?threads/are-you-having-trouble-getting-freenas-to-email-you-in-gmail.22517/).

5.6 System Dataset

System → System Dataset, shown in Figure 5.11, is used to select the pool which will contain the persistent system dataset. The system dataset stores debugging core files and Samba4 metadata such as the user/group cache and share level permissions. If the FreeNAS® system is configured to be a Domain Controller, all of the domain controller state is stored there as well, including domain controller users and groups.

Note: When the system dataset is moved, a new dataset is created and set active. The old dataset is intentionally not deleted by the system because the move might be transient or the information in the old dataset might be useful for later recovery.

![System Dataset Screen](image)

Note: Encrypted volumes are not displayed in the System dataset pool drop-down menu.

The system dataset can optionally be configured to also store the system log and Reporting (page 287) information. If there are lots of log entries or reporting information, moving these to the system dataset will prevent /var/ on the device holding the operating system from filling up as /var/ has limited space.

Use the drop-down menu to select the ZFS volume (pool) to contain the system dataset. Whenever the location of the system dataset is changed, a pop-up warning indicates that the SMB service must be restarted, causing a temporary outage of any active SMB connections.

To store the system log on the system dataset, check the Syslog box.

To store the reporting information on the system dataset, check the Reporting Database box. When this box is not checked, a RAM disk is created to prevent reporting information from filling up /var.

Click the Save button to save changes.

If the pool storing the system dataset is changed at a later time, FreeNAS® migrates the existing data in the system dataset to the new location.

Note: Depending on configuration, the system dataset can occupy a large amount of space and receive frequent writes. Do not put the system dataset on a flash drive or other media with limited space or write life.

5.7 Tunables

System → Tunables can be used to manage the following:
1. FreeBSD sysctls: a sysctl(8) makes changes to the FreeBSD kernel running on a FreeNAS® system and can be used to tune the system.

2. FreeBSD loaders: a loader is only loaded when a FreeBSD-based system boots and can be used to pass a parameter to the kernel or to load an additional kernel module such as a FreeBSD hardware driver.

3. FreeBSD rc.conf options: rc.conf(5) is used to pass system configuration options to the system startup scripts as the system boots. Since FreeNAS® has been optimized for storage, not all of the services mentioned in rc.conf(5) are available for configuration. Note that in FreeNAS®, customized rc.conf options are stored in /tmp/rc.conf.freenas.

Warning: Adding a sysctl, loader, or rc.conf option is an advanced feature. A sysctl immediately affects the kernel running the FreeNAS® system and a loader could adversely affect the ability of the FreeNAS® system to successfully boot. Do not create a tunable on a production system unless you understand and have tested the ramifications of that change.

Since sysctl, loader, and rc.conf values are specific to the kernel parameter to be tuned, the driver to be loaded, or the service to configure, descriptions and suggested values can be found in the man page for the specific driver and in many sections of the FreeBSD Handbook (https://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/).

To add a loader, sysctl, or rc.conf option, go to System → Tunables → Add Tunable, to access the screen shown in Figure 5.12.

![Add Tunable](image)

Fig. 5.12: Adding a Tunable

Table 5.5 summarizes the options when adding a tunable.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>string</td>
<td>typically the name of the sysctl or driver to load, as indicated by its man page</td>
</tr>
<tr>
<td>Value</td>
<td>integer or string</td>
<td>value to associate with Variable; typically this is set to YES to enable the sysctl or driver specified by the “Variable”</td>
</tr>
<tr>
<td>Type</td>
<td>drop-down menu</td>
<td>choices are Loader, rc.conf, or Sysctl</td>
</tr>
<tr>
<td>Comment</td>
<td>string</td>
<td>optional, but a useful reminder for the reason behind adding this tunable</td>
</tr>
<tr>
<td>Enabled</td>
<td>checkbox</td>
<td>uncheck if you would like to disable the tunable without deleting it</td>
</tr>
</tbody>
</table>
Note: As soon as a Sysctl is added or edited, the running kernel changes that variable to the value specified. However, when a Loader or rc.conf value is changed, it does not take effect until the system is rebooted. Regardless of the type of tunable, changes persist at each boot and across upgrades unless the tunable is deleted or its Enabled checkbox is unchecked.

Any added tunables are listed in System → Tunables. To change the value of an existing tunable, click its Edit button. To remove a tunable, click its Delete button.

Restarting the FreeNAS® system after making sysctl changes is recommended. Some sysctls only take effect at system startup, and restarting the system guarantees that the setting values correspond with what is being used by the running system.

The GUI does not display the sysctls that are pre-set when FreeNAS® is installed. FreeNAS® 11.1 ships with the following sysctls set:

```plaintext
kern.metadelay=3
kern.dirdelay=4
kern.filedelay=5
kern.coredump=1
kern.sugid_coredump=1
vfs.timestamp_precision=3
net.link.lagg.lacp.default_strict_mode=0
vfs.zfs.min_auto_ashift=12
```

Do not add or edit these default sysctls as doing so may render the system unusable.

The GUI does not display the loaders that are pre-set when FreeNAS® is installed. FreeNAS® 11.1 ships with these loaders set:

```plaintext
autoboot_delay="2"
loader_logo="freenas"
loader_menu_title="Welcome to FreeNAS"
loader_brand="freenas-brand"
loader_version="  
```

```plaintext
kern.cam.boot_delay="30000"
db.debugger_on_panic=1
db.debug.db.textdump.pending=1
hw.hptrr.attach_generic=0
vfs.moutroot.timeout="30"
ispfw_load="YES"
freenas.sysctl_load="YES"
hint.isp.0.role=2
hint.isp.1.role=2
hint.isp.2.role=2
hint.isp.3.role=2
hint.isp.0.topology="nport-only"
```

```plaintext
hint.isp.1.topology="nport-only"
```

```plaintext
hint.isp.2.topology="nport-only"
```

```plaintext
hint.isp.3.topology="nport-only"
```

```plaintext
module_path="/boot/kernel;/boot/modules;/usr/local/modules"
net.inet6.ip6.auto_linklocal="0"
```

```plaintext
vfs.zfs.vol.mode=2
kern.geom.label.disk_ident.enable="0"
hint.ahciem.0.disabled="1"
hint.ahciem.1.disabled="1"
kern.msgbufsize="524288"
```

```plaintext
hw.mfi.mrsas_enable="1"
```

```plaintext
hw.usb.no_shutdown_wait=1
```

```plaintext
hw.cxgbe.toecaps_allowed=0
```

```plaintext
hw.cxgbe.rmacaps_allowed=0
```

```plaintext
hw.cxgbe.iscsicaps_allowed=0
```

```plaintext
vfs.nfsd.fha.write=0
```
Do not add or edit the default tunables as doing so might make the system unusable.

The ZFS version used in 11.1 deprecates these tunables:

- `vfs.zfs.write_limit_override`
- `vfs.zfs.write_limit_inflated`
- `vfs.zfs.write_limit_max`
- `vfs.zfs.write_limit_min`
- `vfs.zfs.write_limit_shift`
- `vfs.zfs.no_write_throttle`

After upgrading from an earlier version of FreeNAS®, these tunables are automatically deleted. Please do not manually add them back.

5.8 Update

FreeNAS® has an integrated update system to make it easy to keep up to date.

5.8.1 Preparing for Updates

It is best to perform updates at times the FreeNAS® system is idle, with no clients connected and no scrubs or other disk activity going on. A reboot is required after most updates, so they are often planned for scheduled maintenance times to avoid disrupting user activities.

The update process will not proceed unless there is enough free space in the boot pool for the new update files. If a space warning is shown, use Boot (page 67) to remove unneeded boot environments.

5.8.2 Updates and Trains

FreeNAS® is updated with signed update files. This provides flexibility in deciding when to upgrade the system with patches, new drivers, or new features. It also allows “test driving” an upcoming release. Combined with boot environments, new features or system patches can be tested while still being able to revert to a previous version of the operating system (see If Something Goes Wrong (page 34)). Digital signing of update files eliminates the need to manually download both an upgrade file and the associated checksum to verify file integrity.

Figure 5.13 shows an example of the System → Update screen.
By default, the system automatically checks for updates and issues an alert when a new update becomes available. The automatic check can be disabled by unchecking Automatically check for updates.

This screen lists the URL of the official update server in case that information is needed in a network with outbound firewall restrictions. It also shows which software branch, or train, is being tracked for updates.

Several trains are available for updates.

Caution: Only Production trains are recommended for regular usage. Other trains are made available for pre-production testing and updates to legacy versions. Pre-production testing trains are provided only to permit testing of new versions before switching to a new branch. Before using a non-production train, be prepared to experience bugs or problems. Testers are encouraged to submit bug reports at https://redmine.ixsystems.com/projects/freenas/issues.

These trains are available:

For Production Use
- FreeNAS-11-STABLE (Recommended)
 After testing, new fixes and features are added to this train. Selecting this train and applying any pending updates is recommended.

For Pre-Production Testing
- FreeNAS-11-Nightlies: Do not use this train in production. It is the experimental branch for future versions and is meant only for testers and developers.
- FreeNAS-11-Nightlies-SDK: Do not use this train in production. This train is meant only for developers. It is similar to FreeNAS-11-Nightlies but with extra development and debugging utilities added.
- FreeNAS-HEAD-Nightlies: Do not use this train in production. This train is meant only for developers and contains the source that will eventually become FreeNAS® version 12.
Legacy Versions

- FreeNAS-9.10-STABLE

 Maintenance-only updates to the older version of FreeNAS®. Upgrading to FreeNAS-11-STABLE is recommended to ensure that the system receives bug fixes and new features.

To change the train, use the drop-down menu to make a different selection.

Note: The train selector does not allow downgrades. For example, the STABLE train cannot be selected while booted into a Nightly boot environment, or a 9.10 train cannot be selected while booted into a 11 boot environment. To go back to an earlier version after testing or running a more recent version, reboot and select a boot environment for that earlier version. This screen can then be used to check for updates that train.

This screen also shows the URL of the official update server. That information can be required when using a network with outbound firewall restrictions.

The Verify Install button verifies that the operating system files in the current installation do not have any inconsistencies. If any problems are found, a pop-up menu lists the files with checksum mismatches or permission errors.

5.8.3 Checking for Updates

Checking for updates by making sure the desired train is selected and clicking the Check Now button. Any available updates are listed. In the example shown in Figure 5.14, the numbers which begin with a # represent the issue number from the issue tracker (https://redmine.ixsystems.com/projects/freenas/issues). Numbers which do not begin with a # represent a git commit. Click the ChangeLog link to open the log of changes in a web browser. Click the ReleaseNotes link to open the Release Notes in the browser.

![Fig. 5.14: Reviewing Updates](image)

5.8.4 Applying Updates

Make sure the system is in a low-usage state as described above in Preparing for Updates (page 79).

Click the OK button to download and apply the updates. Be aware that some updates automatically reboot the system after they are applied.
Warning: Each update creates a boot environment. If the update process needs more space, it attempts to remove old boot environments. Boot environments marked with the Keep attribute as shown in Boot (page 67) will not be removed. If space for a new boot environment is not available, the upgrade fails. Space on the boot device can be manually freed using System → Boot. Review the boot environments and remove the Keep attribute or delete any boot environments that are no longer needed.

Updates can also be downloaded and applied later. To do so, uncheck the Apply updates after downloading box before pressing OK. In this case, this screen closes after updates are downloaded. Downloaded updates are listed in the Pending Updates section of the screen shown in Figure 5.13. When ready to apply the previously downloaded updates, click the Apply Pending Updates button. Remember that the system might reboot after the updates are applied.

Warning: After updates have completed, reboot the system. Configuration changes made after an update but before that final reboot will not be saved.

5.8.5 Manual Updates

Updates can be manually downloaded as a file. These updates are then applied with the Manual Update button. After obtaining the update file, click Manual Update and choose a location to temporarily store the file on the FreeNAS® system. Use the file browser to locate the update file, then click Apply Update to apply it.

Manual update files can be identified by their filenames, which end in -manual-update-unsigned.tar.

Manual updates cannot be used to upgrade from older major versions.

5.9 Cloud Credentials

FreeNAS® can use cloud services for features like Cloud Sync (page 93). The credentials to provide secure connections with cloud services are entered here. Amazon S3, Azure Blob Storage, Backblaze B2, and Google Cloud Storage are supported.

Warning: Cloud Credentials are stored in encrypted form. To be able to restore Cloud Credentials from a saved configuration (page 64), “Export Password Secret Seed” must be set when saving that configuration.

Select System → Cloud Credentials → Add Cloud Credential to display the dialog shown in Figure 5.15.

Add Cloud Credential

Account Name: |

Provider:

OK Cancel

Fig. 5.15: Adding Cloud Credentials

Enter a descriptive name for the cloud credential in the Account Name field, then select a provider. The remaining options vary by provider, and are shown in Table 5.6.
Table 5.6: Cloud Credential Options

<table>
<thead>
<tr>
<th>Provider</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon S3</td>
<td>Access Key, Secret Key</td>
<td>paste the Amazon account access key and secret key in the fields</td>
</tr>
<tr>
<td>Azure Blob Storage</td>
<td>Account Name, Account Key</td>
<td>enter the Azure Blob Storage account name and key in the fields</td>
</tr>
<tr>
<td>Backblaze B2</td>
<td>Account ID, Application Key</td>
<td>enter the Backblaze account ID and paste the application in the fields</td>
</tr>
<tr>
<td>Google Cloud Storage</td>
<td>JSON Server Account Key</td>
<td>browse to the location of the saved Google Cloud Storage key and select it</td>
</tr>
</tbody>
</table>

Additional fields are displayed after Provider is selected. For Amazon S3, Access Key and Secret Key are shown. These values can be found on the Amazon AWS website by clicking on the account name, then My Security Credentials and Access Keys (Access Key ID and Secret Access Key). Copy the Access Key value to the FreeNAS® Cloud Credential Access Key field, then enter the Secret Key value saved when the key pair was created. If the Secret Key value is not known, a new key pair can be created on the same Amazon screen.

5.10 Alert Services

FreeNAS® can use a number of methods to notify the administrator of system events that require attention. These events are system Alerts (page 304) marked WARN or CRITICAL.

Currently available alert services:
- AWS-SNS (https://aws.amazon.com/sns/)
- Hipchat (https://www.atlassian.com/software/hipchat)
- InfluxDB (https://www.influxdata.com/)
- Slack (https://slack.com/)
- Mattermost (https://about.mattermost.com/)
- OpsGenie (https://www.opsgenie.com/)
- PagerDuty (https://wwwpagerduty.com/)
- VictorOps (https://victorops.com/)

Warning: These alert services might use a third party commercial vendor not directly affiliated with iXsystems. Please investigate and fully understand that vendor's pricing policies and services before using their alert service. iXsystems is not responsible for any charges incurred from the use of third party vendors with the Alert Services feature.

Select System → Alert Services to go to the Alert Services screen. Click Add Service to display the dialog shown in Figure 5.16.
The Service Name drop-down menu is used to pick a specific alert service. The fields shown in the rest of the dialog change to those required by that service. Enter the required information, check the Enabled checkbox, then click OK to save the settings.

System alerts marked WARN or CRITICAL are sent to each alert service that has been configured and enabled. Alert services can be deleted from this list by clicking them and then clicking the Delete button at the bottom of the window. To disable an alert service temporarily, click Edit and remove the checkmark from the Enabled checkbox.

Note: To send a test alert, highlight an alert entry, click Edit, and click the Send Test Alert button.

5.10.1 How it Works

A nas-health service is registered with Consul. This service runs `/usr/local/etc/consul-checks/freenas_health.sh` periodically, currently every two minutes. If an alert marked WARNING or CRITICAL is found, the nas-health service is marked as “unhealthy”, triggering `consul-alerts` to notify configured alert services.

5.11 CAs

FreeNAS® can act as a Certificate Authority (CA). When encrypting SSL or TLS connections to the FreeNAS® system, either import an existing certificate, or create a CA on the FreeNAS® system, then create a certificate. This certificate will appear in the drop-down menus for services that support SSL or TLS.

For secure LDAP, the public key of an existing CA can be imported with Import CA, or a new CA created on the FreeNAS® system and used on the LDAP server also.

Figure 5.17 shows the screen after clicking System → CAs.
If your organization already has a CA, the CA's certificate and key can be imported. Click the Import CA button to open the configuration screen shown in Figure 5.18. The configurable options are summarized in Table 5.7.

![Import CA Screen](image)

Table 5.7: Importing a CA Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifier</td>
<td>string</td>
<td>mandatory; enter a descriptive name for the CA using only alphanumeric, underscore (_), and dash (-) characters</td>
</tr>
<tr>
<td>Certificate</td>
<td>string</td>
<td>mandatory; paste in the certificate for the CA</td>
</tr>
<tr>
<td>Private Key</td>
<td>string</td>
<td>if there is a private key associated with the Certificate, paste it here</td>
</tr>
<tr>
<td>Passphrase</td>
<td>string</td>
<td>if the Private Key is protected by a passphrase, enter it here and repeat it in the “Confirm Passphrase” field</td>
</tr>
<tr>
<td>Serial</td>
<td>string</td>
<td>mandatory; enter the serial number for the certificate</td>
</tr>
</tbody>
</table>

To instead create a new CA, first decide if it will be the only CA which will sign certificates for internal use or if the CA will be part of a certificate chain (https://en.wikipedia.org/wiki/Root_certificate).

To create a CA for internal use only, click the Create Internal CA button which will open the screen shown in Figure 5.19.
The configurable options are described in Table 5.8. When completing the fields for the certificate authority, supply the information for your organization.

Table 5.8: Internal CA Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifier</td>
<td>string</td>
<td>required; enter a descriptive name for the CA using only alphanumeric, underscore (_) , and dash (-) characters</td>
</tr>
<tr>
<td>Key Length</td>
<td>drop-down menu</td>
<td>for security reasons, a minimum of 2048 is recommended</td>
</tr>
<tr>
<td>Digest Algorithm</td>
<td>drop-down menu</td>
<td>the default is acceptable unless your organization requires a different algorithm</td>
</tr>
<tr>
<td>Lifetime</td>
<td>integer</td>
<td>in days</td>
</tr>
<tr>
<td>Country</td>
<td>drop-down menu</td>
<td>select the country for the organization</td>
</tr>
<tr>
<td>State</td>
<td>string</td>
<td>required; enter the state or province of the organization</td>
</tr>
<tr>
<td>Locality</td>
<td>string</td>
<td>required; enter the location of the organization</td>
</tr>
<tr>
<td>Organization</td>
<td>string</td>
<td>required; enter the name of the company or organization</td>
</tr>
<tr>
<td>Email Address</td>
<td>string</td>
<td>required; enter the email address for the person responsible for the CA</td>
</tr>
<tr>
<td>Common Name</td>
<td>string</td>
<td>required; enter the fully-qualified hostname (FQDN) of the system; the Common Name must be unique within a certificate chain</td>
</tr>
</tbody>
</table>

Continued on next page
To instead create an intermediate CA which is part of a certificate chain, click the Create Intermediate CA button. This screen adds one more option to the screen shown in Figure 5.19:

- Signing Certificate Authority: this drop-down menu is used to specify the root CA in the certificate chain. This CA must first be imported or created.

Any CAs that you import or create will be added as entries in System → CAs. The columns in this screen indicate the name of the CA, whether it is an internal CA, whether the issuer is self-signed, the number of certificates that have been issued by the CA, the distinguished name of the CA, the date and time the CA was created, and the date and time the CA expires.

Clicking the entry for a CA causes these buttons to become available:

- Sign CSR: used to sign internal Certificate Signing Requests created using System → Certificates → Create Certificate Signing Request.
- Export Certificate: prompts to browse to the location to save a copy of the CA’s X.509 certificate on the computer being used to access the FreeNAS® system.
- Export Private Key: prompts to browse to the location to save a copy of the CA’s private key on the computer being used to access the FreeNAS® system. This option only appears if the CA has a private key.
- Delete: prompts for confirmation before deleting the CA.

5.12 Certificates

FreeNAS® can import existing certificates, create new certificates, and issue certificate signing requests so that created certificates can be signed by the CA which was previously imported or created in CAs (page 84).

Figure 5.20 shows the initial screen after clicking System → Certificates.

![Fig. 5.20: Initial Certificates Screen](image)

To import an existing certificate, click Import Certificate to open the configuration screen shown in Figure 5.21. When importing a certificate chain, paste the primary certificate, followed by any intermediate certificates, followed by the root CA certificate.

The configurable options are summarized in Table 5.9.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Alternate Names</td>
<td>string</td>
<td>newer browsers look for the values in this field to match the domain to the certificate; use a space to separate domain names</td>
</tr>
</tbody>
</table>
Fig. 5.21: Importing a Certificate

Table 5.9: Certificate Import Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifier</td>
<td>string</td>
<td>required; enter a descriptive name for the certificate using only alphanumeric, underscore (_), and dash (-) characters</td>
</tr>
<tr>
<td>Certificate</td>
<td>string</td>
<td>required; paste the contents of the certificate</td>
</tr>
<tr>
<td>Private Key</td>
<td>string</td>
<td>required; paste the private key associated with the certificate</td>
</tr>
<tr>
<td>Passphrase</td>
<td>string</td>
<td>if the private key is protected by a passphrase, enter it here and repeat it in the Confirm Passphrase field</td>
</tr>
</tbody>
</table>

To instead create a new self-signed certificate, click the Create Internal Certificate button to see the screen shown in Figure 5.22. The configurable options are summarized in Table 5.10. When completing the fields for the certificate authority, use the information for your organization. Since this is a self-signed certificate, use the CA that was imported or created with CAs (page 84) as the signing authority.
freeNAS® 11.1-U7 User Guide, Release 11.1

Fig. 5.22: Creating a New Certificate

Table 5.10: Certificate Creation Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signing Certificate Authority</td>
<td>drop-down menu</td>
<td>required; select the CA which was previously imported or created using CAs (page 84)</td>
</tr>
<tr>
<td>Identifier</td>
<td>string</td>
<td>required; enter a descriptive name for the certificate using only alphanumeric, underscore (_), and dash (-) characters</td>
</tr>
<tr>
<td>Key Length</td>
<td>drop-down menu</td>
<td>for security reasons, a minimum of 2048 is recommended</td>
</tr>
<tr>
<td>Digest Algorithm</td>
<td>drop-down menu</td>
<td>the default is acceptable unless your organization requires a different algorithm</td>
</tr>
<tr>
<td>Lifetime</td>
<td>integer</td>
<td>in days</td>
</tr>
<tr>
<td>Country</td>
<td>drop-down menu</td>
<td>select the country for the organization</td>
</tr>
<tr>
<td>State</td>
<td>string</td>
<td>required; enter the state or province for the organization</td>
</tr>
<tr>
<td>Locality</td>
<td>string</td>
<td>required; enter the location for the organization</td>
</tr>
<tr>
<td>Organization</td>
<td>string</td>
<td>required; enter the name of the company or organization</td>
</tr>
</tbody>
</table>

Continued on next page
If you need to use a certificate that is signed by an external CA, such as Verisign, instead create a certificate signing request. To do so, click Create Certificate Signing Request. A screen like the one in Figure 5.22 opens, but without the Signing Certificate Authority field.

Certificates that are imported, self-signed, or for which a certificate signing request is created are added as entries to System → Certificates. In the example shown in Figure 5.23, a self-signed certificate and a certificate signing request have been created for the fictional organization My Company. The self-signed certificate was issued by the internal CA named My Company and the administrator has not yet sent the certificate signing request to Verisign so that it can be signed. Once that certificate is signed and returned by the external CA, it should be imported using Import Certificate so it is available as a configurable option for encrypting connections.

Clicking an entry activates these configuration buttons:

- **View**: use this option to view or edit the contents of an existing certificate. These fields can be edited: Identifier, Certificate, and Private Key.
- **Export Certificate** saves a copy of the certificate or certificate signing request to the system being used to access the FreeNAS® system. For a certificate signing request, send the exported certificate to the external signing authority so that it can be signed.
- **Export Private Key** saves a copy of the private key associated with the certificate or certificate signing request to the system being used to access the FreeNAS® system.
- **Delete** is used to delete a certificate or certificate signing request.

5.13 Support

The FreeNAS® Support tab, shown in Figure 5.24, provides a built-in ticketing system for generating bug reports and feature requests.
This screen provides a built-in interface to the FreeNAS® issue tracker located at https://redmine.ixsystems.com/projects/freenas/issues. If you have not yet used the FreeNAS® bug tracker, you must first go to that website, click the Register link, fill out the form, and reply to the registration email. This will create a username and password which can be used to create bug reports and receive notifications as the reports are actioned.

Before creating a bug report or feature request, ensure that an existing report does not already exist at https://redmine.ixsystems.com/projects/freenas/issues. If you find a similar issue that is not yet marked as closed or resolved, add a comment to that issue if you have new information to provide that can assist in resolving the issue. If you find a similar issue that is marked as closed or resolved, you can create a new issue and refer to the earlier issue number.

Note: If you are not updated to the latest version of STABLE, do that first to see if it resolves your issue.

To generate a report using the built-in Support screen, complete the following fields:

- **Username**: enter the login name created when registering at https://redmine.ixsystems.com/projects/freenas/issues.
- **Password**: enter the password associated with the registered login name.
- **Type**: select Bug when reporting an issue or Feature when requesting a new feature.
- **Category**: this drop-down menu is empty until a registered Username and Password are entered. An error message is displayed if either value is incorrect. After the Username and Password are validated, possible categories are populated to the drop-down menu. Select the one that best describes the bug or feature being reported.
- **Attach Debug Info**: it is recommended to leave this box checked so that an overview of the system's hardware, build string, and configuration is automatically generated and included with the ticket. Generating and attaching a debug to the ticket can take some time.
• **Subject:** enter a descriptive title for the ticket. A good Subject makes it easy for you and other users to find similar reports.

• **Description:** enter a one- to three-paragraph summary of the issue that describes the problem, and if applicable, what steps can be taken to reproduce it.

• **Attachments:** this is the only optional field. It is useful for including configuration files or screenshots of any errors or tracebacks.

Click **Submit** to automatically generate and upload the report to the [bug tracker](https://redmine.ixsystems.com/projects/freenas/issues). This process can take several minutes while information is collected and sent.

After the new ticket is created, the URL is shown for viewing or updating with more information.
The Tasks section of the administrative GUI is used to configure repetitive tasks:

- **Cloud Sync** (page 93) schedules data synchronization to cloud providers
- **Cron Jobs** (page 98) schedules a command or script to automatically execute at a specified time
- **Init/Shutdown Scripts** (page 100) configures a command or script to automatically execute during system startup or shutdown
- **Rsync Tasks** (page 101) schedules data synchronization to another system
- **S.M.A.R.T. Tests** (page 108) schedules disk tests

Each of these tasks is described in more detail in this section.

Note: By default, *Scrubs* (page 160) are run once a month by an automatically-created task. *S.M.A.R.T. Tests* (page 108) and *Periodic Snapshot Tasks* (page 148) must be set up manually.

6.1 Cloud Sync

Files or directories can be synchronized to remote cloud storage providers with the Cloud Sync feature.

Warning: This Cloud Sync task might go to a third party commercial vendor not directly affiliated with iXsystems. Please investigate and fully understand that vendor's pricing policies and services before creating any Cloud Sync task. iXsystems is not responsible for any charges incurred from the use of third party vendors with the Cloud Sync feature.

Selecting Tasks → Cloud Sync shows the screen in Figure 6.1. This screen shows a single cloud sync called backup-acctg that “pushes” a file to cloud storage. The last run finished with a status of SUCCESS.

Existing cloud syncs can be run manually, edited, or deleted with the buttons that appear when a single cloud sync line is selected by clicking with the mouse.
Cloud Credentials (page 82) must be defined before a cloud sync is created. One set of credentials can be used for more than one cloud sync. For example, a single set of credentials for Amazon S3 can be used for separate cloud syncs that push different sets of files or directories.

A cloud storage area must also exist. With Amazon S3, these are called buckets. The bucket must be created before a sync task can be created.

After the credentials and receiving bucket have been created, a cloud sync task is created with Tasks → Cloud Sync → Add Cloud Sync. The Add Cloud Sync dialog is shown in Figure 6.2.

Fig. 6.1: Cloud Sync Status
Warning: This Cloud Sync task might go to a third party commercial vendor not directly affiliated with iXsystems. Please investigate and fully understand that vendor's pricing policies and services before creating any Cloud Sync task. iXsystems is not responsible for any charges incurred from the use of third party vendors with the Cloud Sync feature.

Table 6.1: Cloud Sync Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>string</td>
<td>a descriptive name for this Cloud Sync</td>
</tr>
<tr>
<td>Direction</td>
<td>string</td>
<td>Push to send data to cloud storage, or Pull to pull data from the cloud storage</td>
</tr>
<tr>
<td>Provider</td>
<td>drop-down menu</td>
<td>select the cloud storage provider; the list of providers is defined by Cloud Credentials (page 82)</td>
</tr>
<tr>
<td>Amazon S3 Buckets</td>
<td>drop-down menu</td>
<td>only appears when an S3 credential is the Provider; select the bucket to use</td>
</tr>
</tbody>
</table>

Continued on next page
Table 6.1 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folder</td>
<td>string</td>
<td>only appears when an S3 credential is the Provider; input the name of the folder to sync to</td>
</tr>
<tr>
<td>Server Side Encryption</td>
<td>drop-down menu</td>
<td>only appears when an S3 credential is the Provider; choices are None (no encryption) or AES-256 (encrypted)</td>
</tr>
<tr>
<td>Path</td>
<td>browse button</td>
<td>select the directories or files to be sent for Push syncs or the destinations for Pull syncs</td>
</tr>
<tr>
<td>Transfer Mode</td>
<td>drop-down menu</td>
<td>Sync (default): make files on destination system identical to those on the source; files removed from the source are removed from the destination (like rsync --delete) Copy: copy files from the source to the destination, skipping files that are identical (like rsync) Move: copy files from the source to the destination, deleting files from the source after the copy (like mv)</td>
</tr>
<tr>
<td>Minute</td>
<td>slider or minute selections</td>
<td>select Every N minutes and use the slider to choose a value, or select Each selected minute and choose specific minutes</td>
</tr>
<tr>
<td>Hour</td>
<td>slider or hour selections</td>
<td>select Every N hours and use the slider to choose a value, or select Each selected hour and choose specific hours</td>
</tr>
<tr>
<td>Day of month</td>
<td>slider or day of month selections</td>
<td>select Every N days of month and use the slider to choose a value, or select Each selected day of month and choose specific days</td>
</tr>
<tr>
<td>Month</td>
<td>checkboxes</td>
<td>months when the Cloud Sync runs</td>
</tr>
<tr>
<td>Day of week</td>
<td>checkboxes</td>
<td>days of the week when the Cloud Sync runs</td>
</tr>
<tr>
<td>Enabled</td>
<td>checkbox</td>
<td>uncheck to temporarily disable this Cloud Sync</td>
</tr>
</tbody>
</table>

Take care when choosing a Direction. Most of the time, Push will be used to send data to the cloud storage. Pull retrieves data from cloud storage, but be careful: files retrieved from cloud storage will overwrite local files with the same names in the destination directory.

Provider is the name of the cloud storage provider. These providers are defined by entering credentials in Cloud Credentials (page 82).

After the Provider is chosen, a list of available cloud storage areas from that provider is shown. With Amazon AWS, this is a drop-down with names of existing buckets. Choose a bucket, and a folder inside that bucket if desired.

Path is the path to the directories or files on the FreeNAS® system. On Push jobs, this is the source location for files sent to cloud storage. On Pull jobs, the Path is where the retrieved files are written. Again, be cautious about the destination of Pull jobs to avoid overwriting existing files.

The Minute, Hour, Days of month, months, and Days of week fields permit creating a flexible schedule of when the cloud synchronization takes place.

Finally, the Enabled field makes it possible temporarily disable a cloud sync job without deleting it.

6.1.1 Cloud Sync Example

This example shows a Push cloud sync which writes an accounting department backup file from the FreeNAS® system to Amazon S3 storage.

Before the new cloud sync was added, a bucket called cloudsync-bucket was created with the Amazon S3 web console for storing data from the FreeNAS® system.

System → Cloud Credentials → Add Cloud Credential is used to enter the credentials for storage on an Amazon AWS account. The credential is given the name S3 Storage, as shown in Figure 6.3:
The local data to be sent to the cloud is a single file called `accounting-backup.bin` on the `smb-storage` dataset. A cloud sync job is created with Tasks → Cloud Sync → Add Cloud Sync. The Description is set to `backup-acctg` to describe the job. This data is being sent to cloud storage, so this is a Push. The provider comes from the cloud credentials defined in the previous step, and the destination bucket `cloudsync-bucket` has been chosen.

The Path to the data file is selected.

The remaining fields are for setting a schedule. The default is to send the data to cloud storage once an hour, every day. The options provide great versatility in configuring when a cloud sync runs, anywhere from once a minute to once a year.

The Enabled field is checked by default, so this cloud sync will run at the next scheduled time.

The completed dialog is shown in Figure 6.4:
6.2 Cron Jobs

cron(8) is a daemon that runs a command or script on a regular schedule as a specified user.

Figure 6.5 shows the screen that opens after clicking Tasks → Cron Jobs → Add Cron Job.
Add Cron Job

<table>
<thead>
<tr>
<th>User:</th>
<th>The user to run the command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command:</td>
<td></td>
</tr>
<tr>
<td>Short description:</td>
<td></td>
</tr>
</tbody>
</table>

Minute:
- **Every N minute**
- **Each selected minute**

Hour:
- **Every N hour**
- **Each selected hour**

Day of month:
- **Every N day of month**
- **Each selected day of month**

Month:
- January

Fig. 6.5: Creating a Cron Job
Table 6.2 lists the configurable options for a cron job.

Table 6.2: Cron Job Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>drop-down menu</td>
<td>make sure the selected user has permission to run the specified command or script</td>
</tr>
<tr>
<td>Command</td>
<td>string</td>
<td>the full path to the command or script to be run; if it is a script, test it at the command line first to make sure that it works as expected</td>
</tr>
<tr>
<td>Short description</td>
<td>string</td>
<td>optional</td>
</tr>
<tr>
<td>Minute</td>
<td>slider or minute selections</td>
<td>with the slider, the cron job occurs every N minutes; with minute selections, the cron job occurs at the highlighted minutes</td>
</tr>
<tr>
<td>Hour</td>
<td>slider or hour selections</td>
<td>with the slider, the cron job occurs every N hours; with hour selections, the cron job occurs at the highlighted hours</td>
</tr>
<tr>
<td>Day of month</td>
<td>slider or month selections</td>
<td>with the slider, cron job occurs every N days; with day selections, cron job occurs on the highlighted days each month</td>
</tr>
<tr>
<td>Month</td>
<td>checkboxes</td>
<td>cron job occurs on the selected months</td>
</tr>
<tr>
<td>Day of week</td>
<td>checkboxes</td>
<td>cron job occurs on the selected days</td>
</tr>
<tr>
<td>Redirect Stdout</td>
<td>checkbox</td>
<td>disables emailing standard output to the root user account</td>
</tr>
<tr>
<td>Redirect Stderr</td>
<td>checkbox</td>
<td>disables emailing errors to the root user account</td>
</tr>
<tr>
<td>Enabled</td>
<td>checkbox</td>
<td>uncheck disable the cron job without deleting it</td>
</tr>
</tbody>
</table>

Cron jobs are shown in View Cron Jobs. Highlight a cron job entry to display buttons to Edit, Delete, or Run Now.

Note: % symbols are automatically escaped and should not be prefixed with backslashes. For example, use `date '+%Y-%m-%d'` in a cron job to generate a filename based on the date.

6.3 Init/Shutdown Scripts

FreeNAS® provides the ability to schedule commands or scripts to run at system startup or shutdown.

Figure 6.6 shows the screen that opens after clicking Tasks → Init/Shutdown Scripts → Add Init/Shutdown Script. Table 6.3 summarizes the options.

Scheduled commands must be in the default path. The full path to the command can also be included in the entry. The path can be tested by typing `which commandname`. If the command is not found, it is not in the path.

When scheduling a script, make sure that the script is executable and has been fully tested to ensure it achieves the desired results.
Table 6.3: Options When Adding an Init/Shutdown Script

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>drop-down menu</td>
<td>select from Command (for an executable) or Script (for an executable script)</td>
</tr>
<tr>
<td>Command</td>
<td>string</td>
<td>if Command is selected, enter the command plus any desired options; if Script is selected, browse to the location of the script</td>
</tr>
<tr>
<td>When</td>
<td>drop-down menu</td>
<td>select when the command/script will run; choices are Pre Init (very early in boot process before filesystems are mounted), Post Init (towards end of boot process before FreeNAS services are started), or Shutdown</td>
</tr>
<tr>
<td>Enabled</td>
<td>checkbox</td>
<td>uncheck to disable the task</td>
</tr>
</tbody>
</table>

6.4 Rsync Tasks

Rsync (https://www.samba.org/ftp/rsync/rsync.html) is a utility that copies specified data from one system to another over a network. Once the initial data is copied, rsync reduces the amount of data sent over the network by sending only the differences between the source and destination files. Rsync can be used for backups, mirroring data on multiple systems, or for copying files between systems.

Rsync is most effective when only a relatively small amount of the data has changed. There are also some limitations when using Rsync with Windows files (https://forums.freenas.org/index.php?threads/impaired-rsync-permissions-support-for-windows-datasets.43973/). For large amounts of data, data that has many changes from the previous copy, or Windows files, Replication Tasks (page 150) are often the faster and better solution.

Rsync is single-threaded and gains little from multiple processor cores. To see whether rsync is currently running, use `pgrep rsync` from the Shell (page 297).

Both ends of an rsync connection must be configured:

- the rsync server: this system pulls (receives) the data. This system is referred to as PULL in the configuration examples.
- the rsync client: this system pushes (sends) the data. This system is referred to as PUSH in the configuration examples.

FreeNAS® can be configured as either an rsync client or an rsync server. The opposite end of the connection can be another FreeNAS® system or any other system running rsync. In FreeNAS® terminology, an rsync task defines which data is synchronized between the two systems. To synchronize data between two FreeNAS® systems, create the rsync task on the rsync client.

FreeNAS® supports two modes of rsync operation:
• rsync module mode: exports a directory tree, and its configured settings, as a symbolic name over an unencrypted connection. This mode requires that at least one module be defined on the rsync server. It can be defined in the FreeNAS® GUI under Services → Rsync → Rsync Modules. In other operating systems, the module is defined in `rsyncd.conf(5)` (https://www.samba.org/ftp/rsync/rsyncd.conf.html).

• rsync over SSH: synchronizes over an encrypted connection. Requires the configuration of SSH user and host public keys.

This section summarizes the options when creating an rsync task. It then provides a configuration example between two FreeNAS® systems for each mode of rsync operation.

Note: If there is a firewall between the two systems or if the other system has a built-in firewall, make sure that TCP port 873 is allowed.

Figure 6.7 shows the screen that appears after selecting Tasks → Rsync Tasks → Add Rsync Task. Table 6.4 summarizes the options that can be configured when creating an rsync task.
Fig. 6.7: Adding an Rsync Task
<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path</td>
<td>browse button</td>
<td>browse to the path that to be copied; note that a path length greater than 255 characters will fail</td>
</tr>
<tr>
<td>User</td>
<td>drop-down menu</td>
<td>specified user must have permission to write to the specified directory on the remote system; due to a limitation in FreeBSD, the user name cannot contain spaces or exceed 17 characters</td>
</tr>
<tr>
<td>Remote Host</td>
<td>string</td>
<td>IP address or hostname of the remote system that will store the copy; use the format username@remote_host if the username differs on the remote host</td>
</tr>
<tr>
<td>Remote SSH Port</td>
<td>integer</td>
<td>only available in Rsync over SSH mode; allows specifying an SSH port other than the default of 22</td>
</tr>
<tr>
<td>Rsync mode</td>
<td>drop-down menu</td>
<td>choices are Rsync module or Rsync over SSH</td>
</tr>
<tr>
<td>Remote Module Name</td>
<td>string</td>
<td>only appears when using Rsync module mode, at least one module must be defined in rsyncd.conf(5) (https://www.samba.org/ftp/rsync/rsyncd.conf.html) of rsync server or in the Rsync Modules of another system</td>
</tr>
<tr>
<td>Remote Path</td>
<td>string</td>
<td>only appears when using Rsync over SSH mode, enter the existing path on the remote host to sync with (e.g. /mnt/volume); note that maximum path length is 255 characters</td>
</tr>
<tr>
<td>Validate Remote Path</td>
<td>checkbox</td>
<td>if the Remote Path does not yet exist, check this box to have it automatically created</td>
</tr>
<tr>
<td>Direction</td>
<td>drop-down menu</td>
<td>choices are Push or Pull; default is to push to a remote host</td>
</tr>
<tr>
<td>Short Description</td>
<td>string</td>
<td>optional</td>
</tr>
<tr>
<td>Minute</td>
<td>slider or minute selections</td>
<td>if use the slider, sync occurs every N minutes; if use minute selections, sync occurs at the highlighted minutes</td>
</tr>
<tr>
<td>Hour</td>
<td>slider or hour selections</td>
<td>if use the slider, sync occurs every N hours; if use hour selections, sync occurs at the highlighted hours</td>
</tr>
<tr>
<td>Day of month</td>
<td>slider or day selections</td>
<td>if use the slider, sync occurs every N days; if use day selections, sync occurs on the highlighted days</td>
</tr>
<tr>
<td>Month</td>
<td>checkboxes</td>
<td>task occurs on the selected months</td>
</tr>
<tr>
<td>Day of week</td>
<td>checkboxes</td>
<td>task occurs on the selected days of the week</td>
</tr>
<tr>
<td>Recursive</td>
<td>checkbox</td>
<td>if checked, copy will include all subdirectories of the specified volume</td>
</tr>
<tr>
<td>Times</td>
<td>checkbox</td>
<td>preserve modification times of files</td>
</tr>
<tr>
<td>Compress</td>
<td>checkbox</td>
<td>recommended on slow connections as reduces size of data to be transmitted</td>
</tr>
<tr>
<td>Archive</td>
<td>checkbox</td>
<td>equivalent to (-rlptgoD) (recursive, copy symlinks as symlinks, preserve permissions, preserve modification times, preserve group, preserve owner (super-user only), and preserve device files (super-user only) and special files)</td>
</tr>
<tr>
<td>Delete</td>
<td>checkbox</td>
<td>delete files in destination directory that do not exist in sending directory</td>
</tr>
<tr>
<td>Quiet</td>
<td>checkbox</td>
<td>suppresses informational messages from the remote server</td>
</tr>
<tr>
<td>Preserve permissions</td>
<td>checkbox</td>
<td>preserves original file permissions; useful if User is set to root</td>
</tr>
<tr>
<td>Preserve extended attributes</td>
<td>checkbox</td>
<td>both systems must support extended attributes (https://en.wikipedia.org/wiki/Xattr)</td>
</tr>
<tr>
<td>Delay Updates</td>
<td>checkbox</td>
<td>when checked, the temporary file from each updated file is saved to a holding directory until the end of the transfer, when all transferred files are renamed into place</td>
</tr>
<tr>
<td>Extra options</td>
<td>string</td>
<td>(\text{rsync}(1)) (http://rsync.samba.org/ftp/rsync/rsync.html) options not covered by the GUI; if the * character is used, it must be escaped with a backslash ((^.txt)) or used inside single quotes (‘.txt’)</td>
</tr>
</tbody>
</table>
Table 6.4 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td>checkbox</td>
<td>uncheck to disable the rsync task without deleting it; note that when the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rsync (page 232) service is OFF, the rsync task will continue to look for the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>server unless this checkbox is unchecked</td>
</tr>
</tbody>
</table>

If the rsync server requires password authentication, enter `--password-file=/PATHTO/FILENAME` in the Extra options box, replacing `/PATHTO/FILENAME` with the appropriate path to the file containing the password.

Created rsync tasks will be listed in View Rsync Tasks. Highlight the entry for an rsync task to display buttons for Edit, Delete, or Run Now.

6.4.1 Rsync Module Mode

This configuration example configures rsync module mode between the two following FreeNAS® systems:

- 192.168.2.2 has existing data in `/mnt/local/images`. It will be the rsync client, meaning that an rsync task needs to be defined. It will be referred to as PUSH.
- 192.168.2.6 has an existing volume named `/mnt/remote`. It will be the rsync server, meaning that it will receive the contents of `/mnt/local/images`. An rsync module needs to be defined on this system and the rsyncd service needs to be started. It will be referred to as PULL.

On PUSH, an rsync task is defined in Tasks → Rsync Tasks → Add Rsync Task. In this example:

- the Path points to `/usr/local/images`, the directory to be copied
- the Remote Host points to 192.168.2.6, the IP address of the rsync server
- the Rsync Mode is Rsync module
- the Remote Module Name is backups; this will need to be defined on the rsync server
- the Direction is Push
- the rsync is scheduled to occur every 15 minutes
- the User is set to root so it has permission to write anywhere
- the Preserve Permissions checkbox is checked so that the original permissions are not overwritten by the root user

On PULL, an rsync module is defined in Services → Rsync Modules → Add Rsync Module. In this example:

- the Module Name is backups; this needs to match the setting on the rsync client
- the Path is `/mnt/remote`; a directory called images will be created to hold the contents of `/usr/local/images`
- the User is set to root so it has permission to write anywhere
- Hosts allow is set to 192.168.2.2, the IP address of the rsync client

Descriptions of the configurable options can be found in Rsync Modules.

To finish the configuration, start the rsync service on PULL in Services → Control Services. If the rsync is successful, the contents of `/mnt/local/images/` will be mirrored to `/mnt/remote/images/`.

6.4.2 Rsync over SSH Mode

SSH replication mode does not require the creation of an rsync module or for the rsync service to be running on the rsync server. It does require SSH to be configured before creating the rsync task:

- a public/private key pair for the rsync user account (typically root) must be generated on PUSH and the public key copied to the same user account on PULL
- to mitigate the risk of man-in-the-middle attacks, the public host key of PULL must be copied to PULL
- the SSH service must be running on PULL
To create the public/private key pair for the rsync user account, open Shell (page 297) on PUSH and run `ssh-keygen`. This example generates an RSA type public/private key pair for the root user. When creating the key pair, do not enter the passphrase as the key is meant to be used for an automated task.

```
$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/root/.ssh/id_rsa):
Created directory '/root/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /root/.ssh/id_rsa.
Your public key has been saved in /root/.ssh/id_rsa.pub.
The key fingerprint is:
The key's randomart image is:
+---[ RSA 2048]-----
<p>| .o. oo |
| o+o. . |
| . -o + |
| + + o |
| S o . |
| .o |
| oo |</p>
<table>
<thead>
<tr>
<th>*oE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>-----------------</td>
</tr>
</tbody>
</table>
```

FreeNAS® supports RSA keys for SSH. When creating the key, use `-t rsa` to specify this type of key.

Note: If a different user account is used for the rsync task, use the `su -` command after mounting the filesystem but before generating the key. For example, if the rsync task is configured to use the user1 user account, use this command to become that user:

```
$ su - user1
```

Next, view and copy the contents of the generated public key:

```
$ more .ssh/id_rsa.pub
```

Go to PULL and paste (or append) the copied key into the SSH Public Key field of Account → Users → View Users → root → Modify User, or the username of the specified rsync user account. The paste for the above example is shown in Figure 6.8. When pasting the key, ensure that it is pasted as one long line and, if necessary, remove any extra spaces representing line breaks.
While on PULL, verify that the SSH service is running in Services → Control Services and start it if it is not.

Next, copy the host key of PULL using Shell on PUSH. The following command copies the RSA host key of the PULL server used in our previous example. Be sure to include the double bracket >> to prevent overwriting any existing entries in the `known_hosts` file:

```
ssh-keyscan -t rsa 192.168.2.6 >> /root/.ssh/known_hosts
```

Note: If PUSH is a Linux system, use this command to copy the RSA key to the Linux system:

```
cat ~/.ssh/id_rsa.pub | ssh user@192.168.2.6 'cat >> .ssh/authorized_keys'
```

The rsync task can now be created on PUSH. To configure rsync SSH mode using the systems in our previous example, the configuration is as follows:

- the Path points to `/mnt/local/images`, the directory to be copied
- the Remote Host points to 192.168.2.6, the IP address of the rsync server
- the Rsync Mode is Rsync over SSH
- the rsync is scheduled to occur every 15 minutes
- the User is set to root so it has permission to write anywhere; the public key for this user must be generated on PUSH and copied to PULL
- the Preserve Permissions checkbox is checked so that the original permissions are not overwritten by the root user

Save the rsync task and the rsync will automatically occur according to the schedule. In this example, the contents of `/mnt/local/images/` will automatically appear in `/mnt/remote/images/` after 15 minutes. If the content does not appear, use
Shell on PULL to read `/var/log/messages`. If the message indicates a `n` (newline character) in the key, remove the space in the pasted key—it will be after the character that appears just before the `n` in the error message.

6.5 S.M.A.R.T. Tests

Figure 6.9 shows the configuration screen that appears after selecting Tasks → S.M.A.R.T. Tests → Add S.M.A.R.T. Test. Tests are listed under View S.M.A.R.T. Tests. After creating tests, check the configuration in Services → S.M.A.R.T., then click the slider to ON for the S.M.A.R.T. service in Services → Control Services. The S.M.A.R.T. service will not start if there are no volumes.

Note: To prevent problems, do not enable the S.M.A.R.T. service if the disks are controlled by a RAID controller. It is the job of the controller to monitor S.M.A.R.T. and mark drives as Predictive Failure when they trip.
Add S.M.A.R.T. Test

| Disks: | ada0
| | ada1
| | ada2
| | ada3
| Type: | --------
| Short description: |
| Hour: | Every N hour, Each selected hour
| | 1
| Day of month: | Every N day of month, Each selected day of month
| | 1
| Month: | January, February, March, April, May, June, July, August, September, October, November, December

Fig. 6.9: Adding a S.M.A.R.T. Test
Table 6.5 summarizes the configurable options when creating a S.M.A.R.T. test.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disks</td>
<td>list</td>
<td>highlight disks to monitor</td>
</tr>
<tr>
<td>Type</td>
<td>drop-down menu</td>
<td>select type of test to run; see <code>smartctl(8)</code> for a description of each type of test (note that some test types will degrade performance or take disks offline; do not schedule S.M.A.R.T. tests at the same time as a scrub or during a resilver operation)</td>
</tr>
<tr>
<td>Short descrip-</td>
<td>string</td>
<td>optional</td>
</tr>
<tr>
<td>tion</td>
<td>Hour</td>
<td>slider or hour selections if use the slider, test occurs every N hours; if use hour selections, test occurs at the highlighted hours</td>
</tr>
<tr>
<td>Day of month</td>
<td>slider or day selec-</td>
<td>if use the slider, test occurs every N days; if use day selections, test occurs on the highlighted days</td>
</tr>
<tr>
<td>Month</td>
<td>checkboxes</td>
<td>select the months for the test to occur</td>
</tr>
<tr>
<td>Day of week</td>
<td>checkboxes</td>
<td>select the days of the week for the test to occur</td>
</tr>
</tbody>
</table>

An example configuration is to schedule a Short Self-Test once a week and a Long Self-Test once a month. These tests should not have a performance impact, as the disks prioritize normal I/O over the tests. If a disk fails a test, even if the overall status is Passed, start to think about replacing that disk.

Warning: Some S.M.A.R.T. tests cause heavy disk activity and can drastically reduce disk performance. Do not schedule S.M.A.R.T. tests to run at the same time as scrub or resilver operations or during other periods of intense disk activity.

Which tests will run and when can be verified by typing `smartd -q showtests` within Shell (page 297).

The results of a test can be checked from Shell (page 297) by specifying the name of the drive. For example, to see the results for disk ada0, type:

```
smartctl -l selftest /dev/ada0
```

If an email address is entered in the Email to report field of Services → S.M.A.R.T., the system will send an email to that address when a test fails. Logging information for S.M.A.R.T. tests can be found in `/var/log/daemon.log`.
The Network section of the administrative GUI contains these components for viewing and configuring network settings on the FreeNAS® system:

- **Global Configuration** (page 111): general network settings.
- **Interfaces** (page 113): settings for each network interface.
- **IPMI** (page 115): settings controlling connection to the appliance through the hardware side-band management interface if the graphical user interface becomes unavailable.
- **Link Aggregations** (page 117): settings for network link aggregation and link failover.
- **Network Summary** (page 121): display an overview of the current network settings.
- **Static Routes** (page 121): add static routes.
- **VLANs** (page 122): configure IEEE 802.1q tagging for virtual LANs.

Each of these is described in more detail in this section.

7.1 Global Configuration

Network → Global Configuration, shown in Figure 7.1, is for general network settings that are not unique to any particular network interface.
Table 7.1 summarizes the settings on the Global Configuration tab. Hostname and Domain fields are pre-filled as shown in Figure 7.1, but can be changed to meet requirements of the local network.

Table 7.1: Global Configuration Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname</td>
<td>string</td>
<td>System host name. Cannot contain the underscore character.</td>
</tr>
<tr>
<td>Domain</td>
<td>string</td>
<td>System domain name.</td>
</tr>
<tr>
<td>Additional domains</td>
<td>string</td>
<td>Can enter up to 6 space delimited search domains. Adding multiple domains may result in slower DNS lookups.</td>
</tr>
<tr>
<td>IPv4 Default Gateway</td>
<td>IP address</td>
<td>Typically not set. See this note about Gateways (page 113). If set, used instead of default gateway provided by DHCP.</td>
</tr>
</tbody>
</table>

Fig. 7.1: Global Network Configuration
<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 Default Gateway</td>
<td>IP address</td>
<td>Typically not set. See this note about Gateways (page 113).</td>
</tr>
<tr>
<td>Nameserver 1</td>
<td>IP address</td>
<td>Primary DNS server (typically in Windows domain).</td>
</tr>
<tr>
<td>Nameserver 2</td>
<td>IP address</td>
<td>Secondary DNS server.</td>
</tr>
<tr>
<td>Nameserver 3</td>
<td>IP address</td>
<td>Tertiary DNS server.</td>
</tr>
<tr>
<td>HTTP Proxy</td>
<td>string</td>
<td>Enter the proxy information for the network in the format http://my.proxy.server:3128 or http://user:password@my.proxy.server:3128.</td>
</tr>
<tr>
<td>Enable netwait feature</td>
<td>checkbox</td>
<td>If enabled, network services do not start at boot until the interface is able to ping the addresses listed in the Netwait IP list.</td>
</tr>
<tr>
<td>Netwait IP list</td>
<td>string</td>
<td>If Enable netwait feature is set, list of IP addresses to ping. Otherwise, ping the default gateway.</td>
</tr>
<tr>
<td>Host name database</td>
<td>string</td>
<td>Used to add one entry per line which will be appended to /etc/hosts. Use the format IP_address space hostname where multiple hostnames can be used if separated by a space.</td>
</tr>
</tbody>
</table>

When using Active Directory, set the IP address of the realm’s DNS server in the Nameserver 1 field.

If the network does not have a DNS server, or NFS, SSH, or FTP users are receiving “reverse DNS” or timeout errors, add an entry for the IP address of the FreeNAS® system in the Host name database field.

Note: In many cases, a FreeNAS® configuration does not include default gateway information as a way to make it more difficult for a remote attacker to communicate with the server. While this is a reasonable precaution, such a configuration does not restrict inbound traffic from sources within the local network. However, omitting a default gateway will prevent the FreeNAS® system from communicating with DNS servers, time servers, and mail servers that are located outside of the local network. In this case, it is recommended to add Static Routes (page 121) to be able to reach external DNS, NTP, and mail servers which are configured with static IP addresses. When a gateway to the Internet is added, make sure the FreeNAS® system is protected by a properly configured firewall.

7.2 Interfaces

Network → Interfaces shows which interfaces have been manually configured and allows adding or editing a manually configured interface.

Note: Typically, the interface used to access the FreeNAS® administrative GUI is configured by DHCP. This interface does not appear in this screen, even though it is already dynamically configured and in use.

Creating a Link Aggregation (page 118) that does not include the NIC used to access the FreeNAS® administrative GUI may require adding an Interfaces entry for this interface with DHCP enabled.

Figure 7.2 shows the screen that opens on clicking Interfaces → Add Interface. Table 7.2 summarizes the configuration options shown when adding an interface or editing an already configured interface. Note that if any changes to this screen require a network restart, the screen will turn red when the OK button is clicked and a pop-up message will point out that network connectivity to the FreeNAS® system will be interrupted while the changes are applied.
Fig. 7.2: Adding or Editing an Interface

Table 7.2: Interface Configuration Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC</td>
<td>drop-down menu</td>
<td>The FreeBSD device name of the interface. This is a read-only field when editing an interface.</td>
</tr>
<tr>
<td>Interface Name</td>
<td>string</td>
<td>Description of interface.</td>
</tr>
<tr>
<td>DHCP</td>
<td>checkbox</td>
<td>Requires static IPv4 or IPv6 configuration if unselected. Only one interface can be configured for DHCP.</td>
</tr>
<tr>
<td>IPv4 Address</td>
<td>IP address</td>
<td>Enter a static IP address if DHCP is unset.</td>
</tr>
<tr>
<td>IPv4 Netmask</td>
<td>drop-down menu</td>
<td>Enter a netmask if DHCP is unset.</td>
</tr>
<tr>
<td>Auto configure IPv6</td>
<td>checkbox</td>
<td>Only one interface can be configured for this option. If unset, manual configuration is required to use IPv6.</td>
</tr>
<tr>
<td>IPv6 Address</td>
<td>IPv6 address</td>
<td>Must be unique on the network.</td>
</tr>
<tr>
<td>IPv6 Prefix Length</td>
<td>drop-down menu</td>
<td>Match the prefix used on the network.</td>
</tr>
<tr>
<td>Options</td>
<td>string</td>
<td>Additional parameters from <code>ifconfig(8)</code> (https://www.freebsd.org/cgi/man.cgi?query=ifconfig). Separate multiple parameters with a space. For example: mtu 9000 increases the MTU for interfaces which support jumbo frames (but see this note (page 120) about MTU and lagg interfaces).</td>
</tr>
</tbody>
</table>

This screen also provides for the configuration of IP aliases, making it possible for a single interface to have multiple IP addresses. To set multiple aliases, click the Add extra alias link for each alias. Aliases are deleted by clicking the interface in the tree, clicking the Edit button, checking the Delete checkbox below the alias, then clicking the OK button.

Warning: Aliases are deleted by checking the Delete checkbox in the alias area, then clicking OK for the interface. Do
not click the Delete button at the bottom of this screen, which deletes the entire interface.

Multiple interfaces cannot be members of the same subnet. See Multiple network interfaces on a single subnet (https://forums.freenas.org/index.php?threads/multiple-network-interfaces-on-a-single-subnet.20204/) for more information. Check the subnet mask if an error is shown when setting the IP addresses on multiple interfaces.

This screen will not allow an interface’s IPv4 and IPv6 addresses to both be set as primary addresses. An error is shown if both the IPv4 address and IPv6 address fields are filled in. Instead, set only one of these address fields and create an alias for the other address.

7.3 IPMI

Beginning with version 9.2.1, FreeNAS® provides a graphical screen for configuring an IPMI interface. This screen will only appear if the system hardware includes a Baseboard Management Controller (BMC).

IPMI provides side-band management if the graphical administrative interface becomes unresponsive. This allows for a few vital functions, such as checking the log, accessing the BIOS setup, and powering on the system without requiring physical access to the system. IPMI is also used to give another person remote access to the system to assist with a configuration or troubleshooting issue. Before configuring IPMI, ensure that the management interface is physically connected to the network. The IPMI device may share the primary Ethernet interface, or it may be a dedicated separate IPMI interface.

Warning: It is recommended to first ensure that the IPMI has been patched against the Remote Management Vulnerability before enabling IPMI. This article (https://www.ixsystems.com/blog/how-to-fix-the-ipmi-remote-management-vulnerability/) provides more information about the vulnerability and how to fix it.

IPMI is configured from Network → IPMI. The IPMI configuration screen, shown in Figure 7.3, provides a shortcut to the most basic IPMI configuration. Those already familiar with IPMI management tools can use them instead. Table 7.3 summarizes the options available when configuring IPMI with the FreeNAS® GUI.
Table 7.3: IPMI Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel</td>
<td>drop-down menu</td>
<td>Select the channel to use.</td>
</tr>
<tr>
<td>Password</td>
<td>string</td>
<td>Enter the password used to connect to the IPMI interface from a web browser. The maximum length is 20 characters.</td>
</tr>
<tr>
<td>DHCP</td>
<td>checkbox</td>
<td>If left unset, the next three fields must be set.</td>
</tr>
<tr>
<td>IPv4 Address</td>
<td>string</td>
<td>IP address used to connect to the IPMI web GUI.</td>
</tr>
<tr>
<td>IPv4 Netmask</td>
<td>drop-down menu</td>
<td>Subnet mask associated with the IP address.</td>
</tr>
<tr>
<td>IPv4 Default Gateway</td>
<td>string</td>
<td>Default gateway associated with the IP address.</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>string</td>
<td>Enter the VLAN identifier if the IPMI out-of-band management interface is not on the same VLAN as management networking.</td>
</tr>
</tbody>
</table>

The Identify Light button can be used to identify a system in a multi-system rack by flashing its IPMI LED light. Clicking this button will present a pop-up with a menu of times, ranging from 15 seconds to 4 minutes, to flash the LED light.

After configuration, the IPMI interface is accessed using a web browser and the IP address specified in the configuration. The management interface prompts for a username and the configured password. Refer to the IPMI device’s documentation to determine the default administrative username.

After logging in to the management interface, the default administrative username can be changed, and additional users created. The appearance of the IPMI utility and the functions that are available vary depending on the hardware.

7.4 Link Aggregations

FreeNAS® uses FreeBSD's `lagg(4)` interface to provide link aggregation and link failover. The `lagg` interface allows aggregation of multiple network interfaces into a single virtual `lagg` interface, providing fault-tolerance and high-speed multi-link throughput. The aggregation protocols supported by `lagg` determine which ports are used for outgoing traffic and whether a specific port accepts incoming traffic. The link state of the `lagg` interface is used to validate whether the port is active.

Aggregation works best on switches supporting LACP, which distributes traffic bi-directionally while responding to failure of individual links. FreeNAS® also supports active/passive failover between pairs of links. The LACP and load-balance modes select the output interface using a hash that includes the Ethernet source and destination address, VLAN tag (if available), IP source and destination address, and flow label (IPv6 only). The benefit can only be observed when multiple clients are transferring files from the NAS. The flow entering into the NAS depends on the Ethernet switch load-balance algorithm.

The `lagg` driver currently supports several aggregation protocols, although only Failover is recommended on network switches that do not support LACP:

- **Failover**: the default protocol. Sends traffic only through the active port. If the master port becomes unavailable, the next active port is used. The first interface added is the master port; any interfaces added after that are used as failover devices. By default, received traffic is only accepted when received through the active port. This constraint can be relaxed, which is useful for certain bridged network setups, by creating a tunable with a Variable of `net.link.lagg.failover_rx_all`, a Value of a non-zero integer, and a Type of `Sysctl` in System Tunables!

- **LACP**: supports the IEEE 802.3ad Link Aggregation Control Protocol (LACP) and the Marker Protocol. LACP negotiates a set of aggregable links with the peer into one or more link aggregated groups (LAGs). Each LAG is composed of ports of the same speed, set to full-duplex operation. Traffic is balanced across the ports in the LAG with the greatest total speed; in most cases there will only be one LAG which contains all ports. In the event of changes in physical connectivity, link aggregation will quickly converge to a new configuration. LACP must be configured on the switch, and LACP does not support mixing interfaces of different speeds. Only interfaces that use the same driver, like two igb ports, are recommended for LACP. Using LACP for iSCSI is not recommended, as iSCSI has built-in multipath features which are more efficient.

- **Load Balance**: balances outgoing traffic across the active ports based on hashed protocol header information and accepts incoming traffic from any active port. This is a static setup and does not negotiate aggregation with the peer or exchange frames to monitor the link. The hash includes the Ethernet source and destination address, VLAN tag (if available), and IP source and destination address. Requires a switch which supports IEEE 802.3ad static link aggregation.

- **Round Robin**: distributes outgoing traffic using a round-robin scheduler through all active ports and accepts incoming traffic from any active port. This mode can cause unordered packet arrival at the client. This has a side effect of limiting throughput as reordering packets can be CPU intensive on the client. Requires a switch which supports IEEE 802.3ad static link aggregation.

- **None**: this protocol disables any traffic without disabling the `lagg` interface itself.

Note: When using LACP, verify that the switch is configured for active LACP. Passive LACP is not supported.

7.4.1 LACP, MPIO, NFS, and ESXi

LACP bonds Ethernet connections to improve bandwidth. For example, four physical interfaces can be used to create one mega interface. However, it cannot increase the bandwidth for a single conversation. It is designed to increase bandwidth when multiple clients are simultaneously accessing the same system. It also assumes that quality Ethernet hardware is used and it will not make much difference when using inferior Ethernet chipsets such as a Realtek.

LACP reads the sender and receiver IP addresses and, if they are deemed to belong to the same TCP connection, always sends the packet over the same interface to ensure that TCP does not need to reorder packets. This makes LACP ideal for load balancing many simultaneous TCP connections, but does nothing for increasing the speed over one TCP connection.

MPIO operates at the iSCSI protocol level. For example, if four IP addresses are created and there are four simultaneous TCP connections, MPIO will send the data over all available links. When configuring MPIO, make sure that the IP addresses
on the interfaces are configured to be on separate subnets with non-overlapping netmasks, or configure static routes to do point-to-point communication. Otherwise, all packets will pass through one interface.

LACP and other forms of link aggregation generally do not work well with virtualization solutions. In a virtualized environment, consider the use of iSCSI MPIO through the creation of an iSCSI Portal with at least two network cards on different networks. This allows an iSCSI initiator to recognize multiple links to a target, using them for increased bandwidth or redundancy. This how-to (https://fojta.wordpress.com/2010/04/13/iscsi-and-esxi-multipathing-and-jumbo-frames/) contains instructions for configuring MPIO on ESXi.

NFS does not understand MPIO. Therefore, one fast interface is needed, since creating an iSCSI portal will not improve bandwidth when using NFS. LACP does not work well to increase the bandwidth for point-to-point NFS (one server and one client). LACP is a good solution for link redundancy or for one server and many clients.

7.4.2 Creating a Link Aggregation

Before creating a link aggregation, make sure that all interfaces to be used in the lagg have not been manually configured in Network → Interfaces → View Interfaces.

If any manually-configured interfaces to be included in the lagg exist, delete them. Lagg creation fails if any of the included interfaces are manually configured.

Warning: Creating or editing link aggregations can disconnect clients using the FreeNAS® computer. Please verify that clients have saved their work and are not connected through the affected networks before making changes.

Figure 7.4 shows the configuration options when adding a lagg interface using Network → Link Aggregations → Create Link Aggregation.

![Add Link Aggregation](image)

Fig. 7.4: Creating a lagg Interface

Note: If interfaces are installed but do not appear in the Physical NICs list, check that a FreeBSD driver for the interface exists here (https://www.freebsd.org/releases/11.1R/hardware.html#ethernet).

To create a link aggregation, select the desired Protocol Type. LACP is preferred. If the network switch does not support LACP, choose Failover. Highlight the interfaces to associate with the lagg device, and click the OK button.

Once the lagg device has been created, click its entry to enable its Edit, Delete, and Edit Members buttons.
Clicking the Edit button for a lagg opens the configuration screen shown in Figure 7.5. Table 7.4 describes the options in this screen.

If the network interface used to connect to the FreeNAS® web GUI is a member of the lagg, the network connection will be lost when the new lagg is created. The switch settings might also require changes to communicate through the new lagg interface.

The IP address of the new lagg can be set with DHCP or manually from the console setup menu. If the IP address is set manually, it might also be necessary to enter a default gateway to allow access to the GUI from the new lagg interface.

![Fig. 7.5: Editing a lagg](image)

Table 7.4: Configurable Options for a lagg

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC</td>
<td>string</td>
<td>Read-only. Automatically assigned the next available numeric ID.</td>
</tr>
<tr>
<td>Interface Name</td>
<td>string</td>
<td>By default, this is the same as device (NIC) name. This can be changed to a more descriptive value.</td>
</tr>
<tr>
<td>DHCP</td>
<td>checkbox</td>
<td>Enable if the lagg device will get IP address info from DHCP server.</td>
</tr>
<tr>
<td>IPv4 Address</td>
<td>string</td>
<td>Enter a static IP address if DHCP is unset.</td>
</tr>
<tr>
<td>IPv4 Netmask</td>
<td>drop-down menu</td>
<td>Enter a netmask if DHCP is unset.</td>
</tr>
<tr>
<td>Auto configure</td>
<td>checkbox</td>
<td>Set only if DHCP server available to provide IPv6 address info</td>
</tr>
<tr>
<td>IPv6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPv6 Address</td>
<td>string</td>
<td>This is optional.</td>
</tr>
<tr>
<td>IPv6 Prefix Length</td>
<td>drop-down menu</td>
<td>Required if an IPv6 address is entered.</td>
</tr>
</tbody>
</table>

Continued on next page
This screen also allows the configuration of an alias for the lagg interface. Multiple aliases can be added with the Add extra Alias link.

Click the Edit Members button, click the entry for a member, then click its Edit button to see the configuration screen shown in Figure 7.6. The configurable options are summarized in Table 7.5.

![Fig. 7.6: Editing a Member Interface]

Table 7.5: Configuring a Member Interface

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAGG Interface group</td>
<td>drop-down menu</td>
<td>Select the member interface to configure.</td>
</tr>
<tr>
<td>LAGG Priority Number</td>
<td>integer</td>
<td>Order of selected interface within the lagg. Configure a failover to set the master interface to 0 and the other interfaces to 1, 2, etc.</td>
</tr>
<tr>
<td>LAGG Physical NIC</td>
<td>drop-down menu</td>
<td>Physical interface of the selected member.</td>
</tr>
<tr>
<td>Options</td>
<td>string</td>
<td>Additional parameters from ifconfig(8) (https://www.freebsd.org/cgi/man.cgi?query=ifconfig).</td>
</tr>
</tbody>
</table>

Options can be set at the lagg level using the Edit button, or at the individual parent interface level using the Edit Members button. Changes are typically made at the lagg level (Figure 7.5) as each interface member will inherit from the lagg. To configure at the interface level (Figure 7.6) instead, repeat the configuration for each interface within the lagg. Some
options can only be set on the parent interfaces and are inherited by the lagg interface. For example, to set the MTU on a lagg, use Edit Members to set the MTU for each parent interface.

If the MTU settings on the lagg member interfaces are not identical, the smallest value is used for the MTU of the entire lagg.

Note: A reboot is required after changing the MTU to create a jumbo frame lagg.

Link aggregation load balancing can be tested with:

```
systat -ifstat
```

More information about this command can be found at `systat(1)` (https://www.freebsd.org/cgi/man.cgi?query=systat).

7.5 Network Summary

Network → Network Summary shows a quick summary of the addressing information of every configured interface. For each interface name, the configured IPv4 and IPv6 addresses, DNS servers, and default gateway are displayed.

7.6 Static Routes

No static routes are defined on a default FreeNAS® system. If a static route is required to reach portions of the network, add the route with Network → Static Routes → Add Static Route, shown in Figure 7.7.

![Add Static Route](image)

Fig. 7.7: Adding a Static Route

The available options are summarized in Table 7.6.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination network</td>
<td>integer</td>
<td>Use the format A.B.C.D/E where E is the CIDR mask.</td>
</tr>
<tr>
<td>Gateway</td>
<td>integer</td>
<td>Enter the IP address of the gateway.</td>
</tr>
<tr>
<td>Description</td>
<td>string</td>
<td>Optional. Add any notes about the route.</td>
</tr>
</tbody>
</table>

Added static routes are shown in View Static Routes. Click a route's entry to access the Edit and Delete buttons.
7.7 VLANs

FreeNAS® uses FreeBSD’s `vlan(4)` (https://www.freebsd.org/cgi/man.cgi?query=vlan) interface to demultiplex frames with IEEE 802.1q tags. This allows nodes on different VLANs to communicate through a layer 3 switch or router. A vlan interface must be assigned a parent interface and a numeric VLAN tag. A single parent can be assigned to multiple vlan interfaces provided they have different tags.

Note: VLAN tagging is the only 802.1q feature that is implemented. Additionally, not all Ethernet interfaces support full VLAN processing. See the HARDWARE section of `vlan(4)` (https://www.freebsd.org/cgi/man.cgi?query=vlan) for details.

Click Network → VLANs → Add VLAN, to see the screen shown in Figure 7.8.

Table 7.7 summarizes the configurable fields.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Interface</td>
<td>string</td>
<td>Use the format vlanX where X is a number representing a vlan interface not currently being used as a parent.</td>
</tr>
<tr>
<td>Parent Interface</td>
<td>drop-down menu</td>
<td>Usually an Ethernet card connected to a properly configured switch port. Newly created Link Aggregations (page 117) do not appear in the drop-down until the system is rebooted.</td>
</tr>
<tr>
<td>VLAN Tag</td>
<td>integer</td>
<td>Enter a number between 1 and 4095 which matches a numeric tag set up in the switched network.</td>
</tr>
<tr>
<td>Priority Code Point (CoS)</td>
<td>drop-down menu</td>
<td>Available 802.1p Class of Service ranges from Best Effort (default) to Network Control (highest).</td>
</tr>
<tr>
<td>Description</td>
<td>string</td>
<td>Optional. Enter any notes about this VLAN.</td>
</tr>
</tbody>
</table>

The parent interface of a VLAN must be up, but it can either have an IP address or be unconfigured, depending upon the requirements of the VLAN configuration. This makes it difficult for the GUI to do the right thing without trampling the configuration. To remedy this, add the VLAN, then select Network → Interfaces → Add Interface. Choose the parent interface from the NIC drop-down menu and in the Options field, type `up`. This will bring up the parent interface. If an IP address is required, it can be configured using the rest of the options in the Add Interface screen.
Warning: Creating a VLAN causes an interruption to network connectivity. The GUI provides a warning and an opportunity to cancel the VLAN creation.
The Storage section of the graphical interface allows configuration of these options:

- **Volumes** (page 124) create and manage storage volumes.
- **Periodic Snapshot Tasks** (page 148) schedule automatic creation of filesystem snapshots.
- **Replication Tasks** (page 150) automate the replication of snapshots to a remote system.
- **Resilver Priority** (page 159) control the priority of resilvers.
- **Scrubs** (page 160) schedule scrubs as part of ongoing disk maintenance.
- **Snapshots** (page 163) manage local snapshots.
- **VMware-Snapshot** (page 165) coordinate OpenZFS snapshots with a VMware datastore.

8.1 Volumes

The Volumes section of the FreeNAS® graphical interface is used to format volumes, attach a disk to copy data onto an existing volume, or import a ZFS volume. It is also used to create ZFS datasets and zvols and to manage their permissions.

Note: In ZFS terminology, groups of storage devices managed by ZFS are referred to as a pool. The FreeNAS® graphical interface uses the term volume to refer to a ZFS pool.

Proper storage design is important for any NAS. Please read through this entire chapter before configuring storage disks. Features are described to help make it clear which are beneficial for particular uses, and caveats or hardware restrictions which limit usefulness.

8.1.1 Volume Manager

Before creating a volume, determine the level of required redundancy, how many disks will be added, and if any data exists on those disks. Creating a volume overwrites disk data, so save any required data to different media before adding disks to a pool. Refer to the ZFS Primer (page 327) for information on ZFS redundancy with multiple disks before using Volume Manager. It is important to realize that different layouts of virtual devices (vdevs) affect which operations can be performed on that volume later. For example, drives can be added to a mirror to increase redundancy, but that is not possible with RAIDZ arrays.

To create a volume, click Storage → Volumes → Volume Manager. This opens a screen like the example shown in Figure 8.1.
Table 8.1 summarizes the configuration options of this screen.

Table 8.1: ZFS Volume Creation Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume name</td>
<td>string</td>
<td>ZFS volumes must conform to these naming conventions (https://docs.oracle.com/cd/E23824_01/html/821-1448/gbcpt.html). Choosing a memorable name that sticks out in the logs and avoiding generic names, like data or freenas, is recommended.</td>
</tr>
<tr>
<td>Volume to extend</td>
<td>drop-down menu</td>
<td>Extend an existing ZFS pool. See Extending a ZFS Volume (page 129) for more details.</td>
</tr>
<tr>
<td>Encryption</td>
<td>checkbox</td>
<td>See the warnings in Encryption (page 126) before enabling encryption.</td>
</tr>
<tr>
<td>Available disks</td>
<td>display</td>
<td>Display the number and size of available disks. Hover over show to list the available device names and click the + to add all of the disks to the pool.</td>
</tr>
<tr>
<td>Volume layout</td>
<td>drag and drop</td>
<td>Click and drag the icon to select the desired number of disks for a vdev. When at least one disk is selected, the layouts supported by the selected number of disks are added to the drop-down menu.</td>
</tr>
<tr>
<td>Add Extra Device</td>
<td>button</td>
<td>Configure multiple vdevs or add log or cache devices during pool creation.</td>
</tr>
<tr>
<td>Manual setup</td>
<td>button</td>
<td>Create a pool manually, which is not recommended. See Manual Setup (page 127) for details.</td>
</tr>
</tbody>
</table>

Click the Volume name * field and enter a name for the pool. Ensure that the chosen name conforms to these naming conventions (http://docs.oracle.com/cd/E23824_01/html/821-1448/gbcpt.html).

If the underlying disks need to be encrypted as a protection against physical theft, enable the Encryption option.
Warning: Refer to the warnings in Encryption (page 126) before enabling encryption!

Drag the slider to select the desired number of disks. Volume Manager displays the resulting storage capacity, taking reserved swap space into account. To change the layout or the number of disks, drag the slider to the desired volume layout. The Volume layout drop-down menu can also be clicked if a different level of redundancy is required.

Note: For performance and capacity reasons, this screen does not allow creating a volume from disks of differing sizes. While it is not recommended, it is possible to create a volume of differently-sized disks with the Manual setup button. Follow the instructions in Manual Setup (page 127).

Volume Manager only allows choosing a configuration if enough disks have been selected to create that configuration. These layouts are supported:

- **Stripe**: requires at least one disk
- **Mirror**: requires at least two disks
- **RAIDZ1**: requires at least three disks
- **RAIDZ2**: requires at least four disks
- **RAIDZ3**: requires at least five disks
- **log device**: requires at least one dedicated device, a fast, low-latency, power-protected SSD is recommended
- **cache device**: requires at least one dedicated device, SSD is recommended

When more than five disks are used, consideration must be given to the optimal layout for the best performance and scalability. An overview of the recommended disk group sizes as well as more information about log and cache devices can be found in the ZFS Primer (page 327).

The Add Volume button warns that existing data will be cleared. In other words, creating a new volume reformat the selected disks. To preserve existing data, click the Cancel button and refer to Import Disk (page 136) and Import Volume (page 136) to see if the existing format is supported. If so, perform that action instead. If the current storage format is not supported, it is necessary to back up the data to external media, format the disks, then restore the data to the new volume.

Depending on the size and number of disks, the type of controller, and whether encryption is selected, creating the volume may take some time. After the volume is created, the screen refreshes and the new volume is listed in the tree under Storage → Volumes. Click the + next to the volume name to access Change Permissions (page 129), Create Dataset (page 131), and Create zvol (page 134) options for that volume.

8.1.1.1 Encryption

Note: The encryption facility used by FreeNAS® is designed to protect against physical theft of the disks. It is not designed to protect against unauthorized software access. Ensure that only authorized users have access to the administrative GUI and that proper permissions are set on shares if sensitive data is stored on the system.

FreeNAS® supports GELI (https://www.freebsd.org/cgi/man.cgi?query=geli) full disk encryption for ZFS volumes. It is important to understand the details when considering whether encryption is right for your FreeNAS® system:

- FreeNAS® encryption is different from the encryption used in Oracle's proprietary, non-open source version of ZFS.
- In FreeNAS®, entire disks are encrypted, not individual filesystems. Encrypted devices are created from the underlying drives, then the volume (pool) is created on top of the encrypted devices. Data is encrypted as it is written and decrypted as it is read.
- This type of encryption is primarily useful for users storing sensitive data but wanting the ability to remove disks from the pool without having to first wipe the disk contents.
The FreeNAS® encryption design is only suitable for safe disposal of disks independent of the encryption key. As long as the key and the disks are intact, the system is vulnerable to being decrypted. The key should be protected by a strong passphrase and any backups of the key should be securely stored.

If the encryption key is lost, the data on the disks is inaccessible. Always back up the key!

Encryption keys are per ZFS volume (pool). Each pool has a separate encryption key. Technical details about how encryption keys are used, stored, and managed within FreeNAS® are described in this forum post (https://forums.freenas.org/index.php?threads/recover-encryption-key.16593/#post-85497).

Data in memory, including ARC, is not encrypted. ZFS data on disk, including ZIL and SLOG, are encrypted if the underlying disks are encrypted. Swap data on disk is always encrypted.

Warning: Data stored in Cache (L2ARC) drives is not encrypted. Do not use Cache (L2ARC) with encrypted volumes.

At present, there is no one-step way to encrypt an existing, unencrypted volume. Instead, the data must be backed up, the existing pool destroyed, a new encrypted volume created, and the backup restored to the new volume.

Hybrid pools are not supported. Added vdevs must match the existing encryption scheme. Volume Manager (page 124) automatically encrypts a new vdev being added to an existing encrypted pool.

To create an encrypted volume, enable the Encryption option shown in Figure 8.1. A pop-up message shows a reminder that it is extremely important to make a backup of the key. Without the key, the data on the disks is inaccessible. See Managing Encrypted Volumes (page 142) for instructions.

8.1.1.2 Encryption Performance

Encryption performance depends upon the number of disks encrypted. The more drives in an encrypted volume, the more encryption and decryption overhead, and the greater the impact on performance. Encrypted volumes composed of more than eight drives can suffer severe performance penalties. If encryption is desired, please benchmark such volumes before using them in production.

Note: Processors with support for the AES-NI (https://en.wikipedia.org/wiki/AES_instruction_set#Supporting_x86_CPUs) instruction set are strongly recommended. These processors can handle encryption of a small number of disks with negligible performance impact. They also retain performance better as the number of disks increases. Older processors without the AES-NI instructions see significant performance impact with even a single encrypted disk. This forum post (https://forums.freenas.org/index.php?threads/encryption-performance-benchmarks.12157/) compares the performance of various processors.

8.1.1.3 Manual Setup

The Manual Setup button shown in Figure 8.1 can be used to create a ZFS volume manually. While this is not recommended, it can, for example, be used to create a non-optimal volume containing disks of different sizes.

Note: The usable space of each disk in a volume is limited to the size of the smallest disk in the volume. Because of this, creating volumes with disks of the same size through the Volume Manager is recommended.

Figure 8.2 shows the Manual Setup screen. Table 8.2 shows the available options.
Fig. 8.2: Manually Creating a ZFS Volume

Note: Because of the disadvantages of creating volumes with disks of different sizes, the displayed list of disks is sorted by size.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
</table>
8.1.1.4 Extending a ZFS Volume

The Volume to extend drop-down menu in Storage → Volumes → Volume Manager, shown in Figure 8.1, is used to add disks to an existing ZFS volume to increase capacity. This menu is empty if there are no ZFS volumes yet.

If more than one disk is added, the arrangement of the new disks into stripes, mirrors, or RAIDZ vdevs can be specified. Mirrors and RAIDZ arrays provide redundancy for data protection if an individual drive fails.

Note: If the existing volume is encrypted, a warning message shows a reminder that extending a volume resets the passphrase and recovery key. After extending the volume, immediately recreate both using the instructions in Managing Encrypted Volumes (page 142).

After an existing volume has been selected from the drop-down menu, drag and drop the desired disks and select the desired volume layout. For example, disks can be added to increase the capacity of the volume.

When adding disks to increase the capacity of a volume, ZFS supports the addition of virtual devices, or vdevs, to an existing ZFS pool. A vdev can be a single disk, a stripe, a mirror, a RAIDZ1, RAIDZ2, or a RAIDZ3. After a vdev is created, more drives cannot be added to that vdev. However, a new vdev can be striped with another of the same type of existing vdev to increase the overall size of the volume. Extending a volume often involves striping similar vdevs. Here are some examples:

- to extend a ZFS stripe, add one or more disks. Since there is no redundancy, disks do not have to be added in the same quantity as the existing stripe.
- to extend a ZFS mirror, add the same number of drives. The resulting striped mirror is a RAID 10. For example, if ten new drives are available, a mirror of two drives could be created initially, then extended by creating another mirror of two drives, and repeating three more times until all ten drives have been added.
- to extend a three drive RAIDZ1, add three additional drives. The result is a RAIDZ+0, similar to RAID 50 on a hardware controller.
- to extend a RAIDZ2 requires a minimum of four additional drives. The result is a RAIDZ2+0, similar to RAID 60 on a hardware controller.

If an attempt is made to add a non-matching number of disks to the existing vdev, an error message appears, indicating the number of disks that are required. Select the correct number of disks to continue.

Adding L2ARC or SLOG Devices

Storage → Volumes → Volume Manager (see Figure 8.1) is also used to add L2ARC or SLOG SSDs to improve volume performance for specific use cases. Refer to the ZFS Primer (page 327) to determine if the system will benefit or suffer from the addition of the device.

Once the SSD has been physically installed, click the Volume Manager button and choose the volume from the Volume to extend drop-down menu. Click the + next to the SSD in the Available disks list. In the Volume layout drop-down menu, select Cache (L2ARC) to add a cache device, or Log (ZIL) to add a log device. Finally, click Extend Volume to add the SSD.

8.1.2 Change Permissions

Setting permissions is an important aspect of managing data access. The graphical administrative interface is meant to set the initial permissions for a volume or dataset in order to make it available as a share. Once a share is available, the client operating system should be used to fine-tune the permissions of the files and directories that are created by the client.

Sharing (page 178) contains configuration examples for several types of permission scenarios. This section provides an overview of the options available for configuring the initial set of permissions.

Note: For users and groups to be available, they must either be first created using the instructions in Account (page 56) or imported from a directory service using the instructions in Directory Services (page 167). If more than 50 users or groups are available, the drop-down menus described in this section will automatically truncate their display to 50 for performance
reasons. In this case, start to type in the desired user or group name so that the display narrows its search to matching results.

After a volume or dataset is created, it is listed by its mount point name in Storage → Volumes. Clicking the Change Permissions icon for a specific volume or dataset displays the screen shown in Figure 8.3. Table 8.3 summarizes the options in this screen.

![Change Permissions](image)

Fig. 8.3: Changing Permissions on a Volume or Dataset

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply Owner (user)</td>
<td>checkbox</td>
<td>Deselect to prevent new permission change from being applied to Owner (user), see Note below.</td>
</tr>
<tr>
<td>Owner (user)</td>
<td>drop-down menu</td>
<td>Select the user to control the volume or dataset. Users manually created or imported from a directory service will appear in the drop-down menu.</td>
</tr>
<tr>
<td>Apply Owner (group)</td>
<td>checkbox</td>
<td>Deselect to prevent new permission change from being applied to Owner (group), see Note below.</td>
</tr>
<tr>
<td>Owner (group)</td>
<td>drop-down menu</td>
<td>Select the group to control the volume or dataset. Groups manually created or imported from a directory service will appear in the drop-down menu.</td>
</tr>
<tr>
<td>Apply Mode</td>
<td>checkbox</td>
<td>Deselect to prevent new permission change from being applied to Mode, see Note below.</td>
</tr>
<tr>
<td>Mode</td>
<td>checkboxes</td>
<td>Only applies to the Unix or Mac “Permission Type” so will be grayed out if Windows is selected.</td>
</tr>
<tr>
<td>Permission Type</td>
<td>bullet selection</td>
<td>Select the type which matches the type of client accessing the volume or dataset. Choices are Unix, Mac or Windows.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 8.3 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set permission recursively</td>
<td>checkbox</td>
<td>If enabled, permissions will also apply to subdirectories of the volume or dataset. If data already exists on the volume or dataset, change the permissions on the client side to prevent a performance lag.</td>
</tr>
</tbody>
</table>

Note: The Apply Owner (user), Apply Owner (group), and Apply Mode options allow fine-tuning of the change permissions behavior. By default, all options are enabled and FreeNAS® resets the owner, group, and mode when the Change button is clicked. These options allow choosing which settings to change. For example, to change just the Owner (group) setting, deselect the Apply Owner (user) and Apply Mode options.

The Windows Permission Type is used for Windows (SMB) Shares (page 193) or when the FreeNAS® system is a member of an Active Directory domain. This type adds ACLs to traditional Unix permissions. When the Windows Permission Type is set, ACLs are set to the Windows defaults for new files and directories. A Windows client can be used to further fine-tune permissions as needed. After a volume or dataset has been set to Windows, it cannot be changed to Unix permissions because that would clobber the extended permissions provided by Windows ACLs.

The Unix Permission Type is usually used with Unix (NFS) Shares (page 186). Unix permissions are compatible with most network clients and generally work well with a mix of operating systems or clients. However, Unix permissions do not support Windows ACLs and should not be used with Windows (SMB) Shares (page 193).

The Mac Permission Type can be used with Apple (AFP) Shares (page 179).

8.1.3 Create Dataset

An existing ZFS volume can be divided into datasets. Permissions, compression, deduplication, and quotas can be set on a per-dataset basis, allowing more granular control over access to storage data. Like a folder or directory, permissions can be set on dataset. Datasets are also similar to filesystems in that properties such as quotas and compression can be set, and snapshots created.

Note: ZFS provides thick provisioning using quotas and thin provisioning using reserved space.

Selecting an existing ZFS volume in the tree and clicking Create Dataset shows the screen in Figure 8.4.
Fig. 8.4: Creating a ZFS Dataset

Table 8.4 shows the options available when creating a dataset. Some settings are only available in Advanced Mode. To see these settings, either click the Advanced Mode button, or configure the system to always display advanced settings by enabling the box Show advanced fields by default option in System → Advanced. Most attributes, except for the Dataset Name, Case Sensitivity, and Record Size, can be changed after dataset creation by highlighting the dataset name and clicking the Edit Options button in Storage → Volumes.

Table 8.4: ZFS Dataset Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dataset Name</td>
<td>string</td>
<td>Enter a mandatory unique name for the dataset.</td>
</tr>
<tr>
<td>Comments</td>
<td>string</td>
<td>Enter optional comments or notes about this dataset.</td>
</tr>
<tr>
<td>Sync</td>
<td>drop-down menu</td>
<td>Sets the data write synchronization: Inherit inherits the sync settings from the parent dataset; Standard uses the sync settings that have been requested by the client software; Always always waits for data writes to complete; Disabled never waits for writes to complete.</td>
</tr>
</tbody>
</table>
Table 8.4 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression Level</td>
<td>drop-down menu</td>
<td>Refer to the section on Compression (page 134) for a description of the available algorithms.</td>
</tr>
<tr>
<td>Share type</td>
<td>drop-down menu</td>
<td>Select the type of share that will be used on the dataset. Choices are UNIX for an NFS share, Windows for a SMB share, or Mac for an AFP share.</td>
</tr>
<tr>
<td>Enable atime</td>
<td>Inherit, On, or Off</td>
<td>Choose On to update the access time for files when they are read. Choose Off to prevent producing log traffic when reading files. This can result in significant performance gains.</td>
</tr>
<tr>
<td>Quota for this dataset</td>
<td>integer</td>
<td>Only available in Advanced Mode. Default of 0 disables quotas; specifying a value means to use no more than the specified size and is suitable for user datasets to prevent users from hogging available space.</td>
</tr>
<tr>
<td>Quota for this dataset and all children</td>
<td>integer</td>
<td>Only available in Advanced Mode. A specified value applies to both this dataset and any child datasets.</td>
</tr>
<tr>
<td>Reserved space for this dataset</td>
<td>integer</td>
<td>Only available in Advanced Mode. Default of 0 is unlimited; specifying a value means to keep at least this much space free and is suitable for datasets containing logs which could take up all available free space.</td>
</tr>
<tr>
<td>Reserved space for this dataset and all children</td>
<td>integer</td>
<td>Only available in Advanced Mode. A specified value applies to both this dataset and any child datasets.</td>
</tr>
<tr>
<td>ZFS Deduplication</td>
<td>drop-down menu</td>
<td>Read the section on Deduplication (page 133) before making a change to this setting.</td>
</tr>
<tr>
<td>Read-Only</td>
<td>drop-down menu</td>
<td>Only available in Advanced Mode. Choices are Inherit (off), On, or Off.</td>
</tr>
<tr>
<td>Exec</td>
<td>drop-down menu</td>
<td>Only available in Advanced Mode. Choices are Inherit (on), On, or Off.</td>
</tr>
<tr>
<td>Record Size</td>
<td>drop-down menu</td>
<td>Only available in Advanced Mode. While ZFS automatically adapts the record size dynamically to adapt to data, if the data has a fixed size, matching that size can result in better performance.</td>
</tr>
<tr>
<td>Case Sensitivity</td>
<td>drop-down menu</td>
<td>Sensitive is the default and assumes filenames are case sensitive. Insensitive assumes filenames are not case sensitive. Mixed understands both types of filenames.</td>
</tr>
</tbody>
</table>

After a dataset is created, click on that dataset and select Create Dataset, to create a nested dataset, or a dataset within a dataset. A zvol can also be created within a dataset. When creating datasets, double-check that you are using the Create Dataset option for the intended volume or dataset. If you get confused when creating a dataset on a volume, click all existing datasets to close them—the remaining Create Dataset will be for the volume.

8.1.3.1 Deduplication

Deduplication is the process of ZFS transparently reusing a single copy of duplicated data to save space. Depending on the amount of duplicate data, deduplication can improve storage capacity, as less data is written and stored. However, deduplication is RAM intensive. A general rule of thumb is 5 GB of RAM per terabyte of deduplicated storage. In most cases, compression provides storage gains comparable to deduplication with less impact on performance.

In FreeNAS®, deduplication can be enabled during dataset creation. Be forewarned that there is no way to undedup the data within a dataset once deduplication is enabled, as disabling deduplication has NO EFFECT on existing data. The more data written to a deduplicated dataset, the more RAM it requires. When the system starts storing the DDTs (dedup tables) on disk because they no longer fit into RAM, performance craters. Further, importing an unclean pool can require between 3-5 GB of RAM per terabyte of deduped data, and if the system does not have the needed RAM, it will panic. The only solution is to add more RAM or recreate the pool. Think carefully before enabling dedup! This article (https://constantin.glez.de/2011/07/27/zfs-to-dedupe-or-not-dedupe/) provides a good description of the value versus cost considerations for deduplication.

Unless a lot of RAM and a lot of duplicate data is available, do not change the default deduplication setting of “Off”. For performance reasons, consider using compression rather than turning this option on.

If deduplication is changed to On, duplicate data blocks are removed synchronously. The result is that only unique data is stored and common components are shared among files. If deduplication is changed to Verify, ZFS will do a byte-to-
byte comparison when two blocks have the same signature to make sure that the block contents are identical. Since hash collisions are extremely rare, Verify is usually not worth the performance hit.

Note: After deduplication is enabled, the only way to disable it is to use the `zfs set dedup=off dataset_name` command from **Shell** (page 297). However, any data that has already been deduplicated will not be un-deduplicated. Only newly stored data after the property change will not be deduplicated. The only way to remove existing deduplicated data is to copy all of the data off of the dataset, set the property to off, then copy the data back in again. Alternately, create a new dataset with ZFS Deduplication left disabled, copy the data to the new dataset, and destroy the original dataset.

Tip: Deduplication is often considered when using a group of very similar virtual machine images. However, other features of ZFS can provide dedup-like functionality more efficiently. For example, create a dataset for a standard VM, then clone a snapshot of that dataset for other VMs. Only the difference between each created VM and the main dataset are saved, giving the effect of deduplication without the overhead.

8.1.3.2 Compression

When selecting a compression type, you need to balance performance with the amount of disk space saved by compression. Compression is transparent to the client and applications as ZFS automatically compresses data as it is written to a compressed dataset or zvol and automatically decompresses that data as it is read. These compression algorithms are supported:

- **lz4**: default and recommended compression method as it allows compressed datasets to operate at near real-time speed. This algorithm only compresses the files that will benefit from compression.
- **gzip**: varies from levels 1 to 9 where gzip fastest (level 1) gives the least compression and gzip maximum (level 9) provides the best compression but is discouraged due to its performance impact.
- **zle**: fast but simple algorithm which eliminates runs of zeroes.
- **lzjb**: provides decent data compression, but is considered deprecated as lz4 provides much better performance.

If you select Off as the Compression level when creating a dataset or zvol, compression will not be used on that dataset/zvol. This is not recommended as using lz4 has a negligible performance impact and allows for more storage capacity.

8.1.4 Create zvol

A zvol is a feature of ZFS that creates a raw block device over ZFS. The zvol can be used as an **iSCSI** (page 228) device extent. To create a zvol, select an existing ZFS volume or dataset from the tree then click Create zvol to open the screen shown in Figure 8.5.
The configuration options are described in Table 8.5. Some settings are only available in Advanced Mode. To see these settings, either click the Advanced Mode button or configure the system to always display these settings by enabling Show advanced fields by default in System → Advanced.

Table 8.5: zvol Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>zvol Name</td>
<td>string</td>
<td>Enter a short name for the zvol. Using a zvol name longer than 63-characters can prevent accessing zvols as devices. For example, a zvol with a 70-character filename or path cannot be used as an iSCSI extent. This setting is mandatory.</td>
</tr>
<tr>
<td>Comments</td>
<td>string</td>
<td>Enter any notes about this zvol.</td>
</tr>
<tr>
<td>Size for this zvol</td>
<td>integer</td>
<td>Specify size and value such as 10Gib. If the size is more than 80% of the available capacity, the creation will fail with an “out of space” error unless Force size is also enabled.</td>
</tr>
<tr>
<td>Force size</td>
<td>checkbox</td>
<td>By default, the system will not create a zvol if that operation will bring the pool to over 80% capacity. While NOT recommended, enabling this option will force the creation of the zvol.</td>
</tr>
</tbody>
</table>
Table 8.5 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression level</td>
<td>drop-down menu</td>
<td>Refer to the section on Compression (page 134) for a description of the available algorithms.</td>
</tr>
<tr>
<td>Sparse volume</td>
<td>checkbox</td>
<td>Used to provide thin provisioning. Use with caution for when this option is selected, writes will fail when the pool is low on space.</td>
</tr>
<tr>
<td>Block size</td>
<td>drop-down menu</td>
<td>Only available in Advanced Mode and by default is based on the number of disks in pool. Can be set to match the block size of the filesystem which will be formatted onto the iSCSI target.</td>
</tr>
</tbody>
</table>

8.1.5 Import Disk

The Volume → Import Disk screen, shown in Figure 8.6, is used to import a single disk that has been formatted with the UFS, NTFS, MSDOS, or EXT2 filesystem. The import is meant to be a temporary measure to copy the data from a disk to an existing ZFS dataset. Only one disk can be imported at a time.

Note: Imports of EXT3 or EXT4 filesystems are possible in some cases, although neither is fully supported. EXT3 journaling is not supported, so those filesystems must have an external fsck utility, like the one provided by E2fsprogs utilities (http://e2fsprogs.sourceforge.net/), run on them before import. EXT4 filesystems with extended attributes or inodes greater than 128 bytes are not supported. EXT4 filesystems with EXT3 journaling must have an fsck run on them before import, as described above.

![Fig. 8.6: Importing a Disk](image)

Use the drop-down menu to select the disk to import, select the type of filesystem on the disk, and browse to the ZFS dataset that will hold the copied data. When you click Import Volume, the disk is mounted, its contents are copied to the specified ZFS dataset, and the disk is unmounted after the copy operation completes.

8.1.6 Import Volume

Click Storage → Volumes → Import Volume to configure FreeNAS® to use an existing ZFS pool. This action is typically performed when an existing FreeNAS® system is re-installed. Since the operating system is separate from the storage disks, a new installation does not affect the data on the disks. However, the new operating system needs to be configured to use the existing volume.
Figure 8.7 shows the initial pop-up window that appears when a volume is imported.

![Fig. 8.7: Initial Import Volume Screen](image)

If importing an unencrypted ZFS pool, select No: Skip to import to open the screen shown in Figure 8.8.

![Fig. 8.8: Importing a Non-Encrypted Volume](image)

Existing volumes should be available for selection from the drop-down menu. In the example shown in Figure 8.8, the FreeNAS® system has an existing, unencrypted ZFS pool. Once the volume is selected, click the OK button to import the volume.

If an existing ZFS pool does not show in the drop-down menu, run `zpool import` from Shell (page 297) to import the pool.

If physically installing ZFS formatted disks from another system, ensure to export the drives on that system to prevent an “in use by another machine” error during the import.

If the hardware is not being detected, run `camcontrol devlist` from Shell (page 297). If the disk does not appear in the output, check to see if the controller driver is supported or if it needs to be loaded using Tunables (page 76).

8.1.6.1 Importing an Encrypted Pool

Disks in existing GELI-encrypted ZFS pools must be decrypted before importing the pool. In the Import Volume dialog shown in Figure 8.7, select Yes: Decrypt disks. The screen shown in Figure 8.9 is then displayed.
Select the disks in the encrypted pool, browse to the location of the saved encryption key, enter the passphrase associated with the key, then click OK to decrypt the disks.

Note: The encryption key is required to decrypt the pool. If the pool cannot be decrypted, it cannot be re-imported after a failed upgrade or lost configuration. This means that it is very important to save a copy of the key and to remember the passphrase that was configured for the key. Refer to [Managing Encrypted Volumes](page 142) for instructions on how to manage the keys for encrypted volumes.

After the pool is decrypted, it appears in the drop-down menu of Figure 8.8. Click the OK button to finish the volume import.

Note: For security reasons, GELI keys for encrypted volumes are not saved in a configuration backup file. When FreeNAS® has been installed to a new device and a saved configuration file restored to it, the GELI keys for encrypted disks will not be present, and the system will not request them. To correct this, export the encrypted volume with Detach Volume, making sure that the Mark the disks as new (destroy data) or Also delete the share’s configuration) are not selected. Then import the volume again. During the import, the GELI keys can be entered as described above.

8.1.7 View Disks

Storage → Volumes → View Disks shows all of the disks recognized by the FreeNAS® system. An example is shown in Figure 8.10.

![Fig. 8.10: Viewing Disks](image)

The current configuration of each device is displayed. Click a disk entry and the Edit button to change its configuration. The configurable options are described in Table 8.6.
Table 8.6: Disk Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>string</td>
<td>This is the FreeBSD device name of the disk.</td>
</tr>
<tr>
<td>Serial</td>
<td>string</td>
<td>This is the serial number of the disk.</td>
</tr>
<tr>
<td>Description</td>
<td>string</td>
<td>Enter any notes about this disk.</td>
</tr>
<tr>
<td>HDD Standby</td>
<td>drop-down menu</td>
<td>Indicates the time of inactivity (in minutes) before the drive enters standby mode in order to conserve energy. This forum post (https://forums.freenas.org/index.php?threads/how-to-find-out-if-a-drive-is-spinning-down-properly.2068/) demonstrates how to determine if a drive has spun down.</td>
</tr>
<tr>
<td>Advanced Power Manage- ment</td>
<td>drop-down menu</td>
<td>Select a power management profile from the menu. Default is Disabled.</td>
</tr>
<tr>
<td>Password for SED</td>
<td>string</td>
<td>Enter and confirm the password that will be used for this device instead of the global SED password. Refer to Self-Encrypting Drives (page 73) for more information.</td>
</tr>
</tbody>
</table>

Note: If the serial number of a disk is not displayed in this screen, use the smartctl command from Shell (page 297). For example, to determine the serial number of disk ada0, type `smartctl -a /dev/ada0 | grep Serial`.

The Wipe function is provided for when an unused disk is to be discarded.

Warning: Make certain that all data has been backed up and that the disk is no longer in use. Triple-check that the correct disk is being selected to be wiped, as recovering data from a wiped disk is usually impossible. If there is any doubt, physically remove the disk, verify that all data is still present on the FreeNAS® system, and wipe the disk in a separate computer.

Clicking Wipe offers several choices. Quick erases only the partitioning information on a disk, making it easy to reuse but without clearing other old data. For more security, Full with zeros overwrites the entire disk with zeros, while Full with random data overwrites the entire disk with random binary data. Quick wipes take only a few seconds. A Full with zeros wipe of a large disk can take several hours, and a Full with random data takes longer. A progress bar is displayed during the wipe to track status.

8.1.8 Volumes

Storage → Volumes is used to view and further configure existing ZFS pools, datasets, and zvols. The example shown in Figure 8.11 shows one ZFS pool (volume1) with two datasets (the one automatically created with the pool, volume1, and dataset1) and one zvol (zvol1).

Note that in this example, there are two datasets named volume1. The first represents the ZFS pool and its Used and Available entries reflect the total size of the pool, including disk parity. The second represents the implicit or root dataset and its Used and Available entries indicate the amount of disk space available for storage.

Buttons are provided for quick access to Volume Manager, Import Disk, Import Volume, and View Disks. If the system has multipath-capable hardware, an extra button will be added, View Multipaths. For each entry, the columns indicate the Name, how much disk space is Used, how much disk space is Available, the type of Compression, the Compression Ratio, the Status, whether it is mounted as read-only, and any Comments entered for the volume.
Clicking the entry for a pool causes several buttons to appear at the bottom of the screen.

Detach Volume: allows exporting the pool or deleting the contents of the pool, depending upon the choice made in the screen shown in Figure 8.12. The Detach Volume screen displays the current used space and indicates whether there are any shares, provides options to Mark the disks as new (destroy data) and to Also delete the share's configuration, and asks if you are sure about doing this. The browser window turns red to indicate that some choices will make the data inaccessible. When the option to select the disks as new is left deselected, the volume is exported. The data is not destroyed and the volume can be re-imported at a later time. When moving a ZFS pool from one system to another, perform this export action first as it flushes any unwritten data to disk, writes data to the disk indicating that the export was done, and removes all knowledge of the pool from the system.

When the option to mark the disks as new is selected, the pool and all the data in its datasets, zvols, and shares is destroyed and the individual disks are returned to their raw state. Desired data must be backed up to another disk or device before using this option.

Scrub Volume: scrubs and scheduling them are described in more detail in Scrubs (page 160). This button allows manually initiating a scrub. Scrubs are I/O intensive and can negatively impact performance. Avoid initiating a scrub when the system is busy.

A Cancel button is provided to cancel a scrub. When a scrub is cancelled, it is abandoned. The next scrub to run starts from the beginning, not where the cancelled scrub left off.

The status of a running scrub or the statistics from the last completed scrub can be seen by clicking the Volume Status button.

Volume Status: as shown in the example in Figure 8.13, this screen shows the device name and status of each disk in the ZFS pool as well as any read, write, or checksum errors. It also indicates the status of the latest ZFS scrub. Clicking the entry for a device causes buttons to appear to edit the device options (shown in Figure 8.14), offline or online the device, or replace the device (as described in Replacing a Failed Drive (page 145)).

Upgrade: used to upgrade the pool to the latest ZFS features, as described in Upgrading a ZFS Pool (page 35). This button does not appear if the pool is running the latest version of feature flags.
Fig. 8.13: Volume Status

Selecting a disk in Volume Status and clicking its Edit Disk button shows the screen in Figure 8.14. Table 8.6 summarizes the configurable options.

![Editing a Disk](image)

Fig. 8.14: Editing a Disk

Note: Versions of FreeNAS® prior to 8.3.1 required a reboot to apply changes to the HDD Standby, Advanced Power Management, and Acoustic Level settings. As of 8.3.1, changes to these settings are applied immediately.

Clicking a dataset in Storage → Volumes causes buttons to appear at the bottom of the screen, providing these options:

- Change Permissions: edit the dataset permissions as described in Change Permissions (page 129).
- Create Snapshot: create a one-time snapshot. To schedule the regular creation of snapshots, instead use Periodic Snapshot Tasks (page 148).
- Promote Dataset: only applies to clones. When a clone is promoted, the origin filesystem becomes a clone of the clone making it possible to destroy the filesystem that the clone was created from. Otherwise, a clone cannot be destroyed while the origin filesystem exists.
- Destroy Dataset: clicking the Destroy Dataset button causes the browser window to turn red to indicate that this is a destructive action. The Destroy Dataset screen forces you to enable the option I'm aware this will destroy all child datasets and snapshots within this dataset before it will perform this action.
- Edit Options: edit the volume properties described in Table 8.4. Note that it will not allow changing the dataset name.
Create Dataset: used to create a child dataset within this dataset.
Create zvol: create a child zvol within this dataset.

Clicking a zvol in Storage → Volumes causes icons to appear at the bottom of the screen: Create Snapshot, Promote Dataset, Edit zvol, and Destroy zvol. Similar to datasets, a zvol name cannot be changed, and destroying a zvol requires confirmation.

8.1.8.1 Managing Encrypted Volumes

FreeNAS® generates and stores a randomized encryption key whenever a new encrypted volume is created. This key is required to read and decrypt any data on the volume.

Encryption keys can also be downloaded as a safety measure, to allow decryption on a different system in the event of failure, or to allow the locally stored key to be deleted for extra security. Encryption keys can also be optionally protected with a passphrase for additional security. The combination of encryption key location and whether a passphrase is used provide several different security scenarios:

- Key stored locally, no passphrase: the encrypted volume is decrypted and accessible when the system running. Protects “data at rest” only.
- Key stored locally, with passphrase: the encrypted volume is not accessible until the passphrase is entered by the FreeNAS® administrator.
- Key not stored locally: the encrypted volume is not accessible until the FreeNAS® administrator provides the key. If a passphrase is set on the key, it must also be entered before the encrypted volume can be accessed (two factor authentication (https://en.wikipedia.org/wiki/Multi-factor_authentication)).

Encrypted data cannot be accessed when the disks are removed or the system has been shut down. On a running system, encrypted data cannot be accessed when the volume is locked (see below) and the key is not available. If the key is protected with a passphrase, both the key and passphrase are required for decryption.

Encryption applies to a volume, not individual users. When a volume is unlocked, data is accessible to all users with permissions to access it.

Note: GELI (https://www.freebsd.org/cgi/man.cgi?query=geli) uses two randomized encryption keys for each disk. The first has been discussed here. The second, the disk’s “master key”, is encrypted and stored in the on-disk GELI metadata. Loss of a disk master key due to disk corruption is equivalent to any other disk failure, and in a redundant pool, other disks will contain accessible copies of the uncorrupted data. While it is possible to separately back up disk master keys, it is usually not necessary or useful.

8.1.8.2 Additional Controls for Encrypted Volumes

If the Encryption option is enabled during the creation of a pool, additional buttons appear in the entry for the volume in Storage → Volumes. An example is shown in Figure 8.15.

![Fig. 8.15: Encryption Icons Associated with an Encrypted Volume](image)

These additional encryption buttons are used to:
Create/Change Passphrase: set and confirm a passphrase associated with the GELI encryption key. The desired passphrase is entered and repeated for verification. A red warning is a reminder to Remember to add a new recovery key as this action invalidates the previous recovery key. Unlike a password, a passphrase can contain spaces and is typically a series of words. A good passphrase is easy to remember (like the line to a song or piece of literature) but hard to guess (people who know you should not be able to guess the passphrase). Remember this passphrase. An encrypted volume cannot be reimported without it. In other words, if the passphrase is forgotten, the data on the volume can become inaccessible if it becomes necessary to reimport the pool. Protect this passphrase, as anyone who knows it could reimport the encrypted volume, thwarting the reason for encrypting the disks in the first place.

![Create Passphrase](image)

Remember to add a new recovery key as this action invalidates the previous recovery key

Passphrase:
Confirm Passphrase:

OK Cancel

Fig. 8.16: Add or Change a Passphrase to an Encrypted Volume

After the passphrase is set, the name of this button changes to Change Passphrase. After setting or changing the passphrase, it is important to immediately create a new recovery key by clicking the Add recovery key button. This way, if the passphrase is forgotten, the associated recovery key can be used instead.

Encrypted volumes with a passphrase display an additional lock button:

![Lock Button](image)

Fig. 8.17: Lock Button

These encrypted volumes can be locked. The data is not accessible until the volume is unlocked by supplying the passphrase or encryption key, and the button changes to an unlock button:

![Unlock Button](image)

Fig. 8.18: Unlock Button

To unlock the volume, click the unlock button to display the Unlock dialog:
Unlock the volume by entering a passphrase or using the Browse button to load the recovery key. If both a passphrase and a recovery key are entered, only the passphrase is used. By default, the services listed will restart when the volume is unlocked. This allows them to see the new volume and share or access data on it. Individual services can be prevented from restarting by deselecting them. However, a service that is not restarted might not be able to access the unlocked volume.

Download Key: download a backup copy of the GELI encryption key. The encryption key is saved to the client system, not on the FreeNAS® system. The FreeNAS® administrative password must be entered, then the directory in which to store the key is chosen. Since the GELI encryption key is separate from the FreeNAS® configuration database, it is highly recommended to make a backup of the key. If the key is ever lost or destroyed and there is no backup key, the data on the disks is inaccessible.

Encryption Re-key: generate a new GELI encryption key. Typically this is only performed when the administrator suspects that the current key may be compromised. This action also removes the current passphrase.

Add recovery key: generate a new recovery key. This screen prompts for the FreeNAS® administrative password and then the directory in which to save the key. Note that the recovery key is saved to the client system, not on the FreeNAS® system. This recovery key can be used if the passphrase is forgotten. Always immediately add a recovery key whenever the passphrase is changed.

Remove recovery key: Typically this is only performed when the administrator suspects that the current recovery key may be compromised. Immediately create a new passphrase and recovery key.

Note: The passphrase, recovery key, and encryption key must be protected. Do not reveal the passphrase to others. On the system containing the downloaded keys, take care that the system and its backups are protected. Anyone who has the keys has the ability to re-import the disks if they are discarded or stolen.

Warning: If a re-key fails on a multi-disk system, an alert is generated. Do not ignore this alert as doing so may result in the loss of data.

8.1.9 View Multipaths

FreeNAS® uses gmultipath(8) (https://www.freebsd.org/cgi/man.cgi?query=gmultipath) to provide multipath I/O (https://en.wikipedia.org/wiki/Multipath_I/O) support on systems containing hardware that is capable of multipath. An example would be a dual SAS expander backplane in the chassis or an external JBOD.
Multipath hardware adds fault tolerance to a NAS as the data is still available even if one disk I/O path has a failure.

FreeNAS® automatically detects active/active and active/passive multipath-capable hardware. Any multipath-capable devices that are detected will be placed in multipath units with the parent devices hidden. The configuration will be displayed in Storage → Volumes → View Multipaths. Note that this option is not be displayed in the Storage → Volumes tree on systems that do not contain multipath-capable hardware.

8.1.10 Replacing a Failed Drive

With any form of redundant RAID, failed drives must be replaced as soon as possible to repair the degraded state of the RAID. Depending on the hardware capabilities, it might be necessary to reboot to replace the failed drive. Hardware that supports AHCI does not require a reboot.

Note: Striping (RAID0) does not provide redundancy. If a disk in a stripe fails, the volume will be destroyed and must be recreated and the data restored from backup.

Note: If the volume is encrypted with GELI, refer to Replacing an Encrypted Drive (page 147) before proceeding.

Before physically removing the failed device, go to Storage → Volumes. Select the volume name. At the bottom of the interface are several icons, one of which is Volume Status. Click the Volume Status icon and locate the failed disk. Then perform these steps:

1. Click the disk entry, then its Offline button to change the disk status to OFFLINE. This step removes the device from the ZFS pool and prevents swap issues. If the hardware supports hot-pluggable disks, click the disk's Offline button and pull the disk, then skip to step 3. If there is no Offline button but only a Replace button, the disk is already offlined and this step can be skipped.

 Note: If the process of changing the disk status to OFFLINE fails with a “disk offline failed - no valid replicas” message, the ZFS volume must be scrubbed first with the Scrub Volume button in Storage → Volumes. After the scrub completes, try to Offline the disk again before proceeding.

2. If the hardware is not AHCI capable, shut down the system to physically replace the disk. When finished, return to the GUI and locate the OFFLINE disk.

3. After the disk has been replaced and is showing as OFFLINE, click the disk again and then click its Replace button. Select the replacement disk from the drop-down menu and click the Replace Disk button. After clicking the Replace Disk button, the ZFS pool begins resilvering.

4. After the drive replacement process is complete, re-add the replaced disk in the S.M.A.R.T. Tests (page 108) screen.

In the example shown in Figure 8.20, a failed disk is being replaced by disk ada5 in the volume named volume1.
Fig. 8.20: Replacing a Failed Disk

After the resilver is complete, Volume Status shows a Completed resilver status and indicates any errors. Figure 8.21 indicates that the disk replacement was successful in this example.

Note: A disk that is failing but has not completely failed can be replaced in place, without first removing it. Whether this is a good idea depends on the overall condition of the failing disk. A disk with a few newly-bad blocks that is otherwise functional can be left in place during the replacement to provide data redundancy. A drive that is experiencing continuous errors can actually slow down the replacement. In extreme cases, a disk with serious problems might spend so much time retrying failures that it could prevent the replacement resilvering from completing before another drive fails.
8.1.10.1 Replacing an Encrypted Drive

If the ZFS pool is encrypted, additional steps are needed when replacing a failed drive.

First, make sure that a passphrase has been set using the instructions in Encryption (page 126) before attempting to replace the failed drive. Then, follow the steps 1 and 2 as described above. During step 3, a prompt will appear to input and confirm the passphrase for the pool. Enter this information then click the Replace Disk button. Wait until the resilvering is complete.

Next, restore the encryption keys to the pool. If the following additional steps are not performed before the next reboot, access to the pool might be permanently lost.

1. Highlight the pool that contains the recently replaced disk and click the Encryption Re-key button in the GUI. Entry of the root password will be required.

2. Highlight the pool that contains the disk you just replaced and click Create Passphrase and enter the new passphrase. The old passphrase can be reused if desired.

3. Highlight the pool that contains the recently replaced disk and click the Download Key button to save the new encryption key. Since the old key will no longer function, any old keys can be safely discarded.

4. Highlight the pool that contains the disk that was just replaced and click the Add Recovery Key button to save the new recovery key. The old recovery key will no longer function, so it can be safely discarded.

8.1.10.2 Removing a Log or Cache Device

Added log or cache devices appear in Storage → Volumes → Volume Status. Clicking the device enables its Replace and Remove buttons.

Log and cache devices can be safely removed or replaced with these buttons. Both types of devices improve performance, and throughput can be impacted by their removal.

8.1.11 Replacing Drives to Grow a ZFS Pool

The recommended method for expanding the size of a ZFS pool is to pre-plan the number of disks in a vdev and to stripe additional vdevs using Volume Manager (page 124) as additional capacity is needed.

However, this is not an option if there are no open drive ports and a SAS/SATA HBA card cannot be added. In this case, one disk at a time can be replaced with a larger disk, waiting for the resilvering process to incorporate the new disk into the pool, then repeating with another disk until all of the original disks have been replaced.

The safest way to perform this is to use a spare drive port or an eSATA port and a hard drive dock. The process follows these steps:
1. Shut down the system.
2. Install one new disk.
3. Start up the system.
4. Go to Storage → Volumes, select the pool to expand and click the Volume Status button. Select a disk and click the Replace button. Choose the new disk as the replacement.
5. The status of the resilver process can be viewed by running `zpool status`. When the new disk has resilvered, the old one will be automatically offlined. The system is then shut down to physically remove the replaced disk. One advantage of this approach is that there is no loss of redundancy during the resilver.

If a spare drive port is not available, a drive can be replaced with a larger one using the instructions in Replacing a Failed Drive (page 145). This process is slow and places the system in a degraded state. Since a failure at this point could be disastrous, do not attempt this method unless the system has a reliable backup. Replace one drive at a time and wait for the resilver process to complete on the replaced drive before replacing the next drive. After all the drives are replaced and the final resilver completes, the added space will appear in the pool.

8.1.12 Hot Spares

ZFS provides the ability to have “hot” spares. These are drives that are connected to a volume, but not in use. If the volume experiences the failure of a data drive, the system uses the hot spare as a temporary replacement. If the failed drive is replaced with a new drive, the hot spare drive is no longer needed and reverts to being a hot spare. If the failed drive is instead removed from the volume, the spare is promoted to a full member of the volume.

Hot spares can be added to a volume during or after creation. On FreeNAS®, hot spare actions are implemented by `zfsd(8)` (https://www.freebsd.org/cgi/man.cgi?query=zfsd).

8.2 Periodic Snapshot Tasks

A periodic snapshot task allows scheduling the creation of read-only versions of ZFS volumes and datasets at a given point in time. Snapshots can be created quickly and, if little data changes, new snapshots take up very little space. For example, a snapshot where no files have changed takes 0 MB of storage, but as changes are made to files, the snapshot size changes to reflect the size of the changes.

Snapshots provide a clever way of keeping a history of files, providing a way to recover an older copy or even a deleted file. For this reason, many administrators take snapshots often (perhaps every fifteen minutes), store them for a period of time (possibly a month), and store them on another system (typically using Replication Tasks (page 150)). Such a strategy allows the administrator to roll the system back to a specific point in time. If there is a catastrophic loss, an off-site snapshot can be used to restore the system up to the time of the last snapshot.

An existing ZFS volume is required before creating a snapshot. Creating a volume is described in Volume Manager (page 124).

To create a periodic snapshot task, click Storage → Periodic Snapshot Tasks → Add Periodic Snapshot which opens the screen shown in Figure 8.22. Table 8.7 summarizes the fields in this screen.

| Note: If only a one-time snapshot is needed, instead use Storage → Volumes and click the Create Snapshot button for the volume or dataset to snapshot. |
Table 8.7: Options When Creating a Periodic Snapshot

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume/Dataset</td>
<td>drop-down menu</td>
<td>Select an existing ZFS volume, dataset, or zvol.</td>
</tr>
<tr>
<td>Recursive</td>
<td>checkbox</td>
<td>Enable this option to take separate snapshots of the volume or dataset and each of its child datasets. If unchecked, a single snapshot is taken of only the specified volume/dataset, but not any child datasets.</td>
</tr>
<tr>
<td>Snapshot Lifetime</td>
<td>integer and drop-down menu</td>
<td>Define a length of time to retain the snapshot on this system. After the time expires, the snapshot is removed. Snapshots replicated to other systems are not affected.</td>
</tr>
<tr>
<td>Begin</td>
<td>drop-down menu</td>
<td>Choose the hour and minute when the system can begin taking snapshots.</td>
</tr>
<tr>
<td>End</td>
<td>drop-down menu</td>
<td>Choose the hour and minute when the system will stop taking snapshots.</td>
</tr>
<tr>
<td>Interval</td>
<td>drop-down menu</td>
<td>Define how often the system takes snapshots between Begin and End times.</td>
</tr>
<tr>
<td>Weekday</td>
<td>checkboxes</td>
<td>Choose the days of the week to take snapshots.</td>
</tr>
<tr>
<td>Enabled</td>
<td>checkbox</td>
<td>Unset to disable this task without deleting it.</td>
</tr>
</tbody>
</table>

If the Recursive option is enabled, child datasets of this dataset are included in the snapshot and there is no need to create snapshots for each child dataset. The downside is that there is no way to exclude particular child datasets from a recursive snapshot.
Click the OK button to save the task. Entries for each task are shown in View Periodic Snapshot Tasks. Click an entry to display Edit and Delete buttons for it.

8.3 Replication Tasks

Replication is the duplication of snapshots from one FreeNAS® system to another computer. When a new snapshot is created on the source computer, it is automatically replicated to the destination computer. Replication is typically used to keep a copy of files on a separate system, with that system sometimes being at a different physical location.

The basic configuration requires a source system with the original data and a destination system where the data will be replicated. The destination system is prepared to receive replicated data, a periodic snapshot (page 148) of the data on the source system is created, and then a replication task is created. As snapshots are automatically created on the source computer, they are automatically replicated to the destination computer.

Note: Replicated data is not visible on the receiving system until the replication task completes.

Note: The target dataset on the receiving system is automatically created in read-only mode to protect the data. To mount or browse the data on the receiving system, create a clone of the snapshot and use the clone. Clones are created in read/write mode, making it possible to browse or mount them. See Snapshots (page 163) for more information on creating clones.

8.3.1 Examples: Common Configuration

The examples shown here use the same setup of source and destination computers.

8.3.1.1 Alpha (Source)

Alpha is the source computer with the data to be replicated. It is at IP address 10.0.0.102. A volume (page 124) named alphavol has already been created, and a dataset (page 131) named alphadata has been created on that volume. This dataset contains the files which will be snapshotted and replicated onto Beta.

This new dataset has been created for this example, but a new dataset is not required. Most users will already have datasets containing the data they wish to replicate.

Create a periodic snapshot of the source dataset by selecting Storage → Periodic Snapshot Tasks. Click the alphavol/alphadata dataset to highlight it. Create a periodic snapshot (page 148) of it by clicking Periodic Snapshot Tasks, then Add Periodic Snapshot as shown in Figure 8.23.

This example creates a snapshot of the alphavol/alphadata dataset every two hours from Monday through Friday between the hours of 9:00 and 18:00 (6:00 PM). Snapshots are automatically deleted after their chosen lifetime of two weeks expires.
8.3.1.2 Beta (Destination)

Beta is the destination computer where the replicated data will be copied. It is at IP address 10.0.0.118. A volume named betavol has already been created.

Snapshots are transferred with SSH. To allow incoming connections, this service is enabled on Beta. The service is not required for outgoing connections, and so does not need to be enabled on Alpha.

8.3.2 Example: FreeNAS® to FreeNAS® Semi-Automatic Setup

FreeNAS® offers a special semi-automatic setup mode that simplifies setting up replication. Create the replication task on Alpha by clicking Replication Tasks and Add Replication. alphavol/alphadata is selected as the dataset to replicate. betavol is the destination volume where alphadata snapshots are replicated. The Setup mode dropdown is set to Semi-automatic as shown in Figure 8.24. The IP address of Beta is entered in the Remote hostname field. A hostname can be entered here if local DNS resolves for that hostname.

Note: If WebGUI HTTP -> HTTPS Redirect has been enabled in System → General on the destination computer, Remote HTTP/HTTPS Port must be set to the HTTPS port (usually 443) and Remote HTTPS must be enabled when creating the replication on the source computer.
The Remote Auth Token field expects a special token from the Beta computer. On Beta, choose Storage → Replication Tasks, then click Temporary Auth Token. A dialog showing the temporary authorization token is shown as in Figure 8.25. Highlight the temporary authorization token string with the mouse and copy it.

8.3.3 Example: FreeNAS® to FreeNAS® Dedicated User Replication

A dedicated user can be used for replications rather than the root user. This example shows the process using the semi-automatic replication setup between two FreeNAS® systems with a dedicated user named repluser. SSH key authentication is used to allow the user to log in remotely without a password.

In this example, the periodic snapshot task has not been created yet. If the periodic snapshot shown in the example configuration (page 150) has already been created, go to Storage → Periodic Snapshot Tasks, click on the task to select it, and click Delete to remove it before continuing.

On Alpha, select Account → Users. Click the Add User. Enter repluser for Username, enter /mnt/alphavol/repluser in the Create Home Directory In field, enter Replication Dedicated User for the Full Name, and set the Disable password login option. Leave the other fields at their default values, but note the User ID number. Click OK to create the user.

On Beta, the same dedicated user must be created as was created on the sending computer. Select Account → Users. Click the Add User. Enter the User ID number from Alpha, repluser for Username, enter /mnt/betavol/repluser in the Create Home Directory In field, enter Replication Dedicated User for the Full Name, and set the Disable password login option. Leave the other fields at their default values. Click OK to create the user.

A dataset with the same name as the original must be created on the destination computer, Beta. Select Storage → Volumes, click on betavol, then click the Create Dataset icon at the bottom. Enter alphadata as the Dataset Name, then click Add Dataset.

The replication user must be given permissions to the destination dataset. Still on Beta, open a Shell (page 297) and enter this command:

```
zfs allow -ldu repluser create,destroy,diff,mount,readonly,receive,release,send,userprop betavol/ alphadata
```

The destination dataset must also be set to read-only. Enter this command in the Shell (page 297):

```
zfs set readonly=on betavol/alphadata
```

Close the Shell (page 297) by typing `exit` and pressing `Enter`.

The replication user must also be able to mount datasets. Still on Beta, go to System → Tunables. Click Add Tunable. Enter `vfs.usermount` for the Variable, 1 for the Value, and choose Sysctl from the Type drop-down. Click OK to save the tunable settings.

Back on Alpha, create a periodic snapshot of the source dataset by selecting Storage → Periodic Snapshot Tasks. Click the `alphavol/alphadata` dataset to highlight it. Create a periodic snapshot (page 148) of it by clicking Periodic Snapshot Tasks, then Add Periodic Snapshot as shown in Figure 8.23.

Still on Alpha, create the replication task by clicking Replication Tasks and Add Replication. `alphavol/alphadata` is selected as the dataset to replicate. `betavol/alphadata` is the destination volume and dataset where alphadata snapshots are replicated.

The Setup mode dropdown is set to Semi-automatic as shown in Figure 8.24. The IP address of Beta is entered in the Remote hostname field. A hostname can be entered here if local DNS resolves for that hostname.

Additional replications can use the same dedicated user that has already been set up. The permissions and read only settings made through the Shell (page 297) must be set on each new destination dataset.

8.3.4 Example: FreeNAS® to FreeNAS® or Other Systems, Manual Setup

This example uses the same basic configuration of source and destination computers shown above, but the destination computer is not required to be a FreeNAS® system. Other operating systems can receive the replication if they support SSH, ZFS, and the same features that are in use on the source system. The details of creating volumes and datasets, enabling SSH, and copying encryption keys will vary when the destination computer is not a FreeNAS® system.

8.3.4.1 Encryption Keys

A public encryption key must be copied from Alpha to Beta to allow a secure connection without a password prompt. On Alpha, select Storage → Replication Tasks → View Public Key, producing the window shown in Figure 8.27. Use the mouse to highlight the key data shown in the window, then copy it.
Fig. 8.27: Copy the Replication Key

On Beta, select Account → Users → View Users. Click the root account to select it, then click Modify User. Paste the copied key into the SSH Public Key field and click OK as shown in Figure 8.28.

Back on Alpha, create the replication task by clicking Replication Tasks and Add Replication. alphavol/alphadata is selected as the dataset to replicate. The destination volume is betavol. The alphadata dataset and snapshots are replicated there. The IP address of Beta is entered in the Remote hostname field as shown in Figure 8.29. A hostname can be entered here if local DNS resolves for that hostname.

Click the SSH Key Scan button to retrieve the SSH host keys from Beta and fill the Remote hostkey field. Finally, click OK to create the replication task. After each periodic snapshot is created, a replication task will copy it to the destination system. See Limiting Replication Times (page 158) for information about restricting when replication is allowed to run.
Add Replication

<table>
<thead>
<tr>
<th>Volume/Dataset:</th>
<th>alphavol/alphadata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote ZFS Volume/Dataset:</td>
<td>betavol</td>
</tr>
<tr>
<td>Recursively replicate child dataset's snapshots:</td>
<td></td>
</tr>
<tr>
<td>Delete stale snapshots on remote system:</td>
<td></td>
</tr>
<tr>
<td>Replication Stream Compression:</td>
<td>lz4 (fastest)</td>
</tr>
<tr>
<td>Limit (kB/s):</td>
<td>0</td>
</tr>
<tr>
<td>Begin:</td>
<td>00:00:00</td>
</tr>
<tr>
<td>End:</td>
<td>23:59:00</td>
</tr>
<tr>
<td>Enabled:</td>
<td></td>
</tr>
<tr>
<td>Setup mode:</td>
<td>Manual</td>
</tr>
<tr>
<td>Remote hostname:</td>
<td>10.0.0.118</td>
</tr>
<tr>
<td>Remote port:</td>
<td>22</td>
</tr>
<tr>
<td>Dedicated User Enabled:</td>
<td></td>
</tr>
<tr>
<td>Dedicated User:</td>
<td></td>
</tr>
<tr>
<td>Encryption Cipher:</td>
<td>Standard</td>
</tr>
<tr>
<td>Remote hostkey:</td>
<td>10.0.0.118 ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABEgC4WnS+kfJa CDL1SnPwEqHwuVjeOkeK8pL+kU8JLS8yyfOALPL/abC8ZDzoNGwtJjnL4xTyxA1JKXio1YYkTnlj7MR+5905HLt+vwSJuHks3EcD8/o0CFmeiw /00dzjTsoiCrqnnHil+dySqBjAE0yoQyTGfzybSY FY9BZ6aLSzA+oE7i+aJL+nn6oRCENUCopeFOF m9nAdTwET:HxJky2923RghY0zk7rhyzyPSLzVL Yy3mwbSG1Xj8DxGqxs7q1ai3r6aKl+TRA4El /d8GxVAKwzJPgv /K/aWibmALcVBAvLbM6OyAFg9uuhn43HYMhbJa 4Fe/rl 10.0.0.118 ecdsa-sha2-nistp256 AAAAE2VjZHnhLxNoYITibmlzdHAYNTYAAAABmlz dHAyNTYAAAABBBANGLomMyTZl/Fp1aScYX /85/b3nvXi6X /levDCDwJecuD1ASWy5Xx+Wp8YkraJzLvvb9onf1w yc2fC14zgFsoAg= 10.0.0.118 ssh-ed25519 AAAAC3NzaC1lZDI1NTESAAAICzUtTtc59hv90Wh 7nBeD4lj3GdRkaZRY/V70ezT0t7GE</td>
</tr>
</tbody>
</table>
8.3.5 Replication Options

Table 8.8 describes the options in the replication task dialog.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume/Dataset</td>
<td>drop-down menu</td>
<td>On the source computer with snapshots to replicate, choose an existing ZFS pool or dataset with an active periodic snapshot task.</td>
</tr>
<tr>
<td>Remote ZFS Volume/Dataset</td>
<td>string</td>
<td>Enter the ZFS volume or dataset on the remote or destination computer which will store the snapshots. Example: poolname/datasetname, not the mount point or filesystem path.</td>
</tr>
<tr>
<td>Recursively replicate child dataset's snapshots</td>
<td>checkbox</td>
<td>When enabled, include snapshots of child datasets from the primary dataset.</td>
</tr>
<tr>
<td>Delete stale snapshots</td>
<td>checkbox</td>
<td>Set to delete previous snapshots from the remote or destination system which are no longer present on the source computer.</td>
</tr>
<tr>
<td>Replication Stream Compression</td>
<td>drop-down menu</td>
<td>Choices are lz4 (fastest), pigz (all rounder), plzip (best compression), or Off (no compression). Selecting a compression algorithm can reduce the size of the data being replicated.</td>
</tr>
<tr>
<td>Limit (kB/s)</td>
<td>integer</td>
<td>Limit replication speed to the specified value in kilobits/second. Default of 0 is unlimited.</td>
</tr>
<tr>
<td>Begin</td>
<td>drop-down menu</td>
<td>Define a time to start the replication task.</td>
</tr>
<tr>
<td>End</td>
<td>drop-down menu</td>
<td>Define the point in time by which replication must start. A started replication task continues until it is finished.</td>
</tr>
<tr>
<td>Enabled</td>
<td>checkbox</td>
<td>Deselect to disable the scheduled replication task without deleting it.</td>
</tr>
<tr>
<td>Setup mode</td>
<td>drop-down menu</td>
<td>Choose the configuration mode for the remote. Choices are Manual or Semi-automatic. Note semi-automatic only works with remote version 9.10.2 or later.</td>
</tr>
<tr>
<td>Remote hostname</td>
<td>string</td>
<td>Enter the IP address or DNS name of remote system to receive the replication data.</td>
</tr>
<tr>
<td>Remote port</td>
<td>string</td>
<td>Enter the port number used by the SSH server on the remote or destination computer.</td>
</tr>
<tr>
<td>Dedicated User Enabled</td>
<td>checkbox</td>
<td>Select to use an account other than root for replication.</td>
</tr>
<tr>
<td>Dedicated User</td>
<td>drop-down menu</td>
<td>Only available if Dedicated User Enabled is checked. Select the user account to be used for replication.</td>
</tr>
<tr>
<td>Encryption Cipher</td>
<td>drop-down menu</td>
<td>Standard, Fast, or Disabled.</td>
</tr>
<tr>
<td>Remote hostkey</td>
<td>string</td>
<td>Use the SSH Key Scan button to retrieve the public host key of the remote or destination computer and populate this field with that key.</td>
</tr>
</tbody>
</table>

The replication task runs after a new periodic snapshot is created. The periodic snapshot and any new manual snapshots of the same dataset are replicated onto the destination computer.

When multiple replications have been created, replication tasks run serially, one after another. Completion time depends on the number and size of snapshots and the bandwidth available between the source and destination computers.

The first time a replication runs, it must duplicate data structures from the source to the destination computer. This can take much longer to complete than subsequent replications, which only send differences in data.

Warning: Snapshots record incremental changes in data. If the receiving system does not have at least one snapshot that can be used as a basis for the incremental changes in the snapshots from the sending system, there is no way to identify only the data that has changed. In this situation, the snapshots in the receiving system target dataset are removed so a complete initial copy of the new replicated data can be created.

Selecting Storage → Replication Tasks displays Figure 8.30, the list of replication tasks. The Last snapshot sent to remote side column shows the name of the last snapshot that was successfully replicated, and Status shows the current status of
each replication task. The display is updated every five seconds, always showing the latest status.

8.3.6 Replication Encryption

The default Encryption Cipher Standard setting provides good security. Fast is less secure than Standard but can give reasonable transfer rates for devices with limited cryptographic speed. For networks where the entire path between source and destination computers is trusted, the Disabled option can be chosen to send replicated data without encryption.

8.3.7 Limiting Replication Times

The Begin and End times in a replication task make it possible to restrict when replication is allowed. These times can be set to only allow replication after business hours, or at other times when disk or network activity will not slow down other operations like snapshots or Scrubs (page 160). The default settings allow replication to occur at any time.

These times control when replication task are allowed to start, but will not stop a replication task that is already running. Once a replication task has begun, it will run until finished.

8.3.8 Troubleshooting Replication

Replication depends on SSH, disks, network, compression, and encryption to work. A failure or misconfiguration of any of these can prevent successful replication.

8.3.8.1 SSH

SSH (page 243) must be able to connect from the source system to the destination system with an encryption key. This can be tested from Shell (page 297) by making an SSH (page 243) connection from the source system to the destination system. From the previous example, this is a connection from Alpha to Beta at 10.0.0.118. Start the Shell (page 297) on the source machine (Alpha), then enter this command:

```
ssh -vv -i /data/ssh/replication 10.0.0.118
```

On the first connection, the system might say

```
No matching host key fingerprint found in DNS.
Are you sure you want to continue connecting (yes/no)?
```

Verify that this is the correct destination computer from the preceding information on the screen and type yes. At this point, an SSH (page 243) shell connection is open to the destination system, Beta.
If a password is requested, SSH authentication is not working. See Figure 8.27 above. This key value must be present in the /root/.ssh/authorized_keys file on Beta, the destination computer. The /var/log/auth.log file can show diagnostic errors for login problems on the destination computer also.

8.3.8.2 Compression

Matching compression and decompression programs must be available on both the source and destination computers. This is not a problem when both computers are running FreeNAS®, but other operating systems might not have lz4, pigz, or plzip compression programs installed by default. An easy way to diagnose the problem is to set Replication Stream Compression to Off. If the replication runs, select the preferred compression method and check /var/log/debug.log on the FreeNAS® system for errors.

8.3.8.3 Manual Testing

On Alpha, the source computer, the /var/log/messages file can also show helpful messages to locate the problem.

On the source computer, Alpha, open a Shell (page 297) and manually send a single snapshot to the destination computer, Beta. The snapshot used in this example is named auto-20161206.1110-2w. As before, it is located in the alphavol/alphadata dataset. A @ symbol separates the name of the dataset from the name of the snapshot in the command.

```
zfs send alphavol/alphadata@auto-20161206.1110-2w | ssh -i /data/ssh/replication 10.0.0.118 zfs recv@
---betavol
```

If a snapshot of that name already exists on the destination computer, the system will refuse to overwrite it with the new snapshot. The existing snapshot on the destination computer can be deleted by opening a Shell (page 297) on Beta and running this command:

```
zfs destroy -R betavol/alphadata@auto-20161206.1110-2w
```

Then send the snapshot manually again. Snapshots on the destination system, Beta, can be listed from the Shell (page 297) with zfs list -t snapshot or by going to Storage → Snapshots.

Error messages here can indicate any remaining problems.

8.4 Resilver Priority

Resilvering, or the process of copying data to a replacement disk, is best completed as quickly as possible. Increasing the priority of resilvers can help them to complete more quickly. The Resilver Priority tab makes it possible to increase the priority of resilvering at times where the additional I/O or CPU usage will not affect normal usage. Select Storage → Resilver Priority to display the screen shown in Figure 8.31. Table 8.9 describes the fields on this screen.
8.5 Scrubs

A scrub is the process of ZFS scanning through the data on a volume. Scrubs help to identify data integrity problems, detect silent data corruptions caused by transient hardware issues, and provide early alerts of impending disk failures. FreeNAS® makes it easy to schedule periodic automatic scrubs.

Each volume should be scrubbed at least once a month. Bit errors in critical data can be detected by ZFS, but only when that data is read. Scheduled scrubs can find bit errors in rarely-read data. The amount of time needed for a scrub is proportional to the quantity of data on the volume. Typical scrubs take several hours or longer.

The scrub process is I/O intensive and can negatively impact performance. Schedule scrubs for evenings or weekends to minimize impact to users. Make certain that scrubs and other disk-intensive activity like S.M.A.R.T. Tests (page 108) are scheduled to run on different days to avoid disk contention and extreme performance impacts.

Scrubs only check used disk space. To check unused disk space, schedule S.M.A.R.T. Tests (page 108) of Type Long Self-Test to run once or twice a month.

Scrubs are scheduled and managed with Storage → Scrubs.

When a volume is created, a ZFS scrub is automatically scheduled. An entry with the same volume name is added to Storage.
→ Scrubs. A summary of this entry can be viewed with Storage → Scrubs → View Scrubs. Figure 8.32 displays the default settings for the volume named volume1. In this example, the entry has been highlighted and the Edit button clicked to display the Edit screen. Table 8.10 summarizes the options in this screen.
Fig. 8.32: Viewing Volume Default Scrub Settings

Volume:	volume1		
Threshold days:	35		
Description:			
Minute:	Every N minute	Each selected minute	
	00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59		
Hour:	Every N hour	Each selected hour	
	00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23		
Day of month:	Every N day of month	Each selected day of month	
	1		
Month:	January		
Table 8.10: ZFS Scrub Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>drop-down menu</td>
<td>Choose a volume to be scrubbed.</td>
</tr>
<tr>
<td>Threshold days</td>
<td>integer</td>
<td>Define the number of days to prevent a scrub from running after the last has completed. This ignores any other calendar schedule. The default is a multiple of 7 to ensure that the scrub always occurs on the same day of the week.</td>
</tr>
<tr>
<td>Description</td>
<td>string</td>
<td>Optional text description of scrub.</td>
</tr>
<tr>
<td>Minute</td>
<td>slider or minute selections</td>
<td>If the slider is used, a scrub occurs every N minutes. If specific minutes are chosen, a scrub runs only at the selected minute values.</td>
</tr>
<tr>
<td>Hour</td>
<td>slider or hour selections</td>
<td>If the slider is used, a scrub occurs every N hours. If specific hours are chosen, a scrub runs only at the selected hour values.</td>
</tr>
<tr>
<td>Day of Month</td>
<td>slider or month selections</td>
<td>If the slider is used, a scrub occurs every N days. If specific days of the month are chosen, a scrub runs only on the selected days of the selected months.</td>
</tr>
<tr>
<td>Month</td>
<td>checkboxes</td>
<td>Define the months to run the scrub.</td>
</tr>
<tr>
<td>Day of week</td>
<td>checkboxes</td>
<td>A scrub occurs on the selected days. The default is Sunday to least impact users; note that this field and the Day of Month field are ORed together: setting Day of Month to 01,15 and Day of week to Thursday will cause scrubs to run on the 1st and 15th days of the month, but also on any Thursday.</td>
</tr>
<tr>
<td>Enabled</td>
<td>checkbox</td>
<td>Unset to disable the scheduled scrub without deleting it.</td>
</tr>
</tbody>
</table>

Review the default selections and, if necessary, modify them to meet the needs of the environment. Note that the Threshold field is used to prevent scrubs from running too often, and overrides the schedule chosen in the other fields. Also, if a pool is locked or unmounted when a scrub is scheduled to occur, it will not be scrubbed.

Scheduled scrubs can be deleted with the Delete button, but this is not recommended. Scrubs can provide an early indication of disk issues before a disk failure. If a scrub is too intensive for the hardware, consider temporarily deselecting the Enabled button for the scrub until the hardware can be upgraded.

8.6 Snapshots

Snapshots are scheduled using Storage → Periodic Snapshot Tasks. To view and manage the listing of created snapshots, use Storage → Snapshots. An example listing is shown in Figure 8.33.

Note: If snapshots do not appear, check that the current time configured in Periodic Snapshot Tasks (page 148) does not conflict with the Begin, End, and Interval settings. If the snapshot was attempted but failed, an entry is added to /var/log/messages. This log file can be viewed in Shell (page 297).

Fig. 8.33: Viewing Available Snapshots

The listing includes the name of the volume or dataset, the name of each snapshot, and the amount of used and referenced data.
Used is the amount of space consumed by this dataset and all of its descendants. This value is checked against the dataset quota and reservation. The space used does not include the dataset reservation, but does take into account the reservations of any descendent datasets. The amount of space that a dataset consumes from its parent, as well as the amount of space that are freed if this dataset is recursively destroyed, is the greater of its space used and its reservation. When a snapshot is created, the space is initially shared between the snapshot and the filesystem, and possibly with previous snapshots. As the filesystem changes, space that was previously shared becomes unique to the snapshot, and is counted in the used space of the snapshot. Additionally, deleting snapshots can increase the amount of space unique to (and used by) other snapshots. The amount of space used, available, or referenced does not take into account pending changes. While pending changes are generally accounted for within a few seconds, disk changes do not necessarily guarantee that the space usage information is updated immediately.

Tip: Space used by individual snapshots can be seen by running `zfs list -t snapshot` from Shell (page 297).

Refer indicates the amount of data accessible by this dataset, which may or may not be shared with other datasets in the pool. When a snapshot or clone is created, it initially references the same amount of space as the filesystem or snapshot it was created from, since its contents are identical.

Snapshots have icons on the right side for several actions.

Clone Snapshot prompts for the name of the clone to create. A clone is a writable copy of the snapshot. Since a clone is actually a dataset which can be mounted, it appears in the Volumes tab rather than the Snapshots tab. By default, `-clone` is added to the name of a snapshot when a clone is created.

Destroy Snapshot a pop-up message asks for confirmation. Child clones must be destroyed before their parent snapshot can be destroyed. While creating a snapshot is instantaneous, deleting a snapshot can be I/O intensive and can take a long time, especially when deduplication is enabled. In order to delete a block in a snapshot, ZFS has to walk all the allocated blocks to see if that block is used anywhere else; if it is not, it can be freed.

The most recent snapshot also has a Rollback Snapshot icon. Clicking the icon asks for confirmation before rolling back to this snapshot state. Confirming by clicking Yes causes any files that have changed since the snapshot was taken to be reverted back to their state at the time of the snapshot.

Note: Rollback is a potentially dangerous operation and causes any configured replication tasks to fail as the replication system uses the existing snapshot when doing an incremental backup. To restore the data within a snapshot, the recommended steps are:

1. Clone the desired snapshot.
2. Share the clone with the share type or service running on the FreeNAS® system.
3. After users have recovered the needed data, destroy the clone in the Active Volumes tab.

This approach does not destroy any on-disk data and has no impact on replication.

A range of snapshots can be selected with the mouse. Click on the option in the left column of the first snapshot, then press and hold Shift and click on the option for the end snapshot. This can be used to select a range of obsolete snapshots to be deleted with the Destroy icon at the bottom. Be cautious and careful when deleting ranges of snapshots.

Periodic snapshots can be configured to appear as shadow copies in newer versions of Windows Explorer, as described in Configuring Shadow Copies (page 201). Users can access the files in the shadow copy using Explorer without requiring any interaction with the FreeNAS® graphical administrative interface.

The ZFS Snapshots screen allows the creation of filters to view snapshots by selected criteria. To create a filter, click the Define filter icon (near the text No filter applied). When creating a filter:

- Select the column or leave the default of Any Column.
- Select the condition. Possible conditions are: contains (default), is, starts with, ends with, does not contain, is not, does not start with, does not end with, and is empty.
- Enter a value that meets your view criteria.
• Click the Filter button to save the filter and exit the define filter screen. Alternately, click the + button to add another filter.

When creating multiple filters, select the filter to use before leaving the define filter screen. After a filter is selected, the No filter applied text changes to Clear filter. Clicking Clear filter produces a pop-up message indicates that this removes the filter and all available snapshots are listed.

Warning: A snapshot and any files it contains will not be accessible or searchable if the mount path of the snapshot is longer than 88 ascii characters. The data within the snapshot will be safe, and the snapshot will become accessible again when the mount path is shortened. For details of this limitation, and how to shorten a long mount path, see Path and Name Lengths (page 15).

8.6.1 Browsing a snapshot collection

All snapshots for a dataset are accessible as an ordinary hierarchical filesystem, which can be reached from a hidden .zfs file located at the root of every dataset. A user with permission to access that file can view and explore all snapshots for a dataset like any other files - from the CLI or via File Sharing services such as Samba, NFS and FTP. This is an advanced capability which requires some command line actions to achieve. In summary, the main changes to settings that are required are:

• Snapshot visibility must be manually enabled in the ZFS properties of the dataset.

• In Samba auxiliary settings, the veto files command must be modified to not hide the .zfs file, and the setting zfsacl:expose_snapdir=true must be added.

The effect will be that any user who can access the dataset contents, will also be able to view the list of snapshots by navigating to the .zfs directory of the dataset, and to browse and search any files they have permission to access throughout the entire snapshot collection of the dataset. A user’s ability to view files within a snapshot will be limited by any permissions or ACLs set on the files when the snapshot was taken. Snapshots are fixed as “read-only”, so this access does not permit the user to change any files in the snapshots, or to modify or delete any snapshot, even if they had write permission at the time when the snapshot was taken.

Note: ZFS has a zfs diff command which can list the files that have changed between any two snapshot versions within a dataset, or between any snapshot and the current data.

8.7 VMware-Snapshot

Storage → VMware-Snapshot is used to coordinate ZFS snapshots when using FreeNAS® as a VMware datastore. Once this type of snapshot is created, FreeNAS® will automatically snapshot any running VMware virtual machines before taking a scheduled or manual ZFS snapshot of the dataset or zvol backing that VMware datastore. The temporary VMware snapshots are then deleted on the VMware side but still exist in the ZFS snapshot and can be used as stable resurrection points in that snapshot. These coordinated snapshots will be listed in Snapshots (page 163).

Figure 8.34 shows the menu for adding a VMware snapshot and Table 8.11 summarizes the available options.
Table 8.11: VMware Snapshot Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname</td>
<td>string</td>
<td>Enter the IP address or hostname of VMware host. When clustering, this is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the vCenter server for the cluster.</td>
</tr>
<tr>
<td>Username</td>
<td>string</td>
<td>Enter the username on the VMware host with permission to snapshot virtual</td>
</tr>
<tr>
<td></td>
<td></td>
<td>machines.</td>
</tr>
<tr>
<td>Password</td>
<td>string</td>
<td>Enter the password associated with Username</td>
</tr>
<tr>
<td>ZFS Filesystem</td>
<td>drop-down menu</td>
<td>Select the filesystem to snapshot.</td>
</tr>
<tr>
<td>Datastore</td>
<td>drop-down menu</td>
<td>After entering the Hostname, Username, and Password, click Fetch Datastores</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to populate the menu and select the datastore with which to synchronize.</td>
</tr>
</tbody>
</table>
FreeNAS® supports integration with these directory services:

- **Active Directory** (page 167) (for Windows 2000 and higher networks)
- **LDAP** (page 172)
- **NIS** (page 174)

It also supports **Kerberos Realms** (page 175), **Kerberos Keytabs** (page 176), and the ability to add more parameters to **Kerberos Settings** (page 177).

This section summarizes each of these services and their available configurations within the FreeNAS® GUI.

9.1 Active Directory

Active Directory (AD) is a service for sharing resources in a Windows network. AD can be configured on a Windows server that is running Windows Server 2000 or higher or on a Unix-like operating system that is running Samba version 4 (https://wiki.samba.org/index.php/Setting_up_Samba_as_an_Active_Directory_Domain_Controller#Provisioning_a_Samba_Active_Directory).

Since AD provides authentication and authorization services for the users in a network, it is not necessary to recreate these user accounts on the FreeNAS® system. Instead, configure the Active Directory service so that it can import the account information and imported users can be authorized to access the SMB shares on the FreeNAS® system.

Many changes and improvements have been made to Active Directory support within FreeNAS®. It is strongly recommended to update the system to the latest FreeNAS® 11.1 before attempting Active Directory integration.

Ensure name resolution is properly configured before configuring the Active Directory service. **ping** the domain name of the Active Directory domain controller from *Shell* (page 297) on the FreeNAS® system. If the **ping** fails, check the DNS server and default gateway settings in Network → Global Configuration on the FreeNAS® system.

Add a DNS record for the FreeNAS® system on the Windows server and verify the hostname of the FreeNAS® system can be pinged from the domain controller.

Active Directory relies on Kerberos, which is a time-sensitive protocol. The time on both the FreeNAS® system and the Active Directory Domain Controller cannot be out of sync by more than a few minutes. The best way to ensure the same time is running on both systems is to configure both systems to:

- use the same NTP server (set in System → NTP Servers on the FreeNAS® system)
- have the same timezone
- be set to either localtime or universal time at the BIOS level

Figure 9.1 shows the screen that appears when Directory Service → Active Directory is chosen. **Table 9.1** describes the configurable options. Some settings are only available in Advanced Mode. To see these settings, either click Advanced Mode or configure the system to always display these settings by checking Show advanced fields by default in System → Advanced.
Table 9.1: Active Directory Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain Name (DNS/Realm-Name)</td>
<td>string</td>
<td></td>
<td>Name of Active Directory domain (example.com) or child domain (sales.example.com). This setting is mandatory and the GUI will refuse to save the settings if the domain controller for the specified domain cannot be found.</td>
</tr>
<tr>
<td>Domain Account Name</td>
<td>string</td>
<td></td>
<td>Name of the Active Directory administrator account. This setting is mandatory and the GUI will refuse to save the settings if it cannot connect to the domain controller using this account name.</td>
</tr>
<tr>
<td>Domain Account Password</td>
<td>string</td>
<td></td>
<td>Password for the Active Directory administrator account. This setting is mandatory and the GUI will refuse to save the settings if it cannot connect to the domain controller using this password.</td>
</tr>
<tr>
<td>AD check connectivity frequency (seconds)</td>
<td>integer</td>
<td></td>
<td>How often to verify that Active Directory services are active.</td>
</tr>
<tr>
<td>How many recovery attempts</td>
<td>integer</td>
<td></td>
<td>Number of times to attempt reconnecting to the Active Directory server. Tries forever when set to 0.</td>
</tr>
<tr>
<td>Enable Monitoring</td>
<td>checkbox</td>
<td></td>
<td>Restart Active Directory automatically if the service is disconnected.</td>
</tr>
<tr>
<td>Encryption Mode</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Choices are Off, SSL, or TLS.</td>
</tr>
<tr>
<td>Certificate</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Select the Active Directory server certificate if SSL connections are used. If a certificate does not exist, create a Certificate Authority (page 84), then create a certificate on the Active Directory server. Import the certificate to the FreeNAS® system using the Certificates (page 87) menu. To clear a saved certificate, choose the blank entry and click Save.</td>
</tr>
</tbody>
</table>
Table 9.1 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbose logging</td>
<td>checkbox</td>
<td>✓</td>
<td>When checked, logs attempts to join the domain to <code>/var/log/messages</code>.</td>
</tr>
<tr>
<td>UNIX extensions</td>
<td>checkbox</td>
<td>✓</td>
<td>Only set if the AD server is explicitly configured to map permissions for UNIX users. Enabling provides persistent UIDs and GUIDs, otherwise, users/groups are mapped to the UID/GUID range configured in Samba.</td>
</tr>
<tr>
<td>Allow Trusted Domains</td>
<td>checkbox</td>
<td>✓</td>
<td>Only enable if the network has active domain/forest trusts (https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc757352(v=ws.10)) and files need to be managed on multiple domains. Use with caution as it will generate more winbindd traffic, slowing down the ability to filter through user and group information.</td>
</tr>
<tr>
<td>Use Default Domain</td>
<td>checkbox</td>
<td>✓</td>
<td>Unset to prepend the domain name to the username. If Allow Trusted Domains is set and multiple domains use the same usernames, unset to prevent name collisions.</td>
</tr>
<tr>
<td>Allow DNS updates</td>
<td>checkbox</td>
<td>✓</td>
<td>Unset to disable Samba from doing DNS updates when joining a domain.</td>
</tr>
<tr>
<td>Disable Active Directory user/group cache</td>
<td>checkbox</td>
<td>✓</td>
<td>Set to disable caching of AD users and groups. This is useful if the system cannot bind to a domain with a large number of users or groups.</td>
</tr>
<tr>
<td>Site Name</td>
<td>string</td>
<td>✓</td>
<td>The relative distinguished name of the site object in Active Directory.</td>
</tr>
<tr>
<td>Domain Controller</td>
<td>string</td>
<td>✓</td>
<td>Automatically be added to the SRV record for the domain and, when multiple controllers are specified, FreeNAS® selects the closest DC which responds. Uses the short form of the FQDN. An example is sampleserver.</td>
</tr>
<tr>
<td>Global Catalog Server</td>
<td>string</td>
<td>✓</td>
<td>If the hostname of the global catalog server to use is specified, make sure it is resolvable.</td>
</tr>
<tr>
<td>Kerberos Realm</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Select the realm created using the instructions in Kerberos Realms (page 175).</td>
</tr>
<tr>
<td>Kerberos Principal</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Browse to the location of the keytab created using the instructions in Kerberos Keytabs (page 176).</td>
</tr>
<tr>
<td>AD timeout</td>
<td>integer</td>
<td>✓</td>
<td>In seconds, increase if the AD service does not start after connecting to the domain.</td>
</tr>
<tr>
<td>DNS timeout</td>
<td>integer</td>
<td>✓</td>
<td>In seconds, increase if AD DNS queries timeout.</td>
</tr>
<tr>
<td>Idmap backend</td>
<td>drop-down menu and Edit</td>
<td>✓</td>
<td>Select the backend to use to map Windows security identifiers (SIDs) to UNIX UIDs and GIDs. See Table 9.2 for a summary of the available backends. Click the Edit link to configure the backend.</td>
</tr>
<tr>
<td>Windbind NSS Info</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Defines the schema to use when querying AD for user/group info. rfc2307 uses the RFC2307 schema support included in Windows 2003 R2, sfu20 is for Services For Unix 3.0 or 3.5, and sfu is for Services For Unix 2.0.</td>
</tr>
<tr>
<td>SASL wrapping</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Defines how LDAP traffic is transmitted. Choices are plain (plain text), sign (signed only), or seal (signed and encrypted). Windows 2000 SP3 and newer can be configured to enforce signed LDAP connections.</td>
</tr>
<tr>
<td>Enable</td>
<td>checkbox</td>
<td></td>
<td>Enable the Active Directory service.</td>
</tr>
<tr>
<td>NetBIOS name</td>
<td>string</td>
<td>✓</td>
<td>Limited to 15 characters. Automatically populated with the original hostname of the system. This must be different from the Workgroup name.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 9.1 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NetBIOS alias</td>
<td>string</td>
<td>✓</td>
<td>Limited to 15 characters.</td>
</tr>
</tbody>
</table>

Table 9.2 summarizes the backends which are available in the Idmap backend drop-down menu. Each backend has its own man page (http://samba.org.ru/samba/docs/man/manpages/) which gives implementation details. Since selecting the wrong backend will break Active Directory integration, a pop-up menu will appear whenever changes are made to this setting.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ad</td>
<td>AD server uses RFC2307 or Services For Unix schema extensions. Mappings must be provided in advance by adding the uidNumber attributes for users and gidNumber attributes for groups in the AD.</td>
</tr>
<tr>
<td>autorid</td>
<td>Similar to rid, but automatically configures the range to be used for each domain, so there is no need to specify a specific range for each domain in the forest. The only needed configuration is the range of UID/GIDs to use for user/group mappings and an optional size for the ranges.</td>
</tr>
<tr>
<td>fruit</td>
<td>Generate IDs the way Apple Mac OS X does, so UID and GID can be identical on all FreeNAS® servers on the network. For use in LDAP (page 172) environments where Apple's Open Directory is the authoritative LDAP server.</td>
</tr>
<tr>
<td>ldap</td>
<td>Stores and retrieves mapping tables in an LDAP directory service. Default for LDAP directory service.</td>
</tr>
<tr>
<td>nss</td>
<td>Provides a simple means of ensuring that the SID for a Unix user is reported as the one assigned to the corresponding domain user.</td>
</tr>
<tr>
<td>rfc2307</td>
<td>An AD server is required to provide the mapping between the name and SID and an LDAP server is required to provide the mapping between the name and the UID/GID.</td>
</tr>
<tr>
<td>rid</td>
<td>Default for AD. Requires an explicit idmap configuration for each domain, using disjoint ranges where a writeable default idmap range is to be defined, using a backend like tdb or ldap.</td>
</tr>
<tr>
<td>script</td>
<td>Stores mapping tables for clustered environments in the winbind_cache tdb.</td>
</tr>
<tr>
<td>tdb</td>
<td>Default backend used by winbindd for storing mapping tables.</td>
</tr>
<tr>
<td>tdb2</td>
<td>Substitute for tdb used by winbindd in clustered environments.</td>
</tr>
</tbody>
</table>

Click Rebuild Directory Service Cache if a new Active Directory user needs immediate access to FreeNAS®. This occurs automatically once a day as a cron job.

Note: Active Directory places restrictions on which characters are allowed in Domain and NetBIOS names, a limits the length of those names to 15 characters. If there are problems connecting to the realm, verify (https://support.microsoft.com/en-us/help/909264/naming-conventions-in-active-directory-for-computers-domains-sites-and) the settings do not include any disallowed characters. The Administrator account password cannot contain the $ character. If a $ exists in the domain administrator's password, kinit will report a “Password Incorrect” error and ldap_bind will report an “Invalid credentials (49)” error.

It can take a few minutes after configuring the Active Directory service for the AD information to be populated to the FreeNAS® system. Once populated, the AD users and groups will be available in the drop-down menus of the Permissions screen of a volume/dataset. For performance reasons, every available user may not show in the listing. However, it will autocomplete all applicable users when typing in a username.

The Active Directory users and groups that are imported to the FreeNAS® system are shown by typing commands in the FreeNAS® Shell (page 297):

- View users: `wbinfo -u`
- View groups: `wbinfo -g`
In addition, `wbinfo -t` tests the connection and, if successful, shows a message similar to:

```
checking the trust secret for domain YOURDOMAIN via RPC calls succeeded
```

To manually check that a specified user can authenticate, use `net ads join -S dcname -U username`.

`getent passwd` and `getent group` can provide more troubleshooting information if no users or groups are listed in the output.

Tip: Sometimes network users do not appear in the drop-down menu of a Permissions screen but the `wbinfo` commands display these users. This is typically due to the FreeNAS® system taking longer than the default ten seconds to join Active Directory. Increase the value of AD timeout to 60 seconds.

To change a certificate, set the Encryption Mode to Off, then disable AD by unchecking Enable. Click Save. Select the new Certificate, set the Encryption Mode as desired, check Enable to re-enable AD, and click Save to restart AD.

9.1.1 Troubleshooting Tips

Active Directory uses DNS to determine the location of the domain controllers and global catalog servers in the network. Use `host -t srv ldap._tcp.domainname.com` to determine the SRV records of the network and change the weight and/or priority of the SRV record to reflect the fastest server. More information about SRV records can be found in the TechNet article *How DNS Support for Active Directory Works* ([https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc759550(v=ws.10)]).

The realm used depends upon the priority in the SRV DNS record. DNS can override the system Active Directory settings. When unable to connect to the correct realm, check the SRV records on the DNS server.

If the cache becomes out of sync due to an AD server being taken off and back online, resync the cache using Directory Service → Active Directory → Rebuild Directory Service Cache.

An expired password for the administrator account will cause `kinit` to fail. Ensure the password is still valid. Also, double-check the password on the AD account being used does not include any spaces, special symbols, and is not unusually long.

If the Windows server version is lower than 2008 R2, try creating a Computer entry on the Windows server’s OU. When creating this entry, enter the FreeNAS® hostname in the name field. Make sure it is under 15 characters, the same name as the one set in the Hostname field in Network → Global Configuration, and the same NetBIOS Name in Directory Service → Active Directory settings. Make sure the hostname of the domain controller is set in the Domain Controller field of Directory Service → Active Directory.

9.1.2 If the System Will not Join the Domain

If the system will not join the Active Directory domain, run these commands in the order listed. `echo` commands will return a value of 0 and `klist` will show a Kerberos ticket:

```
sqlite3 /data/freenas-v1.db "update directoryservice_activedirectory set ad_enable=1;"
echo $?
service ix-kerberos start
service ix-nsswitch start
service ix-kinit start
service ix-kinit status
echo $?
klist
```

If the cache becomes out of sync due to an AD server being taken off and back online, resync the cache using Directory Service → Active Directory → Rebuild Directory Service Cache.
Note: If any of the commands fail or result in a traceback, create a bug report at https://redmine.ixsystems.com/projects/freenas/issues that includes the commands in the order in which they were run and the exact wording of the error message or traceback.

Next, only run these two commands if Unix extensions is set in Advanced Mode and a keytab has been uploaded using Kerberos Keytabs (page 176):

```
service ix-sssd start
service sssd start
```

Finally, run these commands. `echo` returns a 0 unless something has gone wrong:

```
python /usr/local/www/freenasUI/middleware/notifier.py start cifs
service ix-activedirectory start
service ix-activedirectory status
echo $?
python /usr/local/www/freenasUI/middleware/notifier.py restart cifs
service ix-pam start
service ix-cache start &
```

9.2 LDAP

FreeNAS® includes an OpenLDAP (http://www.openldap.org/) client for accessing information from an LDAP server. An LDAP server provides directory services for finding network resources such as users and their associated permissions. Examples of LDAP servers include Microsoft Server (2000 and newer), Mac OS X Server, Novell eDirectory, and OpenLDAP running on a BSD or Linux system. If an LDAP server is running on the network, configure the FreeNAS® LDAP service so network users can authenticate to the LDAP server and have authorized access to the data stored on the FreeNAS® system.

Note: LDAP authentication for SMB shares is disabled unless the LDAP directory has been configured for and populated with Samba attributes. The most popular script for performing this task is [smbldap-tools](https://wiki.samba.org/index.php/4.1_smbldap-tools). In addition, the LDAP server must support SSL/TLS and the certificate for the LDAP server CA must be imported with System → Certificates → Import Certificate. Note that non-CA certificates are not supported at this time.

Figure 9.2 shows the LDAP Configuration screen that is seen after clicking Directory Service → LDAP.
Table 9.3 summarizes the available configuration options. Some settings are only available in Advanced Mode. To see these settings, either click the Advanced Mode button or configure the system to always display these settings by checking the box Show advanced fields by default in System → Advanced.

Those new to LDAP terminology should read the OpenLDAP Software 2.4 Administrator’s Guide (http://www.openldap.org/doc/admin24/).

Table 9.3: LDAP Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname</td>
<td>string</td>
<td></td>
<td>Hostname or IP address of the LDAP server.</td>
</tr>
<tr>
<td>Base DN</td>
<td>string</td>
<td></td>
<td>Top level of the LDAP directory tree to be used when searching for resources. Example: dc=test,dc=org.</td>
</tr>
<tr>
<td>Bind DN</td>
<td>string</td>
<td></td>
<td>Name of administrative account on the LDAP server. Example: cn=Manager,dc=test,dc=org.</td>
</tr>
<tr>
<td>Bind password</td>
<td>string</td>
<td></td>
<td>Password for Root bind DN.</td>
</tr>
<tr>
<td>Allow Anonymous Binding</td>
<td>checkbox</td>
<td>✓</td>
<td>Instructs the LDAP server to not provide authentication and to allow read and write access to any client.</td>
</tr>
<tr>
<td>User Suffix</td>
<td>string</td>
<td>✓</td>
<td>Optional. Can be added to the name when the user account is added to the LDAP directory. Example: dept. or company name.</td>
</tr>
<tr>
<td>Group Suffix</td>
<td>string</td>
<td>✓</td>
<td>Optional. Can be added to the name when the group is added to the LDAP directory. Example: dept. or company name.</td>
</tr>
<tr>
<td>Password Suffix</td>
<td>string</td>
<td>✓</td>
<td>Optional. Can be added to the password when the password is added to LDAP directory.</td>
</tr>
<tr>
<td>Machine Suffix</td>
<td>string</td>
<td>✓</td>
<td>Optional. Can be added to the name when the system added to the LDAP directory. Example: server, accounting.</td>
</tr>
<tr>
<td>SUDO Suffix</td>
<td>string</td>
<td>✓</td>
<td>Use if LDAP-based users need superuser access.</td>
</tr>
</tbody>
</table>
Table 9.3 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kerberos Realm</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Select the realm created using the instructions in Kerberos Realms (page 175).</td>
</tr>
<tr>
<td>Kerberos Principal</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Browse to the location of the principal in the keytab created as described in Kerberos Keytabs (page 176).</td>
</tr>
<tr>
<td>Encryption Mode</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Choices are Off, SSL, or TLS. Note that either SSL or TLS and a Certificate must be selected in order for authentication to work.</td>
</tr>
<tr>
<td>Certificate</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Select the certificate of the LDAP CA (required if authentication is used). The certificate for the LDAP server CA must first be imported with System → Certificates → Import Certificate.</td>
</tr>
<tr>
<td>LDAP timeout</td>
<td>integer</td>
<td>✓</td>
<td>Increase this value (in seconds) if obtaining a Kerberos ticket times out.</td>
</tr>
<tr>
<td>DNS timeout</td>
<td>integer</td>
<td>✓</td>
<td>Increase this value (in seconds) if DNS queries timeout.</td>
</tr>
<tr>
<td>Idmap backend</td>
<td>drop-down menu and Edit</td>
<td>✓</td>
<td>Select the backend to use to map Windows security identifiers (SIDs) to UNIX UIDs and GIDs. See Table 9.2 for a summary of the available backends. Click the Edit link to configure the selected backend.</td>
</tr>
<tr>
<td>Samba Schema</td>
<td>checkbox</td>
<td>✓</td>
<td>Set if LDAP authentication for SMB shares is needed and the LDAP server is already configured with Samba attributes.</td>
</tr>
<tr>
<td>Auxiliary Parameters</td>
<td>string</td>
<td>✓</td>
<td>Additional options for sssd.conf(5) (https://jhrozek.fedorapeople.org/sssd/1.11.6/man/sssd.conf.5.html).</td>
</tr>
<tr>
<td>Schema</td>
<td>drop-down menu</td>
<td>✓</td>
<td>If Samba Schema is set, select the schema to use. Choices are rfc2307 and rfc2307bis.</td>
</tr>
<tr>
<td>Enable</td>
<td>checkbox</td>
<td></td>
<td>Unset to disable the configuration without deleting it.</td>
</tr>
<tr>
<td>NetBIOS Name</td>
<td>string</td>
<td>✓</td>
<td>Limited to 15 characters. Automatically populated with the original hostname of the system. This must be different from the Workgroup name</td>
</tr>
<tr>
<td>NetBIOS Alias</td>
<td>string</td>
<td>✓</td>
<td>Limited to 15 characters.</td>
</tr>
</tbody>
</table>

Click the Rebuild Directory Service Cache button after adding a user to LDAP who needs immediate access to FreeNAS®. Otherwise this occurs automatically once a day as a cron job.

Note: FreeNAS® automatically appends the root DN. This means the scope and root DN are not to be included when configuring the user, group, password, and machine suffixes.

LDAP users and groups appear in the drop-down menus of the gui label:Permissions screen of a dataset after configuring the LDAP service. Type `getent passwd` from Shell (page 297) to verify the users have been imported. Type `getent group` to verify the groups have been imported.

If the users and groups are not listed, refer to Common errors encountered when using OpenLDAP Software (http://www.openldap.org/doc/admin24/appendix-common-errors.html) for common errors and how to fix them. When troubleshooting LDAP, open Shell (page 297) and look for error messages in `/var/log/auth.log`.

9.3 NIS

The Network Information Service (NIS) maintains and distributes a central directory of Unix user and group information, hostnames, email aliases, and other text-based tables of information. If an NIS server is running on the network, the FreeNAS® system can be configured to import the users and groups from the NIS directory.

Note: In Windows Server 2016, Microsoft removed the Identity Management for Unix (IDMU) and NIS Server Role. See Clarification regarding the status of Identity Management for Unix (IDMU) & NIS Server Role in Windows Server 2016 Techni-

Figure 9.3 shows the configuration screen which opens after navigating Directory Service → NIS. Table 9.4 summarizes the configuration options.

![Directory Service Configuration Screen](image)

Table 9.4: NIS Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIS domain</td>
<td>string</td>
<td>Name of NIS domain.</td>
</tr>
<tr>
<td>NIS servers</td>
<td>string</td>
<td>Comma-delimited list of hostnames or IP addresses.</td>
</tr>
<tr>
<td>Secure mode</td>
<td>checkbox</td>
<td>If set, <code>ypbind(8)</code> (https://www.freebsd.org/cgi/man.cgi?query=ypbind) will refuse to bind to any NIS server that is not running as root on a TCP port number over 1024.</td>
</tr>
<tr>
<td>Manycast</td>
<td>checkbox</td>
<td>If set, <code>ypbind</code> will bind to the server that responds the fastest. This is useful when no local NIS server is available on the same subnet.</td>
</tr>
<tr>
<td>Enable</td>
<td>checkbox</td>
<td>Unset to disable the configuration without deleting it.</td>
</tr>
</tbody>
</table>

Click the Rebuild Directory Service Cache button after adding a user to NIS who needs immediate access to FreeNAS®. Otherwise this occurs automatically once a day as a cron job.

9.4 Kerberos Realms

A default Kerberos realm is created for the local system in FreeNAS®. Directory Service → Kerberos Realms can be used to view and add Kerberos realms. If the network contains a KDC, click Add kerberos realm to add the realm. This configuration screen is shown in Figure 9.4.
Table 9.5 summarizes the configurable options. Some settings are only available in Advanced Mode. To see these settings, either click Advanced Mode or configure the system to always display these settings by checking the box Show advanced fields by default in System → Advanced.

Table 9.5: Kerberos Realm Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Realm</td>
<td>string</td>
<td></td>
<td>Mandatory. Name of the realm.</td>
</tr>
<tr>
<td>KDC</td>
<td>string</td>
<td>✓</td>
<td>Name of the Key Distribution Center.</td>
</tr>
<tr>
<td>Admin Server</td>
<td>string</td>
<td>✓</td>
<td>Server where all changes to the database are performed.</td>
</tr>
<tr>
<td>Password Server</td>
<td>string</td>
<td>✓</td>
<td>Server where all password changes are performed.</td>
</tr>
</tbody>
</table>

9.5 Kerberos Keytabs

Kerberos keytabs are used to do Active Directory or LDAP joins without a password. This means the password for the Active Directory or LDAP administrator account does not need to be saved into the FreeNAS® configuration database, which is a security risk in some environments.

When using a keytab, it is recommended to create and use a less privileged account for performing the required queries as the password for that account will be stored in the FreeNAS® configuration database. To create the keytab on a Windows system, use these commands:

```bash
ktpass.exe -out hostname.keytab host/ hostname@DOMAINNAME -ptype KRB5_NT_PRINCIPAL -mapuser DOMAIN\username -pass userpass
setspn -A host/ hostname@DOMAINNAME DOMAIN\username
```

where:
- hostname is the fully qualified hostname of the domain controller.
- DOMAINNAME is the domain name in all caps.
- DOMAIN is the pre-Windows 2000 short name for the domain.
- username is the privileged account name.
- userpass is the password associated with username.

This will create a keytab with sufficient privileges to grant tickets.

After the keytab is generated, use Directory Service → Kerberos Keytabs → Add kerberos keytab to add it to the FreeNAS® system.

To instruct the Active Directory service to use the keytab, select the installed keytab using the drop-down Kerberos keytab menu in Directory Service → Active Directory. When using a keytab with Active Directory, make sure that the “username” and
“userpass” in the keytab matches the “Domain Account Name” and “Domain Account Password” fields in Directory Service → Active Directory.

To instruct LDAP to use a principal from the keytab, select the principal from the drop-down Kerberos Principal menu in Directory Service → LDAP.

9.6 Kerberos Settings

To configure additional Kerberos parameters, use Directory Service → Kerberos Settings. Figure 9.5 shows the fields available:

- **Appdefaults auxiliary parameters**: contains settings used by some Kerberos applications. The available settings and their syntax are listed in the [appdefaults] section of krb.conf(5) (http://web.mit.edu/kerberos/krb5-1.12/doc/admin/conf_files/krb5_conf.html#appdefaults).

- **Libdefaults auxiliary parameters**: contains settings used by the Kerberos library. The available settings and their syntax are listed in the [libdefaults] section of krb.conf(5) (http://web.mit.edu/kerberos/krb5-1.12/doc/admin/conf_files/krb5_conf.html#libdefaults).

![Fig. 9.5: Additional Kerberos Settings](http://example.com/fig95.png)
Shares are created to make part or all of a volume accessible to other computers on the network. The type of share to create depends on factors like which operating systems are being used by computers on the network, security requirements, and expectations for network transfer speeds.

FreeNAS® provides a Wizard (page 289) for creating shares. The Wizard (page 289) automatically creates the correct type of dataset and permissions for the type of share, sets the default permissions for the share type, and starts the service needed by the share. It is recommended to use the Wizard to create shares, fine-tune the share settings using the instructions in the rest of this chapter if needed, then fine-tune the default permissions from the client operating system to meet the requirements of the network.

Note: Shares are created to provide and control access to an area of storage. Before creating shares, making a list of the users that need access to storage data, which operating systems these users are using, whether all users should have the same permissions to the stored data, and whether these users should authenticate before accessing the data is recommended. This information can help determine which type of shares are needed, whether multiple datasets are needed to divide the storage into areas with different access and permissions, and how complex it will be to set up those permission requirements. Note that shares are used to provide access to data. When a share is deleted, it removes access to data but does not delete the data itself.

These types of shares and services are available:

- **AFP** (page 179): Apple File Protocol shares are often used when the client computers all run macOS. Apple has slowly shifted to preferring **SMB** (page 193) for modern networks, although Time Machine still requires AFP.
- **Unix (NFS)** (page 186): Network File System shares are accessible from Mac OS X, Linux, BSD, and the professional and enterprise versions (but not the home editions) of Windows. This can be a good choice when the client computers do not all run the same operating system but NFS client software is available for all of them.
- **WebDAV** (page 192): WebDAV shares are accessible using an authenticated web browser (read-only) or WebDAV client (https://en.wikipedia.org/wiki/WebDAV#Client_support) running on any operating system.
- **SMB** (page 193): Server Message Block shares, also known as Common Internet File System (CIFS) shares, are accessible by Windows, Mac OS X, Linux, and BSD computers. Access is slower than an NFS share due to the single-threaded design of Samba. SMB provides more configuration options than NFS and is a good choice on a network for Windows systems. However, it is a poor choice if the CPU on the FreeNAS® system is limited; if the CPU is maxed out, upgrade the CPU or consider another type of share.
- **Block (iSCSI)** (page 203): block or iSCSI shares appear as an unformatted disk to clients running iSCSI initiator software or a virtualization solution such as VMware. These are usually used as virtual drives.

Fast access from any operating system can be obtained by configuring the **FTP** (page 223) service instead of a share and using a cross-platform FTP file manager application such as **Filezilla** (https://filezilla-project.org/). Secure FTP can be configured if the data needs to be encrypted.

When data security is a concern and the network users are familiar with SSH command line utilities or **WinSCP** (https://winscp.net/eng/index.php), consider using the **SSH** (page 243) service instead of a share. It is slower than unencrypted FTP due to the encryption overhead, but the data passing through the network is encrypted.
Note: It is generally a mistake to share a volume or dataset with more than one share type or access method. Different types of shares and services use different file locking methods. For example, if the same volume is configured to use both NFS and FTP, NFS will lock a file for editing by an NFS user, but an FTP user can simultaneously edit or delete that file. This results in lost edits and confused users. Another example: if a volume is configured for both AFP and SMB, Windows users can be confused by the "extra" filenames used by Mac files and delete them. This corrupts the files on the AFP share. Pick the one type of share or service that makes the most sense for the types of clients accessing that volume, and use that single type of share or service. To support multiple types of shares, divide the volume into datasets and use one dataset per share.

This section demonstrates configuration and fine-tuning of AFP, NFS, SMB, WebDAV, and iSCSI shares. FTP and SSH configurations are described in Services (page 216).

10.1 Apple (AFP) Shares

FreeNAS® uses the Netatalk (http://netatalk.sourceforge.net/) AFP server to share data with Apple systems. This section describes the configuration screen for fine-tuning AFP shares created using the Wizard (page 289). It then provides configuration examples for using the Wizard (page 289) to create a guest share, configuring Time Machine to back up to a dataset on the FreeNAS® system, and for connecting to the share from a macOS client.

To view the AFP share created by the Wizard, click Sharing → Apple (AFP) and highlight the name of the share. Click its Edit button to see the configuration options shown in Figure 10.1. The values showing for these options will vary, depending upon the information given when the share was created.

![Add Apple (AFP) Share](image)

Fig. 10.1: Creating an AFP Share

Note: Table 10.1 summarizes the options available to fine-tune an AFP share. Leaving these options at the default settings is recommended as changing them can cause unexpected behavior. Most settings are only available with Advanced Mode.
Do not change an advanced option without fully understanding the function of that option. Refer to Setting up Netatalk (http://netatalk.sourceforge.net/2.2/htmldocs/configuration.html) for a more detailed explanation of these options.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path</td>
<td>browse button</td>
<td></td>
<td>Browse to the volume/dataset to share. Do not nest additional volumes, datasets, or symbolic links beneath this path because Netatalk does not fully support that.</td>
</tr>
<tr>
<td>Use as home share</td>
<td>checkbox</td>
<td></td>
<td>Set to allow the share to host user home directories. Only one share can be used as the home share.</td>
</tr>
<tr>
<td>Name</td>
<td>string</td>
<td></td>
<td>Enter the volume name that appears in macOS after selecting Go → Connect to server in the Finder menu. Limited to 27 characters and cannot contain a period.</td>
</tr>
<tr>
<td>Share Comment</td>
<td>string</td>
<td>✓</td>
<td>Enter an optional comment.</td>
</tr>
<tr>
<td>Allow List</td>
<td>string</td>
<td>✓</td>
<td>Comma-delimited list of allowed users and/or groups where groupname begins with a @. Note that adding an entry will deny any user/group that is not specified.</td>
</tr>
<tr>
<td>Deny List</td>
<td>string</td>
<td>✓</td>
<td>Comma-delimited list of denied users and/or groups where groupname begins with a @. Note that adding an entry will allow all users/groups that are not specified.</td>
</tr>
<tr>
<td>Read-only Access</td>
<td>string</td>
<td>✓</td>
<td>Comma-delimited list of users and/or groups who only have read access where groupname begins with a @.</td>
</tr>
<tr>
<td>Read-write Access</td>
<td>string</td>
<td>✓</td>
<td>Comma-delimited list of users and/or groups who have read and write access where groupname begins with a @.</td>
</tr>
<tr>
<td>Time Machine</td>
<td>checkbox</td>
<td></td>
<td>Set to advertise FreeNAS® as a Time Machine disk so it can be found by Macs. Setting multiple shares for Time Machine use is not recommended. When multiple Macs share the same pool, low disk space issues and intermittently failed backups can occur.</td>
</tr>
<tr>
<td>Zero Device Numbers</td>
<td>checkbox</td>
<td>✓</td>
<td>Enable when the device number is not constant across a reboot.</td>
</tr>
<tr>
<td>No Stat</td>
<td>checkbox</td>
<td>✓</td>
<td>If enabled, AFP does not stat the volume path when enumerating the volumes list. Useful for automounting or volumes created by a preexec script.</td>
</tr>
<tr>
<td>AFP3 UNIX Privs</td>
<td>checkbox</td>
<td>✓</td>
<td>Set to enable Unix privileges supported by OSX 10.5 and higher. Do not enable this if the network contains macOS 10.4 clients or lower as they do not support this feature.</td>
</tr>
<tr>
<td>Default file permission</td>
<td>checkboxes</td>
<td>✓</td>
<td>Only works with Unix ACLs. New files created on the share are set with the selected permissions.</td>
</tr>
<tr>
<td>Default directory permission</td>
<td>checkboxes</td>
<td>✓</td>
<td>Only works with Unix ACLs. New directories created on the share are set with the selected permissions.</td>
</tr>
<tr>
<td>Default umask</td>
<td>integer</td>
<td>✓</td>
<td>Umask is used for newly created files. Default is 000 (anyone can read, write, and execute).</td>
</tr>
<tr>
<td>Hosts Allow</td>
<td>string</td>
<td>✓</td>
<td>Enter a list of allowed hostnames or IP addresses. Separate entries with a comma, space, or tab.</td>
</tr>
<tr>
<td>Hosts Deny</td>
<td>string</td>
<td>✓</td>
<td>Enter a list of denied hostnames or IP addresses. Separate entries with a comma, space, or tab.</td>
</tr>
<tr>
<td>Auxiliary Parameters</td>
<td>string</td>
<td></td>
<td>Additional afp.conf (http://netatalk.sourceforge.net/3.1/htmldocs/afp.conf.5.html) parameters not covered by other option fields.</td>
</tr>
</tbody>
</table>
10.1.1 Creating AFP Guest Shares

AFP supports guest logins, meaning that macOS users can access the AFP share without requiring their user accounts to first be created on or imported into the FreeNAS® system.

Note: When a guest share is created along with a share that requires authentication, AFP only maps users who log in as guest to the guest share. If a user logs in to the share that requires authentication, permissions on the guest share can prevent that user from writing to the guest share. The only way to allow both guest and authenticated users to write to a guest share is to set the permissions on the guest share to 777 or to add the authenticated users to a guest group and set the permissions to 77x.

Before creating a guest share, go to Services → AFP and make sure that the Guest Access option is enabled.

To create the AFP guest share, click Wizard, then click the Next button twice to display the screen shown in Figure 10.2. Complete these fields in this screen:

1. Share name: enter a name for the share that is identifiable but less than 27 characters long. This name cannot contain a period. In this example, the share is named afp_guest.
2. Click the button for Mac OS X (AFP).
3. Click the Ownership button. Click the drop-down User menu and select nobody. Click the Return button to return to the previous screen.
4. Click the Add button. The share is not created until the button is clicked. Clicking the Add button adds an entry to the Name frame with the name that was entered in Share name.

![Wizard](image_url)
Fig. 10.2: Creating a Guest AFP Share
Click the Next button twice, then the Confirm button to create the share. The Wizard automatically creates a dataset for the share that contains the correct default permissions and starts the AFP service so the share is immediately available. The new share is also added as an entry to Sharing → Apple (AFP).

macOS users can connect to the guest AFP share by navigating to Go → Connect to Server. In the example shown in Figure 10.3, the user entered afp:// followed by the IP address of the FreeNAS® system.

Click the Connect button. Once connected, Finder opens automatically. The name of the AFP share is displayed in the SHARED section in the left frame and the contents of any data saved in the share is displayed in the right frame.

To disconnect from the volume, click the eject button in the Shared sidebar.

10.1.2 Creating Authenticated and Time Machine Shares

macOS includes the Time Machine application which can be used to schedule automatic backups. In this configuration example, a Time Machine user will be configured to backup to an AFP share on a FreeNAS® system. Creating a separate Time Machine share for each user that will be using Time Machine to backup their macOS system to FreeNAS® is recommended.

The process for creating an authenticated share for a user is the same as creating a Time Machine share for that user. To use the Wizard to create an authenticated or Time Machine share, enter the following information, as seen in the example in Figure 10.4.

1. Share name: enter a name for the share that is identifiable but less than 27 characters long. The name cannot contain a period. In this example, the share is named backup_user1.
2. Click the button for Mac OS X (AFP) and enable the for Time Machine option.
3. Click the Ownership button. If the user already exists on the FreeNAS® system, click the drop-down User menu to select their user account. If the user does not yet exist on the FreeNAS® system, type their name into the User field and enable the Create User option. If the user will be a member of a group that already exists on the FreeNAS® system, click the drop-down Group menu to select the group name. To create a new group to be used by Time Machine users, enter the name in the Group field and set the Create Group option. Otherwise, enter the same name as the user. In the example shown in Figure 10.5, both a new user1 user and a new tm_backups group will be created. Since a new user is being created, this screen prompts for the user password to be used when accessing the share. It also provides
an opportunity to change the default permissions on the share. When finished, click Return to return to the screen shown in Figure 10.4.

4. Click the Add button. Remember to do this or the share will not be created. Clicking the Add button adds an entry to the Name frame with the name that was entered in Share name.

To configure multiple authenticated or Time Machine shares, repeat for each user, giving each user their own Share name and Ownership. When finished, click the Next button twice, then the Confirm button to create the shares. The Wizard automatically creates a dataset for each share with the correct ownership and starts the AFP service so the shares are immediately available. The new shares will appear in Sharing → Apple (AFP).

![Wizard](image)

Fig. 10.4: Creating a Time Machine Share
At this point, it may be desirable to configure a quota for each Time Machine share, to restrict backups from using all of the available space on the FreeNAS® system. The first time Time Machine makes a backup, it will create a full backup after waiting two minutes. It will then create a one hour incremental backup for the next 24 hours, and then one backup each day, each week and each month. Since the oldest backups are deleted when a Time Machine share becomes full, make sure that the quota size is sufficient to hold the desired number of backups. Note that a default installation of macOS is ~21 GB in size.

To configure a quota, go to Storage → Volumes and highlight the entry for the share. In the example shown in Figure 10.6, the Time Machine share name is backup_user1. Click the Edit Options button for the share, then Advanced Mode. Enter a value in the Quota for this dataset field, then click Edit Dataset to save the change. In this example, the Time Machine share is restricted to 200 GB.
Note: An alternative is to create a global quota using the instructions in Set up Time Machine for multiple machines with OSX Server-Style Quotas (https://forums.freenas.org/index.php?threads/how-to-set-up-time-machine-for-multiple-machines-with-osx-server-style-quotas.47173/).

To configure Time Machine on the macOS client, go to System Preferences → Time Machine which opens the screen shown in Figure 10.7. Click ON and a pop-up menu shows the FreeNAS® system as a backup option. In this example, it is listed as backup_user1 on "freenas". Highlight the FreeNAS® system and click Use Backup Disk. A connection bar opens and prompts for the user account's password—in this example, the password that was set for the user1 account.

![Fig. 10.7: Configuring Time Machine on Mac OS X Lion](image)

If Time Machine could not complete the backup. The backup disk image could not be created (error 45) is shown when backing up to the FreeNAS® system, a sparsebundle image must be created using these instructions (https://community.netgear.com/t5/Stora-Legacy/Solution-to-quot-Time-Machine-could-not-complete-the-backup/td-p/294697).

If Time Machine completed a verification of your backups. To improve reliability, Time Machine must create a new backup for you. is shown, follow the instructions in this post (http://www.garth.org/archives/2011,08,27,169,fix-time-machine-sparsebundle-nas-based-backup-errors.html) to avoid making another backup or losing past backups.
10.2 Unix (NFS) Shares

FreeNAS® supports sharing over the Network File System (NFS). Clients use the `mount` command to mount the share. Once mounted, the NFS share appears as just another directory on the client system. Some Linux distros require the installation of additional software in order to mount an NFS share. On Windows systems, enable Services for NFS in the Ultimate or Enterprise editions or install an NFS client application.

Note: For performance reasons, iSCSI is preferred to NFS shares when FreeNAS® is installed on ESXi. When considering creating NFS shares on ESXi, read through the performance analysis at Running ZFS over NFS as a VMware Store (http://blog.laspina.ca/ubiquitous/running-zfs-over-nfs-as-a-vmware-store).

To create an NFS share using the **Wizard** (page 289), click the Next button twice to display the screen shown in Figure 10.8. Enter a Share name. Spaces are not allowed in these names. Click the button for Generic Unix (NFS), then click Add so the share name appears in the Name frame. When finished, click the Next button twice, then the Confirm button to create the share. Creating an NFS share using the wizard automatically creates a new dataset for the share, starts the services required for NFS, and adds an entry in Sharing → Unix (NFS) Shares. Depending on the requirements, the IP addresses that are allowed to access the NFS share can be restricted, or the permissions adjusted.

NFS shares are edited by clicking Sharing → Unix (NFS), highlighting the entry for the share, and clicking the Edit button. In the example shown in Figure 10.9, the configuration screen is open for the nfs_share1 share.
Table 10.2 summarizes the available configuration options in this screen. Some settings are only available by clicking the Advanced Mode button.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path</td>
<td>browse button</td>
<td></td>
<td>Browse to the volume or dataset to be shared. Click Add extra path to select multiple paths.</td>
</tr>
<tr>
<td>Comment</td>
<td>string</td>
<td></td>
<td>Set the share name. If left empty, share name is the list of selected Path entries.</td>
</tr>
<tr>
<td>Authorized networks</td>
<td>string</td>
<td>✓</td>
<td>Space-delimited list of allowed networks in network/mask CIDR notation, like 1.2.3.0/24. Leave empty to allow all.</td>
</tr>
<tr>
<td>Authorized IP addresses or hosts</td>
<td>string</td>
<td>✓</td>
<td>Space-delimited list of allowed IP addresses or hostnames. Leave empty to allow all.</td>
</tr>
<tr>
<td>All directories</td>
<td>checkbox</td>
<td></td>
<td>Set to allow the client to mount any subdirectory within the Path.</td>
</tr>
<tr>
<td>Read only</td>
<td>checkbox</td>
<td></td>
<td>Set to prohibit writing to the share.</td>
</tr>
<tr>
<td>Quiet</td>
<td>checkbox</td>
<td>✓</td>
<td>Set to inhibit some syslog diagnostics to avoid some error messages. See exports(5) (https://www.freebsd.org/cgi/man.cgi?query=exports) for examples.</td>
</tr>
<tr>
<td>Maproot User</td>
<td>drop-down menu</td>
<td></td>
<td>When a user is selected, the root user is limited to the permissions of that user.</td>
</tr>
<tr>
<td>Maproot Group</td>
<td>drop-down menu</td>
<td>✓</td>
<td>When a group is selected, the root user is also limited to the permissions of that group.</td>
</tr>
</tbody>
</table>
When creating NFS shares, keep these points in mind:

1. Clients will specify the Path when mounting the share.
2. The Maproot and Mapall options are exclusive, meaning only one can be used as the GUI does not allow both. The Mapall options supersede the Maproot options. To restrict only the root user’s permissions, set the Maproot option. To restrict permissions of all users, set the Mapall options.
3. Each volume or dataset is considered to be its own filesystem and NFS is not able to cross filesystem boundaries.
4. The network must be unique per share and per filesystem or directory. Since /etc/exports does not act like an ACL, the rule to apply is undefined among overlapping networks or when using the same share with multiple hosts.
5. The All directories option can only be used once per share per filesystem.

To better understand these restrictions, consider a scenario where there are:

- two networks, 10.0.0.0/8 and 20.0.0.0/8
- a ZFS volume named volume1 with 2 datasets named dataset1 and dataset2
- dataset1 contains a directory named directory1

Because of restriction #3, an error is shown when trying to create one NFS share like this:

- Authorized networks set to 10.0.0.0/8 20.0.0.0/8
- Path set to /mnt/volume1/dataset1 and /mnt/volume1/dataset1/directory1

Instead, set a Path of /mnt/volume1/dataset1 and check the All directories box.

That directory could also be restricted to one of the networks by creating two shares instead:

First NFS share:
- Authorized networks set to 10.0.0.0/8
- Path set to /mnt/volume1/dataset1

Second NFS share:
- Authorized networks set to 20.0.0.0/8
- Path set to /mnt/volume1/dataset1/directory1

Note that this requires the creation of two shares. It cannot be done with only one share.

10.2.1 Example Configuration

By default, the Mapall fields are not set. This means that when a user connects to the NFS share, the user has the permissions associated with their user account. This is a security risk if a user is able to connect as root as they will have complete access to the share.

A better option is to do this:
1. Specify the built-in nobody account to be used for NFS access.

2. In the Change Permissions screen of the volume/dataset that is being shared, change the owner and group to nobody and set the permissions according to the desired requirements.

3. Select nobody in the Mapall User and Mapall Group drop-down menus for the share in Sharing → Unix (NFS) Shares. With this configuration, it does not matter which user account connects to the NFS share, as it will be mapped to the nobody user account and will only have the permissions that were specified on the volume/dataset. For example, even if the root user is able to connect, it will not gain root access to the share.

10.2.2 Connecting to the Share

The following examples share this configuration:

1. The FreeNAS® system is at IP address 192.168.2.2.

2. A dataset named `/mnt/volume1/nfs_share1` is created and the permissions set to the nobody user account and the nobody group.

3. An NFS share is created with these attributes:
 - **Path:** `/mnt/volume1/nfs_share1`
 - **Authorized Networks:** 192.168.2.0/24
 - **All Directories** option is enabled
 - **MapAll User** is set to nobody
 - **MapAll Group** is set to nobody

10.2.2.1 From BSD or Linux

NFS shares are mounted on BSD or Linux clients with this command executed as the superuser (root) or with `sudo`:

```
mount -t nfs 192.168.2.2:/mnt/volume1/nfs_share1 /mnt
```

- `-t nfs` specifies the filesystem type of the share
- `192.168.2.2` is the IP address of the FreeNAS® system
- `/mnt/volume1/nfs_share1` is the name of the directory to be shared, a dataset in this case
- `/mnt` is the mountpoint on the client system. This must be an existing, empty directory. The data in the NFS share appears in this directory on the client computer.

A successful mounting of the share returns to the command prompt without any status or error messages.

Note: If this command fails on a Linux system, make sure that the `nfs-utils` (https://sourceforge.net/projects/nfs/files/nfs-utils/) package is installed.

This configuration allows users on the client system to copy files to and from `/mnt` (the mount point). All files are owned by nobody:nobody. Changes to any files or directories in `/mnt` are written to the FreeNAS® system's `/mnt/volume1/nfs_share1` dataset.

Settings cannot be changed on the NFS share if it is mounted on any client computers. The `umount` command is used to unmount the share on BSD and Linux clients. Run it as the superuser or with `sudo` on each client computer:

```
umount /mnt
```

10.2.2.2 From Microsoft

Windows NFS client support varies with versions and releases. For best results, use Windows (SMB) Shares (page 193).
10.2.2.3 From macOS

To mount the NFS volume from a macOS client, go to Go → Connect to Server. In the Server Address field, enter nfs:// followed by the IP address of the FreeNAS® system and the name of the volume/dataset being shared by NFS. The example shown in Figure 10.10 continues with our example of 192.168.2.2:/mnt/volume1/nfs_share1.

Finder opens automatically after connecting. The IP address of the FreeNAS® system is displayed in the SHARED section in the left frame and the contents of the share are displayed in the right frame. In the example shown in Figure 10.11, /mnt/data has one folder named images. The user can now copy files to and from the share.

![Connect to Server](image)

Fig. 10.10: Mounting the NFS Share from macOS
10.2.3 Troubleshooting NFS

Some NFS clients do not support the NLM (Network Lock Manager) protocol used by NFS. This is the case if the client receives an error that all or part of the file may be locked when a file transfer is attempted. To resolve this error, add the option \texttt{-o nolock} when running the \texttt{mount} command on the client to allow write access to the NFS share.

If a “time out giving up” error is shown when trying to mount the share from a Linux system, make sure that the portmapper service is running on the Linux client. If portmapper is running and timeouts are still shown, force the use of TCP by including \texttt{-o tcp} in the \texttt{mount} command.

If a “RPC: Program not registered” error is shown, upgrade to the latest version of FreeNAS® and restart the NFS service after the upgrade to clear the NFS cache.

If clients see “reverse DNS” errors, add the FreeNAS® IP address in the Host name database field of Network \rightarrow Global Configuration.

If clients receive timeout errors when trying to mount the share, add the client IP address and hostname to the Host name data base field in Network \rightarrow Global Configuration.

Some older versions of NFS clients default to UDP instead of TCP and do not auto-negotiate for TCP. By default, FreeNAS® uses TCP. To support UDP connections, go to Services \rightarrow NFS and enable the Serve UDP NFS clients option.
The `nfsstat -c` or `nfsstat -s` commands can be helpful to detect problems from the Shell (page 297). A high proportion of retries and timeouts compared to reads usually indicates network problems.

10.3 WebDAV Shares

In FreeNAS®, WebDAV shares can be created so that authenticated users can browse the contents of the specified volume, dataset, or directory from a web browser.

Configuring WebDAV shares is a two step process. First, create the WebDAV shares to specify which data can be accessed. Then, configure the WebDAV service by specifying the port, authentication type, and authentication password. Once the configuration is complete, the share can be accessed using a URL in the format:

```
protocol://IP_address:port_number/share_name
```

where:

- **protocol**: is either http or https, depending upon the Protocol configured in Services → WebDAV.
- **IP address**: is the IP address or hostname of the FreeNAS® system. Take care when configuring a public IP address to ensure that the network firewall only allows access to authorized systems.
- **port_number**: is configured in Services → WebDAV. If the FreeNAS® system is to be accessed using a public IP address, consider changing the default port number and ensure that the network's firewall only allows access to authorized systems.
- **share_name**: is configured in Sharing → WebDAV Shares.

Entering the URL in a web browser brings up an authentication pop-up message. Enter a username of webdav and the password configured in Services → WebDAV.

Warning: At this time, only the webdav user is supported. For this reason, it is important to set a good password for this account and to only give the password to users which should have access to the WebDAV share.

To create a WebDAV share, click Sharing → WebDAV Shares → Add WebDAV Share which will open the screen shown in Figure 10.12.

![Add WebDAV Share](image)

Fig. 10.12: Adding a WebDAV Share

Table 10.3 summarizes the available options.
Table 10.3: WebDAV Share Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share Path Name</td>
<td>string</td>
<td>Enter a name for the share.</td>
</tr>
<tr>
<td>Comment</td>
<td>string</td>
<td>Optional.</td>
</tr>
<tr>
<td>Path</td>
<td>browse button</td>
<td>Browse to the volume/dataset to share.</td>
</tr>
<tr>
<td>Read Only</td>
<td>checkbox</td>
<td>Set to prohibit users from writing to the share.</td>
</tr>
<tr>
<td>Change User & Group Ownership</td>
<td>checkbox</td>
<td>Enable to automatically set the share contents to the webdav user and group.</td>
</tr>
</tbody>
</table>

After clicking OK, a pop-up asks about enabling the service. Once the service starts, review the settings in Services → WebDAV as they are used to determine which URL is used to access the WebDAV share and whether or not authentication is required to access the share. These settings are described in WebDAV (page 249).

10.4 Windows (SMB) Shares

FreeNAS® uses Samba (https://www.samba.org/) to share volumes using Microsoft's SMB protocol. SMB is built into the Windows and macOS operating systems and most Linux and BSD systems pre-install the Samba client in order to provide support for SMB. If the distro did not, install the Samba client using the distro software repository.

The SMB protocol supports many different types of configuration scenarios, ranging from the simple to complex. The complexity of the scenario depends upon the types and versions of the client operating systems that will connect to the share, whether the network has a Windows server, and whether Active Directory is being used. Depending on the authentication requirements, it might be necessary to create or import users and groups.

Samba supports server-side copy of files on the same share with clients from Windows 8 and higher. Copying between two different shares is not server-side. Windows 7 clients support server-side copying with Robocopy ([https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/cc733145(v=ws.11)]).

This chapter starts by summarizing the available configuration options. It demonstrates some common configuration scenarios as well as offering some troubleshooting tips. Reading through this entire chapter before creating any SMB shares is recommended to gain a better understanding of the configuration scenario that meets the specific network requirements.

Tip: Run `smbstatus` from the Shell (page 297) for a list of active connections and users.

Figure 10.13 shows the configuration screen that appears after clicking Sharing → Windows (SMB Shares) → Add Windows (SMB) Share.
Table 10.4 summarizes the options when creating a SMB share. Some settings are only available after clicking the Advanced Mode button. For simple sharing scenarios, Advanced Mode options are not needed. For more complex sharing scenarios, only change an Advanced Mode option after fully understanding the function of that option. `smb.conf(5)` (https://www.freebsd.org/cgi/man.cgi?query=smb.conf&manpath=FreeBSD+11.0-RELEASE+and+Ports) provides more details for each configurable option.

Table 10.4: Options for a SMB Share

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path</td>
<td>browse button</td>
<td></td>
<td>Select volume/dataset/directory to share.</td>
</tr>
<tr>
<td>Use as home share</td>
<td>checkbox</td>
<td></td>
<td>Set to allow this share to hold user home directories. Only one share can be the homes share.</td>
</tr>
<tr>
<td>Name</td>
<td>string</td>
<td></td>
<td>Enter a mandatory name for the share.</td>
</tr>
<tr>
<td>Comment</td>
<td>string</td>
<td>✓</td>
<td>Optional description.</td>
</tr>
<tr>
<td>Apply Default Permissions</td>
<td>checkbox</td>
<td></td>
<td>When enabled, the ACLs grant read and write for the owner/group and read-only for others. Only leave unset when creating a share on a system that already has custom ACLs set.</td>
</tr>
<tr>
<td>Export Read Only</td>
<td>checkbox</td>
<td>✓</td>
<td>Set to prohibit write access to the share.</td>
</tr>
<tr>
<td>Browsable to Network Clients</td>
<td>checkbox</td>
<td>✓</td>
<td>When set, users see the contents of /homes, which includes other home directories of other users. When unset, users see only their own home directory.</td>
</tr>
<tr>
<td>Export Recycle Bin</td>
<td>checkbox</td>
<td>✓</td>
<td>When set, deleted files are moved to a hidden <code>.recycle</code> in the root folder of the share. The <code>.recycle</code> directory can be deleted to reclaim space and is automatically recreated when a file is deleted.</td>
</tr>
<tr>
<td>Show Hidden Files</td>
<td>checkbox</td>
<td>✓</td>
<td>Set to disable the Windows hidden attribute on a new Unix hidden file. Unix hidden filenames start with a dot: <code>.foo</code>. Existing files are not affected. Existing files are not affected.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 10.4 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allow Guest Access</td>
<td>checkbox</td>
<td></td>
<td>Set to allow access to this share without a password. See SMB (page 236) service for more information about guest user permissions.</td>
</tr>
<tr>
<td>Only Allow Guest Access</td>
<td>checkbox</td>
<td>✓</td>
<td>Requires Allow guest access to also be enabled. Forcely guest access for all connections.</td>
</tr>
<tr>
<td>Access Based Share Enumeration</td>
<td>checkbox</td>
<td>✓</td>
<td>When enabled, users can only see the shares they have permission to access. To change the default that grants Everyone access, use the computer management MMC on Windows or the sharesec command-line utility.</td>
</tr>
<tr>
<td>Hosts Allow</td>
<td>string</td>
<td>✓</td>
<td>Enter a list of allowed hostnames or IP addresses. Separate entries with a space, comma, or tab.</td>
</tr>
<tr>
<td>Hosts Deny</td>
<td>string</td>
<td>✓</td>
<td>Enter a list of denied hostnames or IP addresses. Separate entries with a space, comma, or tab, Specify ALL and list any hosts from Hosts Allow to have those hosts take precedence.</td>
</tr>
<tr>
<td>VFS Objects</td>
<td>selection</td>
<td>✓</td>
<td>Adds virtual file system modules to enhance functionality. Table 10.5 summarizes the available modules.</td>
</tr>
<tr>
<td>Periodic Snapshot Task</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Used to configure directory shadow copies on a per-share basis. Select the pre-configured periodic snapshot task to use for the shadow copies of the share. Periodic snapshot must be recursive.</td>
</tr>
<tr>
<td>Auxiliary Parameters</td>
<td>string</td>
<td>✓</td>
<td>Additional smb4.conf parameters not covered by other option fields.</td>
</tr>
</tbody>
</table>

Note the following regarding some of the Advanced Mode settings:

- Hostname lookups add some time to accessing the SMB share. If only using IP addresses, unset the Hostnames lookups option in Services → SMB.

- When the Browsable to Network Clients option is enabled (the default), the share is visible through Windows File Explorer or through `net view`. When the Use as a home share option is selected, deselecting the Browsable to Network Clients option hides the share named homes so that only the dynamically generated share containing the authenticated user home directory will be visible. By default, the homes share and the user home directory are both visible. Users are not automatically granted read or write permissions on browsable shares. This option provides no real security because shares that are not visible in Windows File Explorer can still be accessed with a UNC path.

- If some files on a shared volume should be hidden and inaccessible to users, put a veto files= line in the Auxiliary Parameters field. The syntax for the veto files option and some examples can be found in the smb.conf manual page (https://www.freebsd.org/cgi/man.cgi?query=smb.conf&manpath=FreeBSD+11.0-RELEASE+and+Ports).

Samba disables NTLMv1 authentication by default for security. Standard configurations of Windows XP and some configurations of later clients like Windows 7 will not be able to connect with NTLMv1 disabled. Security guidance for NTLMv1 and LM network authentication (https://support.microsoft.com/en-us/help/2793313/security-guidance-for-ntlmv1-and-lm-network-authentication) has information about the security implications and ways to enable NTLMv2 on those clients. If changing the client configuration is not possible, NTLMv1 authentication can be enabled by enabling the box NTLMv1 auth in Services → SMB.

Table 10.5 provides an overview of the available VFS modules. Be sure to research each module before adding or deleting it from the Selected column of the VFS Objects field of the share. Some modules need additional configuration after they are added. Refer to Stackable VFS modules (https://www.samba.org/samba/docs/old/Samba3-HOWTO/VFS.html) and the vfs_* man pages (https://www.samba.org/samba/docs/current/man-html/) for more details.

Table 10.5: Available VFS Modules

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>acl_tdb</td>
<td>Stores NTFS ACLs in a tdb file to enable full mapping of Windows ACLs.</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>acl_xattr</td>
<td>Stores NTFS ACLs in Extended Attributes (EAs) to enable the full mapping of Windows ACLs.</td>
</tr>
<tr>
<td>aio_fork</td>
<td>Enables async I/O.</td>
</tr>
<tr>
<td>audit</td>
<td>Logs share access, connects/disconnects, directory opens/creates/removes, and file opens/closes/renames/unlinks/chmods to syslog.</td>
</tr>
<tr>
<td>cacheprime</td>
<td>Primes the kernel file data cache.</td>
</tr>
<tr>
<td>cap</td>
<td>Translates filenames to and from the CAP encoding format, commonly used in Japanese language environments.</td>
</tr>
<tr>
<td>catia</td>
<td>Improves Mac interoperability by translating characters that are unsupported by Windows.</td>
</tr>
<tr>
<td>commit</td>
<td>Tracks the amount of data written to a file and synchronizes it to disk when a specified amount accumulates.</td>
</tr>
<tr>
<td>crossrename</td>
<td>Allows server side rename operations even if source and target are on different physical devices.</td>
</tr>
<tr>
<td>default_quota</td>
<td>Stores the default quotas that are reported to a windows client in the quota record of a user.</td>
</tr>
<tr>
<td>dfs_samba4</td>
<td>Distributed file system for providing an alternative name space, load balancing, and automatic failover.</td>
</tr>
<tr>
<td>dirsort</td>
<td>Sorts directory entries alphabetically before sending them to the client.</td>
</tr>
<tr>
<td>expand_msdfs</td>
<td>Enables support for Microsoft Distributed File System (DFS).</td>
</tr>
<tr>
<td>extd_audit</td>
<td>Sends audit logs to both syslog and the Samba log files.</td>
</tr>
<tr>
<td>fake_acls</td>
<td>Stores file ownership and ACLs as extended attributes.</td>
</tr>
<tr>
<td>fake_perms</td>
<td>Allows roaming profile files and directories to be set as read-only.</td>
</tr>
<tr>
<td>fruit</td>
<td>Enhances macOS support by providing the SMB2 AAPL extension and Netatalk interoperability. Automatically loads catia and streams_xattr but read the caveat in NOTE below table.</td>
</tr>
<tr>
<td>full_audit</td>
<td>Record selected client operations to the system log. If selected, a warning will indicate that Windows 10 clients may experience issues when transferring files to the NAS system when this module is enabled.</td>
</tr>
<tr>
<td>ixnas</td>
<td>Experimental module to improve ACL compatibility with Windows and store DOS attributes as file flags.</td>
</tr>
<tr>
<td>linux_xfs_sgid</td>
<td>Used to work around an old Linux XFS bug.</td>
</tr>
<tr>
<td>media_harmony</td>
<td>Allows Avid editorial workstations to share a network drive.</td>
</tr>
<tr>
<td>netatalk</td>
<td>Eases the co-existence of SMB and AFP shares.</td>
</tr>
<tr>
<td>offline</td>
<td>Marks all files in the share with the DOS offline attribute. This can prevent Windows Explorer from reading files just to make thumbnail images.</td>
</tr>
<tr>
<td>posix_eadb</td>
<td>Provides Extended Attributes (EAs) support so they can be used on filesystems which do not provide native support for EAs.</td>
</tr>
<tr>
<td>preopen</td>
<td>Useful for video streaming applications that want to read one file per frame.</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>readahead</td>
<td>Useful for Windows Vista clients reading data using Windows Explorer.</td>
</tr>
<tr>
<td>readonly</td>
<td>Marks a share as read-only for all clients connecting within the configured time period.</td>
</tr>
<tr>
<td>shadow_copy</td>
<td>Allows Microsoft shadow copy clients to browse shadow copies on Windows shares.</td>
</tr>
<tr>
<td>shadow_copy_test</td>
<td>Shadow copy testing.</td>
</tr>
<tr>
<td>shell_snap</td>
<td>Provides shell-script callouts for snapshot creation and deletion operations issued by remote clients using the File Server Remote VSS Protocol (FSRVP).</td>
</tr>
<tr>
<td>skel_opaque</td>
<td>Implements dummy versions of all VFS modules (useful to VFS module developers).</td>
</tr>
<tr>
<td>skel_transparent</td>
<td>Implements dummy passthrough functions of all VFS modules (useful to VFS module developers).</td>
</tr>
<tr>
<td>snapper</td>
<td>Provides the ability for remote SMB clients to access shadow copies of FSRVP snapshots using Windows Explorer.</td>
</tr>
<tr>
<td>streams_depot</td>
<td>Experimental module to store alternate data streams in a central directory. The association with the primary file can be lost due to inode numbers changing when a directory is copied to a new location (see https://marc.info/?l=samba&m=132542069802160&w=2).</td>
</tr>
<tr>
<td>streams_xattr</td>
<td>Enables storing of NTFS alternate data streams in the file system.</td>
</tr>
<tr>
<td>syncops</td>
<td>Ensures metadata operations are performed synchronously.</td>
</tr>
<tr>
<td>time_audit</td>
<td>Logs system calls that take longer than the number of defined milliseconds.</td>
</tr>
<tr>
<td>unityed_media</td>
<td>Allows multiple Avid clients to share a network drive.</td>
</tr>
<tr>
<td>winmsa</td>
<td>Emulate Microsoft’s MoveSecurityAttributes=0 registry option, setting the ACL for file and directory hierarchies to inherit from the parent directory into which they are moved.</td>
</tr>
<tr>
<td>worm</td>
<td>Controls the writability of files and folders depending on their change time and an adjustable grace period.</td>
</tr>
<tr>
<td>xattr_tdb</td>
<td>Stores Extended Attributes (EAs) in a tdb file so they can be used on filesystems which do not provide support for EAs.</td>
</tr>
<tr>
<td>zfs_space</td>
<td>Correctly calculates ZFS space used by the share, including space used by ZFS snapshots, quotas, and reservations; enabled by default.</td>
</tr>
<tr>
<td>zfsacl</td>
<td>Provide ACL extensions for proper integration with ZFS. Enabled by default.</td>
</tr>
</tbody>
</table>

Note: Be careful when using multiple SMB shares, some with and some without fruit. macOS clients negotiate SMB2 AAPL protocol extensions on the first connection to the server, so mixing shares with and without fruit will globally disable AAPL if the first connection occurs without fruit. To resolve this, all macOS clients need to disconnect from all SMB shares and the first reconnection to the server has to be to a fruit-enabled share.

These VFS objects do not appear in the selection box:

- recycle: moves deleted files to the recycle directory instead of deleting them. Controlled by Export Recycle Bin in the SMB share options (page 194).
• shadow_copy2: a more recent implementation of shadow_copy with some additional features. shadow_copy2 and the associated parameters are automatically added to the `smb4.conf` when a Periodic Snapshot Task is selected.

10.4.1 Configuring Unauthenticated Access

SMB supports guest logins, meaning that users can access the SMB share without needing to provide a username or password. This type of share is convenient as it is easy to configure, easy to access, and does not require any users to be configured on the FreeNAS® system. This type of configuration is also the least secure as anyone on the network can access the contents of the share. Additionally, since all access is as the guest user, even if the user inputs a username or password, there is no way to differentiate which users accessed or modified the data on the share. This type of configuration is best suited for small networks where quick and easy access to the share is more important than the security of the data on the share.

To configure an unauthenticated SMB share, click Wizard, then click the Next button twice to display the screen shown in Figure 10.14. Complete the following fields in this screen:

1. Share name: enter a name for the share that is useful. In this example, the share is named smb_insecure.
2. Click the button for Windows (SMB) and enable the Allow Guest option.
3. Click the Ownership button. Click the drop-down User menu and select nobody. Click the Return button to return to the previous screen.
4. Click the Add button. If this step is forgotten, the share will not be created. Clicking the Add button adds an entry to the Name frame with the name that was entered in Share name.
Click the Next button twice, then the Confirm button to create the share. The Wizard automatically creates a dataset for the share and starts the SMB service so the share is immediately available. The new share will appear in Sharing → Windows (SMB).

Users can now access the share from any SMB client and will not be prompted for their username or password. For example, to access the share from a Windows system, open Explorer and click on Network. For this configuration example, a system named FREENAS appears with a share named insecure_smb. The user can copy data to and from the unauthenticated SMB share.

10.4.2 Configuring Authenticated Access Without a Domain Controller

Most configuration scenarios require each user to have their own user account and to authenticate before accessing the share. This allows the administrator to control access to data, provide appropriate permissions to that data, and to determine who accesses and modifies stored data. A Windows domain controller is not needed for authenticated SMB shares, which means that additional licensing costs are not required. However, since there is no domain controller to provide authentication for the network, each user account needs to be created on the FreeNAS® system. This type of configuration scenario is often used in home and small networks as it does not scale well if many users accounts are needed.

Before configuring this scenario, determine which users will need authenticated access. While not required for the configuration, it eases troubleshooting if the username and password that will be created on the FreeNAS® system matches that information on the client system. Next, determine if each user should have their own share to store their own data or if several users will be using the same share. The simpler configuration is to make one share per user as it does not require the creation of groups, adding the correct users to the groups, and ensuring that group permissions are set correctly.

To use the Wizard to create an authenticated SMB share, enter the following information, as shown in the example in Figure 10.15.

1. Share name: enter a name for the share that is useful. In this example, the share is named smb_user1.
2. Click the button for Windows (SMB).
3. Click the Ownership button. To create the user account on the FreeNAS® system, type their name into the User field and enable the Create User option. The user's password is then entered and confirmed. If the user will not be sharing this share with other users, type their name into the Group field and click Create Group. If, however, the share will be used by several users, instead type in a group name and enable the Create Group option. In the example shown in Figure 10.16, user1 has been used for both the user and group name, meaning that this share will only be used by user1. When finished, click Return to return to the screen shown in Figure 10.15.
4. Click the Add button. If this step is forgotten, the share will not be created. Clicking the Add button adds an entry to the Name frame with the name that was entered in Share name.

When configuring multiple authenticated shares, repeat for each user, giving each user their own Share name and Ownership. When finished, click Next twice, then Confirm to create the shares. The Wizard automatically creates a dataset with the correct ownership for each share and starts the SMB service so the shares are available immediately. The new shares are also added to Sharing → Windows (SMB).
The authenticated share can now be tested from any SMB client. For example, to test an authenticated share from a Windows system, open Explorer and click on Network. For this configuration example, a system named FREENAS appears with a share named smb_user1. After clicking smb_user1, a Windows Security pop-up screen prompts for that user's username.
and password. Enter the values that were configured for that share, in this case user user1. After authentication, the user can copy data to and from the SMB share.

To prevent Windows Explorer from hanging when accessing the share, map the share as a network drive. To do this, right-click the share and select Map network drive…. Choose a drive letter from the drop-down menu and click the Finish button.

Note that Windows systems cache a user’s credentials. This can cause issues when testing or accessing multiple authenticated shares as only one authentication is allowed at a time. When authenticating to a share, if problems occur and the username and password are correct, type cmd in the Search programs and files box and use the following command to see if the share is already authenticated. In this example, the user has already authenticated to the smb_user1 share:

```plaintext
net use
New connections will be remembered.

<table>
<thead>
<tr>
<th>Status</th>
<th>Local</th>
<th>Remote</th>
<th>Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>\FREENAS\smb_user1 Microsoft Windows Network</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The command completed successfully.

To clear the cache:

```plaintext
net use * /DELETE
You have these remote connections:
 \FREENAS\smb_user1
Continuing will cancel the connections.

Do you want to continue this operation? <Y/N> [N]: y
```

An additional warning is shown if the share is currently open in Explorer:

```plaintext
There are open files and/or incomplete directory searches pending on the connection to \FREENAS\smb_user1.
Is it OK to continue disconnecting and force them closed? <Y/N> [N]: y
The command completed successfully.
```

The next time a share is accessed with Explorer, a prompt to authenticate will occur.

### 10.4.3 Configuring Shadow Copies

**Shadow Copies** ([https://en.wikipedia.org/wiki/Shadow_copy](https://en.wikipedia.org/wiki/Shadow_copy)), also known as the Volume Shadow Copy Service (VSS) or Previous Versions, is a Microsoft service for creating volume snapshots. Shadow copies can be used to restore previous versions of files from within Windows Explorer. Shadow Copy support is built into Vista and Windows 7. Windows XP or 2000 users need to install the [Shadow Copy client](http://www.microsoft.com/en-us/download/details.aspx?id=16220).

When a periodic snapshot task is created on a ZFS volume that is configured as an SMB share in FreeNAS®, it is automatically configured to support shadow copies.

Before using shadow copies with FreeNAS®, be aware of the following caveats:

- If the Windows system is not fully patched to the latest service pack, Shadow Copies may not work. If no previous versions of files to restore are visible, use Windows Update to make sure that the system is fully up-to-date.
- Shadow copy support only works for ZFS pools or datasets. This means that the SMB share must be configured on a volume or dataset, not on a directory.
- Datasets are filesystems and shadow copies cannot traverse filesystems. To see the shadow copies in the child datasets, create separate shares for them.
- Shadow copies will not work with a manual snapshot. Creating a periodic snapshot task for the pool or dataset being shared by SMB or a recursive task for a parent dataset is recommended.
- The periodic snapshot task should be created and at least one snapshot should exist before creating the SMB share. If the SMB share was created first, restart the SMB service in Services → Control Services.
• Appropriate permissions must be configured on the volume/dataset being shared by SMB.

• Users cannot delete shadow copies on the Windows system due to the way Samba works. Instead, the administrator can remove snapshots from the FreeNAS® administrative GUI. The only way to disable shadow copies completely is to remove the periodic snapshot task and delete all snapshots associated with the SMB share.

To configure shadow copy support, use the instructions in Configuring Authenticated Access Without a Domain Controller (page 199) to create the desired number of shares. In this configuration example, a Windows 7 computer has two users: user1 and user2. For this example, two authenticated shares are created so that each user account has their own share. The first share is named user1 and the second share is named user2. Then:

1. Use Storage → Periodic Snapshot Tasks → Add Periodic Snapshot to create at least one periodic snapshot task. There are two options for snapshot tasks. One is to create a snapshot task for each user’s dataset. In this example the datasets are /mnt/volume1/user1 and /mnt/volume1/user2. Another option is to create one periodic snapshot task for the entire volume, file:/mnt/volume1 in this case. Before continuing to the next step, confirm that at least one snapshot for each defined task is displayed in the Storage → Snapshots tab. When creating the schedule for the periodic snapshot tasks, keep in mind how often the users need to access modified files and during which days and time of day they are likely to make changes.

2. Go to Sharing → Windows (SMB) Shares. Highlight a share and click Edit, then Advanced Mode. Click the Periodic Snapshot Task drop-down menu and select the periodic snapshot task to use for that share. Repeat for each share being configured as a shadow copy. For this example, the share named /mnt/volume1/user1 is configured to use a periodic snapshot task that was configured to take snapshots of the /mnt/volume1/user1 dataset and the share named /mnt/volume1/user2 is configured to use a periodic snapshot task that was configured to take snapshots of the /mnt/volume1/user2 dataset.

3. Verify that the SMB service is set to ON in Services → Control Services.

Figure 10.17 provides an example of using shadow copies while logged in as user1 on the Windows system. In this example, the user right-clicked modified file and selected Restore previous versions from the menu. This particular file has three versions: the current version, plus two previous versions stored on the FreeNAS® system. The user can choose to open one of the previous versions, copy a previous version to the current folder, or restore one of the previous versions, overwriting the existing file on the Windows system.
10.5 Block (iSCSI)

iSCSI is a protocol standard for the consolidation of storage data. iSCSI allows FreeNAS® to act like a storage area network (SAN) over an existing Ethernet network. Specifically, it exports disk devices over an Ethernet network that iSCSI clients (called initiators) can attach to and mount. Traditional SANs operate over fibre channel networks which require a fibre channel infrastructure such as fibre channel HBAs, fibre channel switches, and discrete cabling. iSCSI can be used over an existing Ethernet network, although dedicated networks can be built for iSCSI traffic in an effort to boost performance. iSCSI also provides an advantage in an environment that uses Windows shell programs; these programs tend to filter “Network Location” but iSCSI mounts are not filtered.

Before configuring the iSCSI service, be familiar with this iSCSI terminology:

CHAP: an authentication method which uses a shared secret and three-way authentication to determine if a system is authorized to access the storage device and to periodically confirm that the session has not been hijacked by another system.
In iSCSI, the initiator (client) performs the CHAP authentication.

Mutual CHAP: a superset of CHAP in that both ends of the communication authenticate to each other.

Initiator: a client which has authorized access to the storage data on the FreeNAS® system. The client requires initiator software to initiate the connection to the iSCSI share.

Target: a storage resource on the FreeNAS® system. Every target has a unique name known as an iSCSI Qualified Name (IQN).

Internet Storage Name Service (iSNS): protocol for the automated discovery of iSCSI devices on a TCP/IP network.

Extent: the storage unit to be shared. It can either be a file or a device.

Portal: indicates which IP addresses and ports to listen on for connection requests.

LUN: Logical Unit Number representing a logical SCSI device. An initiator negotiates with a target to establish connectivity to a LUN. The result is an iSCSI connection that emulates a connection to a SCSI hard disk. Initiators treat iSCSI LUNs as if they were a raw SCSI or SATA hard drive. Rather than mounting remote directories, initiators format and directly manage filesystems on iSCSI LUNs. When configuring multiple iSCSI LUNs, create a new target for each LUN. Since iSCSI multiplexes a target with multiple LUNs over the same TCP connection, there can be TCP contention when more than one target accesses the same LUN. FreeNAS® supports up to 1024 LUNs.

In FreeNAS®, iSCSI is built into the kernel. This version of iSCSI supports Microsoft Offloaded Data Transfer (ODX) (https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/hh831628(v=ws.11)), meaning that file copies happen locally, rather than over the network. It also supports the VAAI (page 331) (vStorage APIs for Array Integration) primitives for efficient operation of storage tasks directly on the NAS. To take advantage of the VAAI primitives, create a zvol using the instructions in Create zvol (page 134) and use it to create a device extent, as described in Extents (page 210).

To configure iSCSI:

1. Review the target global configuration parameters.
2. Create at least one portal.
3. Determine which hosts are allowed to connect using iSCSI and create an initiator.
4. Decide if authentication will be used, and if so, whether it will be CHAP or mutual CHAP. If using authentication, create an authorized access.
5. Create a target.
6. Create either a device or a file extent to be used as storage.
7. Associate a target with an extent.
8. Start the iSCSI service in Services → Control Services.

The rest of this section describes these steps in more detail.

### 10.5.1 Target Global Configuration

Sharing → Block (iSCSI) → Target Global Configuration, shown in Figure 10.18, contains settings that apply to all iSCSI shares. Table 10.6 summarizes the settings that are configured in the Target Global Configuration screen.

Some built-in values affect iSNS usage. Fetching of allowed initiators from iSNS is not implemented, so target ACLs must be configured manually. To make iSNS registration useful, iSCSI targets should have explicitly configured port IP addresses. This avoids initiators attempting to discover unconfigured target portal addresses like 0.0.0.0.

The iSNS registration period is 900 seconds. Registered Network Entities not updated during this period are unregistered. The timeout for iSNS requests is 5 seconds.
### Table 10.6: Target Global Configuration Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Base Name</strong></td>
<td>string</td>
<td>See the “Constructing iSCSI names using the iqn. format” section of RFC 3721 (<a href="https://tools.ietf.org/html/rfc3721.html">https://tools.ietf.org/html/rfc3721.html</a>) if unfamiliar with this format.</td>
</tr>
<tr>
<td><strong>ISNS Servers</strong></td>
<td>string</td>
<td>Space-delimited list of hostnames or IP addresses of ISNS servers to be registered iSCSI targets and portals of the system.</td>
</tr>
<tr>
<td><strong>Pool Available Space Threshold (%)</strong></td>
<td>integer</td>
<td>Enter the percentage of free space to remain in the pool. When this percentage is reached, the system issues an alert, but only if zvols are used. See VAAI (page 331) Threshold Warning for more information.</td>
</tr>
</tbody>
</table>

### 10.5.2 Portals

A portal specifies the IP address and port number to be used for iSCSI connections. Sharing → Block (iSCSI) → Portals → Add Portal brings up the screen shown in Figure 10.19.

Table 10.19 summarizes the settings that can be configured when adding a portal. To assign additional IP addresses to the portal, click the link Add extra Portal IP.
Table 10.7: Portal Configuration Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment</td>
<td>string</td>
<td>Optional description. Portals are automatically assigned a numeric group ID.</td>
</tr>
<tr>
<td>Discovery Auth Method</td>
<td>drop-down menu</td>
<td>iSCSI (page 228) supports multiple authentication methods that are used by the target to discover valid devices. None allows anonymous discovery while CHAP and Mutual CHAP both require authentication.</td>
</tr>
<tr>
<td>Discovery Auth Group</td>
<td>drop-down menu</td>
<td>Select a user created in Authorized Access if the Discovery Auth Method is set to CHAP or Mutual CHAP.</td>
</tr>
<tr>
<td>IP address</td>
<td>drop-down menu</td>
<td>Select the IP address associated with an interface or the wildcard address of 0.0.0.0 (any interface).</td>
</tr>
<tr>
<td>Port</td>
<td>integer</td>
<td>TCP port used to access the iSCSI target. Default is 3260.</td>
</tr>
</tbody>
</table>

FreeNAS® systems with multiple IP addresses or interfaces can use a portal to provide services on different interfaces or subnets. This can be used to configure multi-path I/O (MPIO). MPIO is more efficient than a link aggregation.

If the FreeNAS® system has multiple configured interfaces, portals can also be used to provide network access control. For
example, consider a system with four interfaces configured with the following addresses:

192.168.1.1/24
192.168.2.1/24
192.168.3.1/24
192.168.4.1/24

A portal containing the first two IP addresses (group ID 1) and a portal containing the remaining two IP addresses (group ID 2) could be created. Then, a target named A with a Portal Group ID of 1 and a second target named B with a Portal Group ID of 2 could be created. In this scenario, the iSCSI service would listen on all four interfaces, but connections to target A would be limited to the first two networks and connections to target B would be limited to the last two networks.

Another scenario would be to create a portal which includes every IP address except for the one used by a management interface. This would prevent iSCSI connections to the management interface.

### 10.5.3 Initiators

The next step is to configure authorized initiators, or the systems which are allowed to connect to the iSCSI targets on the FreeNAS® system. To configure which systems can connect, use Sharing → Block (iSCSI) → Initiators → Add Initiator, shown in Figure 10.20.

![Add Initiator](image)

**Fig. 10.20: Adding an iSCSI Initiator**

Table 10.8 summarizes the settings that can be configured when adding an initiator.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiators</td>
<td>string</td>
<td>Use ALL keyword or a list of initiator hostnames separated by spaces.</td>
</tr>
<tr>
<td>Authorized network</td>
<td>string</td>
<td>Use ALL keyword or a network address with CIDR mask such as 192.168.2.0/24.</td>
</tr>
<tr>
<td>Comment</td>
<td>string</td>
<td>Enter an optional description.</td>
</tr>
</tbody>
</table>

In the example shown in Figure 10.21, two groups are created. Group 1 allows connections from any initiator on any network. Group 2 allows connections from any initiator on the 10.10.1.0/24 network. Click an initiator's entry to display its Edit and Delete buttons.

Note: Attempting to delete an initiator causes a warning that indicates if any targets or target/extent mappings depend upon the initiator. Confirming the delete causes these to be deleted also.
10.5.4 Authorized Accesses

When using CHAP or mutual CHAP to provide authentication, creating an authorized access in Sharing → Block (iSCSI) → Authorized Accesses → Add Authorized Access is recommended. This screen is shown in Figure 10.22.

Note: This screen sets login authentication. This is different from discovery authentication which is set in Target Global Configuration (page 204).
Table 10.9 summarizes the settings that can be configured when adding an authorized access:

### Table 10.9: Authorized Access Configuration Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group ID</td>
<td>integer</td>
<td>Allows different groups to be configured with different authentication profiles. Example: all users with a Group ID of 1 will inherit the authentication profile associated with Group 1.</td>
</tr>
<tr>
<td>User</td>
<td>string</td>
<td>Enter name of user account to create for CHAP authentication with the user on the remote system. Many initiators default to using the initiator name as the user.</td>
</tr>
<tr>
<td>Secret</td>
<td>string</td>
<td>Enter a password to be associated with User. The iSCSI standard requires that this be between 12 and 16 characters.</td>
</tr>
<tr>
<td>Peer User</td>
<td>string</td>
<td>Only input when configuring mutual CHAP. In most cases it will need to be the same value as User.</td>
</tr>
<tr>
<td>Peer Secret</td>
<td>string</td>
<td>Enter the mutual secret password which must be different than the Secret. Required if Peer User is set.</td>
</tr>
</tbody>
</table>

Note: CHAP does not work with GlobalSAN initiators on macOS.

As authorized accesses are added, they will be listed under View Authorized Accesses. In the example shown in Figure 10.23, three users (test1, test2, and test3) and two groups (1 and 2) are created, with group 1 consisting of one CHAP user and group 2 consisting of one mutual CHAP user and one CHAP user. Click an authorized access entry to display its Edit and Delete buttons.

![Add Authorized Access](image)

### 10.5.5 Targets

Next, create a Target using Sharing → Block (iSCSI) → Targets → Add Target, as shown in Figure 10.24. A target combines a portal ID, allowed initiator ID, and an authentication method. Table 10.10 summarizes the settings that can be configured when creating a Target.

Note: An iSCSI target creates a block device that may be accessible to multiple initiators. A clustered filesystem is required on the block device, such as VMFS used by VMware ESX/ESXi, in order for multiple initiators to mount the block device read/write. If a traditional filesystem such as EXT, XFS, FAT, NTFS, UFS, or ZFS is placed on the block device, care must be
taken that only one initiator at a time has read/write access or the result will be filesystem corruption. If multiple clients need access to the same data on a non-clustered filesystem, use SMB or NFS instead of iSCSI, or create multiple iSCSI targets (one per client).

![Add Target](image)

**Fig. 10.24: Adding an iSCSI Target**

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Name</td>
<td>string</td>
<td>Required value. Base name will be appended automatically if it does not start with iqn.</td>
</tr>
<tr>
<td>Target Alias</td>
<td>string</td>
<td>Enter an optional user-friendly name.</td>
</tr>
<tr>
<td>Portal Group ID</td>
<td>drop-down menu</td>
<td>Leave empty or select number of existing portal to use.</td>
</tr>
<tr>
<td>Initiator Group ID</td>
<td>drop-down menu</td>
<td>Select which existing initiator group has access to the target.</td>
</tr>
<tr>
<td>Auth Method</td>
<td>drop-down menu</td>
<td>Choices are None, Auto, CHAP, or Mutual CHAP.</td>
</tr>
<tr>
<td>Authentication Group number</td>
<td>drop-down menu</td>
<td>Select None or an integer representing number of existing authorized access.</td>
</tr>
</tbody>
</table>

### 10.5.6 Extents

iSCSI targets provide virtual access to resources on the FreeNAS® system. Extents are used to define resources to share with clients. There are two types of extents: device and file.

Device extents provide virtual storage access to zvols, zvol snapshots, or physical devices like a disk, an SSD, a hardware RAID volume, or a HAST device (https://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/disks-hast.html).

File extents provide virtual storage access to an individual file.
Tip: For typical use as storage for virtual machines where the virtualization software is the iSCSI initiator, device extents with zvols provide the best performance and most features. For other applications, device extents sharing a raw device can be appropriate. File extents do not have the performance or features of device extents, but do allow creating multiple extents on a single filesystem.

Virtualized zvols support all the FreeNAS® VAAI (page 331) primitives and are recommended for use with virtualization software as the iSCSI initiator.

The ATS, WRITE SAME, XCOPY and STUN, primitives are supported by both file and device extents. The UNMAP primitive is supported by zvols and raw SSDs. The threshold warnings primitive is fully supported by zvols and partially supported by file extents.

Virtualizing a raw device like a single disk or hardware RAID volume limits performance to the abilities of the device. Because this bypasses ZFS, such devices do not benefit from ZFS caching or provide features like block checksums or snapshots.

Virtualizing a zvol adds the benefits of ZFS, such as read and write cache. Even if the client formats a device extent with a different filesystem, the data still resides on a ZFS volume and benefits from ZFS features like block checksums and snapshots.

Warning: For performance reasons and to avoid excessive fragmentation, keep the used space of the pool below 50% when using iSCSI. The capacity of an existing extent can be increased as shown in Growing LUNs (page 214).

To add an extent, go to Sharing → Block (iSCSI) → Extents → Add Extent. In the example shown in Figure 10.25, the device extent is using the export zvol that was previously created from the /mnt/volume1 volume.

Table 10.11 summarizes the settings that can be configured when creating an extent. Note that file extent creation fails when the name of the file to be created to the volume/dataset name. is not appended.
Table 10.11: Extent Configuration Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extent Name</td>
<td>string</td>
<td>Enter the extent name. If the Extent size is not 0, it cannot be an existing file within the volume/dataset.</td>
</tr>
<tr>
<td>Extent Type</td>
<td>drop-down</td>
<td>Select from File or Device.</td>
</tr>
<tr>
<td>Device</td>
<td>drop-down</td>
<td>Only appears if Device is selected. Select the unformatted disk, controller, zvol, zvol snapshot, or HAST device.</td>
</tr>
<tr>
<td>Serial</td>
<td>string</td>
<td>Unique LUN ID. The default is generated from the system MAC address.</td>
</tr>
<tr>
<td>Path to the extent</td>
<td>browse button</td>
<td>Only appears if File is selected. Browse to an existing file and use 0 as the Extent size, or browse to the volume or dataset, click Close, append the Extent Name to the path, and specify a value in Extent size. Extents cannot be created inside the jail root directory.</td>
</tr>
<tr>
<td>Extent size</td>
<td>integer</td>
<td>Only appears if File is selected. If the size is specified as 0, the file must already exist and the actual file size will be used. Otherwise, specify the size of the file to create.</td>
</tr>
<tr>
<td>Logical Block Size</td>
<td>drop-down</td>
<td>Only override the default if the initiator requires a different block size.</td>
</tr>
</tbody>
</table>
### Table 10.11 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disable Physical Block Size Reporting</td>
<td>checkbox</td>
<td>Set if the initiator does not support physical block size values over 4K (MS SQL).</td>
</tr>
<tr>
<td>Available Space Threshold</td>
<td>string</td>
<td>Only appears if File or a zvol is selected. When the specified percentage of free space is reached, the system issues an alert. See VAAI (page 331) Threshold Warning for more information.</td>
</tr>
<tr>
<td>Comment</td>
<td>string</td>
<td>Enter an optional comment.</td>
</tr>
<tr>
<td>Enable TPC</td>
<td>checkbox</td>
<td>If enabled, an initiator can bypass normal access control and access any scannable target; this allows xcopy operations otherwise blocked by access control.</td>
</tr>
<tr>
<td>Xen initiator compat mode</td>
<td>checkbox</td>
<td>Set this option when using Xen as the iSCSI initiator.</td>
</tr>
<tr>
<td>LUN RPM</td>
<td>drop-down menu</td>
<td>Do NOT change this setting when using Windows as the initiator. Only needs to be changed in large environments where the number of systems using a specific RPM is needed for accurate reporting statistics.</td>
</tr>
<tr>
<td>Read-only</td>
<td>checkbox</td>
<td>Set to prevent the initiator from initializing this LUN.</td>
</tr>
</tbody>
</table>

### 10.5.7 Target/Extents

The last step is associating an extent to a target within Sharing → Block (iSCSI) → Associated Targets → Add Target/Extent. This screen is shown in Figure 10.26. Use the drop-down menus to select the existing target and extent. Click OK to add an entry for the LUN.

![Add Target / Extent](image)

Fig. 10.26: Associating a Target With an Extent

Table 10.12 summarizes the settings that can be configured when associating targets and extents.

### Table 10.12: Target/Extents Configuration Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>drop-down menu</td>
<td>Select an existing target.</td>
</tr>
<tr>
<td>LUN ID</td>
<td>drop-down menu</td>
<td>Select the value to use or type in a value between 1 and 1023. Note that some initiators expect a value below 256.</td>
</tr>
<tr>
<td>Extent</td>
<td>drop-down menu</td>
<td>Select an existing extent.</td>
</tr>
</tbody>
</table>

Always associating extents to targets in a one-to-one manner is recommended, even though the GUI will allow multiple extents to be associated with the same target.
Note: Each LUN entry has Edit and Delete buttons for modifying the settings or deleting the LUN entirely. A verification popup appears when the Delete button is clicked. If an initiator has an active connection to the LUN, it is indicated in red text. Clearing initiator connections to a LUN before deleting it is recommended.

After iSCSI has been configured, remember to start it in Services → Control Services. Click the red OFF button next to iSCSI. After a second or so, it will change to a blue ON, indicating that the service has started.

10.5.8 Connecting to iSCSI

To access the iSCSI target, clients must use iSCSI initiator software.


Mac OS X does not include an initiator. globalSAN (http://www.studionetworksolutions.com/globalsan-iscsi-initiator/) is a commercial, easy-to-use Mac initiator.


Some Linux distros provide the command line utility iscsiadm from Open-iSCSI (http://www.open-iscsi.com/). Use a web search to see if a package exists for the distribution should the command not exist on the Linux system.

If a LUN is added while iscsiadm is already connected, it will not see the new LUN until rescanned with iscsiadm -m node -R. Alternately, use iscsiadm -m discovery -t st -p portal_IP to find the new LUN and iscsiadm -m node -T LUN_Name -l to log into the LUN.

Instructions for connecting from a VMware ESXi Server can be found at How to configure FreeNAS 8 for iSCSI and connect to ESX(i) (https://www.vladan.fr/how-to-configure-freenas-8-for-iscsi-and-connect-to-esxi/). Note that the requirements for booting vSphere 4.x off iSCSI differ between ESX and ESXi. ESX requires a hardware iSCSI adapter while ESXi requires specific iSCSI boot firmware support. The magic is on the booting host side, meaning that there is no difference to the FreeNAS® configuration. See the iSCSI SAN Configuration Guide (https://www.vmware.com/pdf/vsphere4/r41/vsp_41_iscsi_san_cfg.pdf) for details.

The VMware firewall only allows iSCSI connections on port 3260 by default. If a different port has been selected, outgoing connections to that port must be manually added to the firewall before those connections will work.

If the target can be seen but does not connect, check the Discovery Auth settings in Target Global Configuration.

If the LUN is not discovered by ESXi, make sure that promiscuous mode is set to Accept in the vSwitch.

10.5.9 Growing LUNs

The method used to grow the size of an existing iSCSI LUN depends on whether the LUN is backed by a file extent or a zvol. Both methods are described in this section.

Enlarging a LUN with one of the methods below gives it more unallocated space, but does not automatically resize filesystems or other data on the LUN. This is the same as binary-copying a smaller disk onto a larger one. More space is available on the new disk, but the partitions and filesystems on it must be expanded to use this new space. Resizing virtual disk images is usually done from virtual machine management software. Application software to resize filesystems is dependent on the type of filesystem and client, but is often run from within the virtual machine. For instance, consider a Windows VM with the last partition on the disk holding an NTFS filesystem. The LUN is expanded and the partition table edited to add the new space to the last partition. The Windows disk manager must still be used to resize the NTFS filesystem on that last partition to use the new space.
10.5.9.1 Zvol Based LUN

To grow a zvol based LUN, go to Storage → Volumes → View Volumes, highlight the zvol to be grown, and click Edit zvol. In the example shown in Figure 10.27, the current size of the zvol named zvol1 is 4GB.

![Figure 10.27: Editing an Existing Zvol](image)

Enter the new size for the zvol in the Size field and click Edit ZFS Volume. This menu closes and the new size for the zvol is immediately shown in the Used column of the View Volumes screen.

Note: The GUI does not allow reducing (shrinking) the size of the zvol, as doing so could result in loss of data. It also does not allow increasing the size of the zvol past 80% of the volume size.

10.5.9.2 File Extent Based LUN

To grow a file extent based LUN, go to Services → iSCSI → File Extents → View File Extents to determine the path of the file extent to grow. Open Shell to grow the extent. This example grows `/mnt/volume1/data` by 2 G:

```
truncate -s +2g /mnt/volume1/data
```

Go back to Services → iSCSI → File Extents → View File Extents and click the Edit button for the file extent. Set the size to 0 as this causes the iSCSI target to use the new size of the file.
Services that ship with FreeNAS® are configured, started, or stopped with Services. FreeNAS® includes these built-in services:

- AFP (page 218)
- Domain Controller (page 220)
- Dynamic DNS (page 222)
- FTP (page 223)
- iSCSI (page 228)
- LLDP (page 228)
- Netdata (page 229)
- NFS (page 230)
- Rsync (page 232)
- S3 (page 234)
- S.M.A.R.T. (page 235)
- SMB (page 236)
- SNMP (page 241)
- SSH (page 243)
- TFTP (page 245)
- UPS (page 246)
- WebDAV (page 249)

This section demonstrates starting a FreeNAS® service and the available configuration options for each FreeNAS® service.

### 11.1 Control Services

Services → Control Services, shown in Figure 11.1, lists all services. It also shows where to start, stop, or configure the available services. The S.M.A.R.T. service is enabled by default, but only runs if the storage devices support S.M.A.R.T. data (https://en.wikipedia.org/wiki/S.M.A.R.T.) Other services default to off until started.
<table>
<thead>
<tr>
<th>Services</th>
<th>Status</th>
<th>Start Now</th>
<th>Stop Now</th>
<th>Start on boot</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFP</td>
<td>Stopped</td>
<td><img src="image" alt="Start Now" /></td>
<td><img src="image" alt="Stop Now" /></td>
<td><img src="image" alt="Start on boot" /></td>
</tr>
<tr>
<td>Domain Controller</td>
<td>Stopped</td>
<td><img src="image" alt="Start Now" /></td>
<td><img src="image" alt="Stop Now" /></td>
<td><img src="image" alt="Start on boot" /></td>
</tr>
<tr>
<td>Dynamic DNS</td>
<td>Stopped</td>
<td><img src="image" alt="Start Now" /></td>
<td><img src="image" alt="Stop Now" /></td>
<td><img src="image" alt="Start on boot" /></td>
</tr>
<tr>
<td>FTP</td>
<td>Stopped</td>
<td><img src="image" alt="Start Now" /></td>
<td><img src="image" alt="Stop Now" /></td>
<td><img src="image" alt="Start on boot" /></td>
</tr>
<tr>
<td>iSCSI</td>
<td>Stopped</td>
<td><img src="image" alt="Start Now" /></td>
<td><img src="image" alt="Stop Now" /></td>
<td><img src="image" alt="Start on boot" /></td>
</tr>
<tr>
<td>LLDP</td>
<td>Stopped</td>
<td><img src="image" alt="Start Now" /></td>
<td><img src="image" alt="Stop Now" /></td>
<td><img src="image" alt="Start on boot" /></td>
</tr>
<tr>
<td>Netdata</td>
<td>Stopped</td>
<td><img src="image" alt="Start Now" /></td>
<td><img src="image" alt="Stop Now" /></td>
<td><img src="image" alt="Start on boot" /></td>
</tr>
<tr>
<td>NFS</td>
<td>Stopped</td>
<td><img src="image" alt="Start Now" /></td>
<td><img src="image" alt="Stop Now" /></td>
<td><img src="image" alt="Start on boot" /></td>
</tr>
<tr>
<td>Rsync</td>
<td>Stopped</td>
<td><img src="image" alt="Start Now" /></td>
<td><img src="image" alt="Stop Now" /></td>
<td><img src="image" alt="Start on boot" /></td>
</tr>
<tr>
<td>S3</td>
<td>Stopped</td>
<td><img src="image" alt="Start Now" /></td>
<td><img src="image" alt="Stop Now" /></td>
<td><img src="image" alt="Start on boot" /></td>
</tr>
<tr>
<td>S.M.A.R.T.</td>
<td>Stopped</td>
<td><img src="image" alt="Start Now" /></td>
<td><img src="image" alt="Stop Now" /></td>
<td><img src="image" alt="Start on boot" /></td>
</tr>
<tr>
<td>SMB</td>
<td>Stopped</td>
<td><img src="image" alt="Start Now" /></td>
<td><img src="image" alt="Stop Now" /></td>
<td><img src="image" alt="Start on boot" /></td>
</tr>
<tr>
<td>SNMP</td>
<td>Stopped</td>
<td><img src="image" alt="Start Now" /></td>
<td><img src="image" alt="Stop Now" /></td>
<td><img src="image" alt="Start on boot" /></td>
</tr>
<tr>
<td>SSH</td>
<td>Stopped</td>
<td><img src="image" alt="Start Now" /></td>
<td><img src="image" alt="Stop Now" /></td>
<td><img src="image" alt="Start on boot" /></td>
</tr>
<tr>
<td>TFTP</td>
<td>Stopped</td>
<td><img src="image" alt="Start Now" /></td>
<td><img src="image" alt="Stop Now" /></td>
<td><img src="image" alt="Start on boot" /></td>
</tr>
<tr>
<td>UPS</td>
<td>Stopped</td>
<td><img src="image" alt="Start Now" /></td>
<td><img src="image" alt="Stop Now" /></td>
<td><img src="image" alt="Start on boot" /></td>
</tr>
<tr>
<td>WebDAV</td>
<td>Stopped</td>
<td><img src="image" alt="Start Now" /></td>
<td><img src="image" alt="Stop Now" /></td>
<td><img src="image" alt="Start on boot" /></td>
</tr>
</tbody>
</table>

Fig. 11.1: Control Services

Stopped services show a red stop symbol and a Start Now button. Running services show a green light with a Stop Now button.

Tip: Using a proxy server can prevent the list of services from being displayed. If a proxy server is used, do not configure it to proxy local network connections or websocket connections. VPN software can also cause problems. If the list of services is displayed when connecting on the local network but not when connecting through the VPN, check the VPN software configuration.

Services are configured by clicking the wrench icon or the name of the service in the Services section of the tree menu. If a service does not start, go to System → Advanced and enable Show console messages in the footer. Console messages
appear at the bottom of the browser. Clicking the console message area makes it into a pop-up window, allowing scrolling through or copying the messages. Watch these messages for errors when stopping or starting the problematic service.

To read the system logs for more information about a service failure, open Shell (page 297) and type `more /var/log/messages`.

## 11.2 AFP

The settings that are configured when creating AFP Shares in Sharing → Apple (AFP) Shares → Add Apple (AFP) Share are specific to each configured AFP Share. In contrast, global settings which apply to all AFP shares are configured in Services → AFP.

Figure 11.2 shows the available global AFP configuration options which are described in Table 11.1.
Table 11.1: Global AFP Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guest Access</td>
<td>checkbox</td>
<td>Set to disable the password prompt that appears before clients access AFP shares.</td>
</tr>
<tr>
<td>Guest account</td>
<td>drop-down menu</td>
<td>Select an account to use for guest access. The account must have permissions to the volume or dataset being shared.</td>
</tr>
<tr>
<td>Max Connections</td>
<td>integer</td>
<td>Maximum number of simultaneous connections.</td>
</tr>
<tr>
<td>Database Path</td>
<td>browse button</td>
<td>Sets the database information to be stored in the path. Default is the root of the volume. The path must be writable even if the volume is read-only.</td>
</tr>
</tbody>
</table>

Fig. 11.2: Global AFP Configuration
### 11.1.1 Troubleshooting AFP

Determine which users are connected to an AFP share by typing `afpusers`.

If something wrong with the volume’s CNID DB is shown, run this command from `Shell` (page 297), replacing the path to the problematic AFP share:

```
dbd -rf /path/to/share
```

This command can take some time, depending upon the size of the pool or dataset being shared. The CNID database is wiped and rebuilt from the CNIDs stored in the AppleDouble files.

### 11.3 Domain Controller

FreeNAS® can be configured to act either as the domain controller for a network or to join an existing Active Directory (page 167) network as a domain controller.

Note: This section demonstrates how to configure the FreeNAS® system to act as a domain controller. If the goal is to integrate with an existing Active Directory (page 167) network to access its authentication and authorization services, configure Active Directory (page 167) instead.

Note that configuring a domain controller is a complex process that requires a good understanding of how Active Directory (page 167) works. While Services → Domain Controller makes it easy to enter the needed settings into the administrative graphical interface, it is important to understand what those settings should be. Before beginning configuration, read through the Samba AD DC HOWTO (https://wiki.samba.org/index.php/Samba_AD_DC_HOWTO). After FreeNAS® is configured, use the RSAT utility from a Windows system to manage the domain controller. The Samba AD DC HOWTO includes instructions for installing and configuring RSAT.

*Figure 11.3* shows the configuration screen for creating a domain controller and *Table 11.2* summarizes the available options.
### Table 11.2: Domain Controller Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Realm</td>
<td>string</td>
<td>Enter a capitalized DNS realm name.</td>
</tr>
<tr>
<td>Domain</td>
<td>string</td>
<td>Enter a capitalized domain name.</td>
</tr>
<tr>
<td>Server Role</td>
<td>drop-down menu</td>
<td>At this time, the only supported role is as the domain controller for a new domain.</td>
</tr>
<tr>
<td>DNS Forwarder</td>
<td>string</td>
<td>Enter the IP address of the DNS forwarder. Required for recursive queries when SAMBA_INTERNAL is selected.</td>
</tr>
<tr>
<td>Administrator Password</td>
<td>string</td>
<td>Enter the password to be used for the Active Directory (page 167) administrator account.</td>
</tr>
<tr>
<td>Kerberos Realm</td>
<td>drop-down menu</td>
<td>Auto-populates with information from the Realm when the settings in this screen are saved.</td>
</tr>
</tbody>
</table>

### 11.3.1 Samba Domain Controller Backup

A `samba_backup` script is available to back up Samba4 domain controller settings is available. From the Shell (page 297), run `/usr/local/bin/samba_backup --usage` to show the input options.
11.4 Dynamic DNS

Dynamic DNS (DDNS) is useful if the FreeNAS® system is connected to an ISP that periodically changes the IP address of the system. With dynamic DNS, the system can automatically associate its current IP address with a domain name, allowing access to the FreeNAS® system even if the IP address changes. DDNS requires registration with a DDNS service such as DynDNS (https://dyn.com/dns/).

Figure 11.4 shows the DDNS configuration screen and Table 11.3 summarizes the configuration options. The values for these fields are provided by the DDNS provider. After configuring DDNS, remember to start the DDNS service in Services → Control Services.

![DDNS Configuration Screen](image)

Fig. 11.4: Configuring DDNS
Table 11.3: DDNS Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provider</td>
<td>drop-down menu</td>
<td>Several providers are supported. If a specific provider is not listed, select Custom Provider and enter the information in the Custom Server and Custom Path fields.</td>
</tr>
<tr>
<td>CheckIP Server</td>
<td>string</td>
<td>Set to use HTTPS for the connection to the CheckIP Server.</td>
</tr>
<tr>
<td>SSL</td>
<td></td>
<td>Enter the name and port of the server that reports the external IP address, in the format server.name.org:port.</td>
</tr>
<tr>
<td>CheckIP Path</td>
<td>string</td>
<td>Enter the path that is requested by the CheckIP Server to determine the user IP address.</td>
</tr>
<tr>
<td>Use SSL</td>
<td>checkbox</td>
<td>Set to use HTTPS for the connection to the server that updates the DNS record.</td>
</tr>
<tr>
<td>Domain name</td>
<td>string</td>
<td>Enter a fully qualified domain name. Example: yourname.dyndns.org.</td>
</tr>
<tr>
<td>Username</td>
<td>string</td>
<td>Enter the username to log in to the provider and update the record.</td>
</tr>
<tr>
<td>Password</td>
<td>string</td>
<td>Enter the password used to log in to the provider and update the record.</td>
</tr>
<tr>
<td>Update period</td>
<td>integer</td>
<td>How often the IP is checked in seconds.</td>
</tr>
</tbody>
</table>

When using he.net, enter the domain name for Username and enter the DDNS key generated for that domain's A entry at the he.net (https://he.net) website for Password.

11.5 FTP

FreeNAS® uses the proftpd (http://www.proftpd.org/) FTP server to provide FTP services. Once the FTP service is configured and started, clients can browse and download data using a web browser or FTP client software. The advantage of FTP is that easy-to-use cross-platform utilities are available to manage uploads to and downloads from the FreeNAS® system. The disadvantage of FTP is that it is considered to be an insecure protocol, meaning that it should not be used to transfer sensitive files. If concerned about sensitive data, see Encrypting FTP (page 228).

This section provides an overview of the FTP configuration options. It then provides examples for configuring anonymous FTP, specified user access within a chroot environment, encrypting FTP connections, and troubleshooting tips. Figure 11.5 shows the configuration screen for Services → FTP. Some settings are only available in Advanced Mode. To see these settings, either click the Advanced Mode button or configure the system to always display these settings by enabling the Show advanced fields by default setting in System → Advanced.
Table 11.4 summarizes the available options when configuring the FTP server.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>integer</td>
<td></td>
<td>Set the port the FTP service listens on.</td>
</tr>
<tr>
<td>Clients</td>
<td>integer</td>
<td></td>
<td>Set the maximum number of simultaneous clients.</td>
</tr>
<tr>
<td>Connections</td>
<td>integer</td>
<td></td>
<td>Set the maximum number of connections per IP address where 0 means unlimited.</td>
</tr>
<tr>
<td>Login Attempts</td>
<td>integer</td>
<td></td>
<td>Enter the maximum number of attempts before client is disconnected. Increase this if users are prone to typos.</td>
</tr>
<tr>
<td>Timeout</td>
<td>integer</td>
<td></td>
<td>Enter the maximum client idle time in seconds before client is disconnected.</td>
</tr>
<tr>
<td>Allow Root Login</td>
<td>checkbox</td>
<td></td>
<td>Enabling this option is discouraged as increases security risk.</td>
</tr>
<tr>
<td>Allow Anonymous Login</td>
<td>checkbox</td>
<td></td>
<td>Set to enable anonymous FTP logins with access to the directory specified in Path.</td>
</tr>
<tr>
<td>Path</td>
<td>browse button</td>
<td></td>
<td>Set the root directory for anonymous FTP connections.</td>
</tr>
<tr>
<td>Allow Local User Login</td>
<td>checkbox</td>
<td></td>
<td>Required if Anonymous Login is disabled.</td>
</tr>
<tr>
<td>Display Login</td>
<td>string</td>
<td></td>
<td>Specify the message displayed to local login users after authentication. This message is not displayed to anonymous login users.</td>
</tr>
<tr>
<td>File Permission</td>
<td>checkboxes</td>
<td>✓</td>
<td>Set the default permissions for newly created files.</td>
</tr>
<tr>
<td>Directory Permission</td>
<td>checkboxes</td>
<td>✓</td>
<td>Set the default permissions for newly created directories.</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable FXP (<a href="https://en.wikipedia.org/wiki/File_eXchange_Protocol">https://en.wikipedia.org/wiki/File_eXchange_Protocol</a>)</td>
<td>checkbox</td>
<td>✓</td>
<td>Set to enable the File eXchange Protocol. This setting makes the server vulnerable to FTP bounce attacks so it is not recommended.</td>
</tr>
<tr>
<td>Allow Transfer Resumption</td>
<td>checkbox</td>
<td></td>
<td>Set to allow FTP clients to resume interrupted transfers.</td>
</tr>
<tr>
<td>Always Chroot</td>
<td>checkbox</td>
<td></td>
<td>When set, a local user is only allowed access to their home directory unless the user is a member of group wheel.</td>
</tr>
<tr>
<td>Require IDENT Authentication</td>
<td>checkbox</td>
<td>✓</td>
<td>Setting this option results in timeouts if identd is not running on the client.</td>
</tr>
<tr>
<td>Perform Reverse DNS Lookups</td>
<td>checkbox</td>
<td></td>
<td>Set to perform reverse DNS lookups on client IPs. Can cause long delays if reverse DNS is not configured.</td>
</tr>
<tr>
<td>Masquerade address</td>
<td>string</td>
<td></td>
<td>Public IP address or hostname. Set if FTP clients cannot connect through a NAT device.</td>
</tr>
<tr>
<td>Minimum passive port</td>
<td>integer</td>
<td>✓</td>
<td>Used by clients in PASV mode, default of 0 means any port above 1023.</td>
</tr>
<tr>
<td>Maximum passive port</td>
<td>integer</td>
<td>✓</td>
<td>Used by clients in PASV mode, default of 0 means any port above 1023.</td>
</tr>
<tr>
<td>Local user upload bandwidth</td>
<td>integer</td>
<td>✓</td>
<td>Defined in KB/s, default of 0 means unlimited.</td>
</tr>
<tr>
<td>Local user download bandwidth</td>
<td>integer</td>
<td>✓</td>
<td>Defined in KB/s, default of 0 means unlimited.</td>
</tr>
<tr>
<td>Anonymous user upload bandwidth</td>
<td>integer</td>
<td>✓</td>
<td>Defined in KB/s, default of 0 means unlimited.</td>
</tr>
<tr>
<td>Anonymous user download bandwidth</td>
<td>integer</td>
<td>✓</td>
<td>Defined in KB/s, default of 0 means unlimited.</td>
</tr>
<tr>
<td>Enable TLS</td>
<td>checkbox</td>
<td>✓</td>
<td>Set to enable encrypted connections. Requires a certificate to be created or imported using Certificates (page 87).</td>
</tr>
<tr>
<td>TLS policy</td>
<td>drop-down menu</td>
<td>✓</td>
<td>The selected policy defines whether the control channel, data channel, both channels, or neither channel of an FTP session must occur over SSL/TLS. The policies are described here (<a href="http://www.proftpd.org/docs/directives/linked/config_ref_TLSRequired.html">http://www.proftpd.org/docs/directives/linked/config_ref_TLSRequired.html</a>) for more details.</td>
</tr>
<tr>
<td>TLS allow client renegotiations</td>
<td>checkbox</td>
<td>✓</td>
<td>Enabling this option is not recommended as it breaks several security measures. For this and the rest of the TLS fields, refer to mod_tls (<a href="http://www.proftpd.org/docs/contrib/mod_tls.html">http://www.proftpd.org/docs/contrib/mod_tls.html</a>) for more details.</td>
</tr>
<tr>
<td>TLS allow dot login</td>
<td>checkbox</td>
<td>✓</td>
<td>If set, the user home directory is checked for a .tlslogin file which contains one or more PEM-encoded certificates. If not found, the user is prompted for password authentication.</td>
</tr>
<tr>
<td>TLS allow per user</td>
<td>checkbox</td>
<td>✓</td>
<td>If set, the user password can be sent unencrypted.</td>
</tr>
<tr>
<td>TLS common name required</td>
<td>checkbox</td>
<td>✓</td>
<td>If set, the common name in the certificate must match the FQDN of the host.</td>
</tr>
<tr>
<td>TLS enable diagnostics</td>
<td>checkbox</td>
<td>✓</td>
<td>If set when troubleshooting a connection, logs more verbosely.</td>
</tr>
<tr>
<td>TLS export certificate data</td>
<td>checkbox</td>
<td>✓</td>
<td>If set, exports the certificate environment variables.</td>
</tr>
<tr>
<td>TLS no certificate request</td>
<td>checkbox</td>
<td>✓</td>
<td>Try enabling this option if the client cannot connect and it is suspected the client software is not properly handling server certificate requests.</td>
</tr>
<tr>
<td>TLS no empty fragments</td>
<td>checkbox</td>
<td>✓</td>
<td>Enabling this option is not recommended as it bypasses a security mechanism.</td>
</tr>
<tr>
<td>TLS no session reuse required</td>
<td>checkbox</td>
<td>✓</td>
<td>Enabling this option reduces the security of the connection, so only use if the client does not understand reused SSL sessions.</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLS export standard</td>
<td>checkbox</td>
<td>✓</td>
<td>If enabled, sets several environment variables.</td>
</tr>
<tr>
<td>TLS DNS name required</td>
<td>checkbox</td>
<td>✓</td>
<td>If set, the client DNS name must resolve to its IP address and the cert must contain the same DNS name.</td>
</tr>
<tr>
<td>TLS IP address required</td>
<td>checkbox</td>
<td>✓</td>
<td>If set, the client certificate must contain the IP address that matches the IP address of the client.</td>
</tr>
<tr>
<td>Certificate</td>
<td>drop-down menu</td>
<td></td>
<td>The SSL certificate to be used for TLS FTP connections. To create a certificate, use System → Certificates.</td>
</tr>
<tr>
<td>Auxiliary parameters</td>
<td>string</td>
<td>✓</td>
<td>Add any additional proftpd(8) parameters not covered elsewhere in this screen.</td>
</tr>
</tbody>
</table>

This example demonstrates the auxiliary parameters that prevent all users from performing the FTP DELETE command:

```
<Limit DELE>
 DenyAll
</Limit>
```

### 11.5.1 Anonymous FTP

Anonymous FTP may be appropriate for a small network where the FreeNAS® system is not accessible from the Internet and everyone in the internal network needs easy access to the stored data. Anonymous FTP does not require a user account for every user. In addition, passwords are not required so it is not necessary to manage changed passwords on the FreeNAS® system.

To configure anonymous FTP:

1. Give the built-in ftp user account permissions to the volume/dataset to be shared in Storage → Volumes as follows:
   - Owner(user): select the built-in ftp user from the drop-down menu
   - Owner(group): select the built-in ftp group from the drop-down menu
   - Mode: review that the permissions are appropriate for the share

   **Note:** For FTP, the type of client does not matter when it comes to the type of ACL. This means that Unix ACLs are always used, even if Windows clients will be accessing FreeNAS® via FTP.

2. Configure anonymous FTP in Services → FTP by setting the following attributes:
   - Allow Anonymous Login: enables this option
   - Path: browse to the volume/dataset/directory to be shared

3. Start the FTP service in Services → Control Services. Click the Start Now button next to FTP. The FTP service takes a second or so to start. The indicator changes to green when the service is running, and the button changes to Stop Now.

4. Test the connection from a client using a utility such as Filezilla (https://filezilla-project.org/).

In the example shown in Figure 11.6, the user has entered this information into the Filezilla client:

- IP address of the FreeNAS® server: 192.168.1.113
- Username: anonymous
- Password: the email address of the user
The messages within the client indicate the FTP connection is successful. The user can now navigate the contents of the root folder on the remote site. This is the pool or dataset specified in the FTP service configuration. The user can also transfer files between the local site (their system) and the remote site (the FreeNAS® system).

### 11.5.2 FTP in chroot

If users are required to authenticate before accessing the data on the FreeNAS® system, either create a user account for each user or import existing user accounts using Active Directory (page 167) or LDAP (page 172). Then create a ZFS dataset for each user. Next, chroot each user so they are limited to the contents of their own home directory. Datasets provide the added benefit of configuring a quota so that the size of a user home directory is limited to the size of the quota.

To configure this scenario:

1. Create a ZFS dataset for each user in Storage → Volumes. Click an existing ZFS volume → Create ZFS Dataset and set an appropriate quota for each dataset. Repeat this process to create a dataset for every user that needs access to the FTP service.

2. When not using AD or LDAP, create a user account for each user in Account → Users → Add User. For each user, browse to the dataset created for that user in the Home Directory field. Repeat this process to create a user account for every user that needs access to the FTP service, making sure to assign each user their own dataset.

3. Set the permissions for each dataset in Storage → Volumes. Click the Change Permissions button for a dataset to assign a user account as Owner of that dataset and to set the desired permissions for that user. Repeat for each dataset.

   **Note:** For FTP, the type of client does not matter when it comes to the type of ACL. This means Unix ACLs are always used, even if Windows clients will be accessing FreeNAS® with FTP.

4. Configure FTP in Services → FTP with these attributes:
   - Path: browse to the parent volume containing the datasets.
   - Make sure Allow Anonymous Login and Allow Root Login are unselected.
   - Select Allow Local User Login.
   - Select Always Chroot.

5. Start the FTP service in Services → Control Services. Click the Start Now button next to FTP. The FTP service takes a second or so to start. The indicator changes to green to show that the service is running, and the button changes to Stop Now.

6. Test the connection from a client using a utility such as Filezilla.
To test this configuration in Filezilla, use the IP address of the FreeNAS® system, the Username of a user that is associated with a dataset, and the Password for that user. The messages will indicate the authorization and the FTP connection are successful. The user can now navigate the contents of the root folder on the remote site. This time it is not the entire pool but the dataset created for that user. The user can transfer files between the local site (their system) and the remote site (their dataset on the FreeNAS® system).

### 11.5.3 Encrypting FTP

To configure any FTP scenario to use encrypted connections:

1. Import or create a certificate authority using the instructions in CAs (page 84). Then, import or create the certificate to use for encrypted connections using the instructions in Certificates (page 87).
2. In Services → FTP, choose the certificate in the Certificate and set the Enable TLS option.
3. Specify secure FTP when accessing the FreeNAS® system. For example, in Filezilla enter ftps://IP_address (for an implicit connection) or ftpes://IP_address (for an explicit connection) as the Host when connecting. The first time a user connects, they will be presented with the certificate of the FreeNAS® system. Click OK to accept the certificate and negotiate an encrypted connection.
4. To force encrypted connections, select on for the TLS Policy.

### 11.5.4 Troubleshooting FTP

The FTP service will not start if it cannot resolve the system hostname to an IP address with DNS. To see if the FTP service is running, open Shell (page 297) and issue the command:

```
sockstat -4p 21
```

If there is nothing listening on port 21, the FTP service is not running. To see the error message that occurs when FreeNAS® tries to start the FTP service, go to System → Advanced, check Show console messages in the footer, and click Save. Go to Services → Control Services and switch the FTP service off, then back on. Watch the console messages at the bottom of the browser for errors.

If the error refers to DNS, either create an entry in the local DNS server with the FreeNAS® system hostname and IP address, or add an entry for the IP address of the FreeNAS® system in the Network → Global Configuration Host name database field.

### 11.6 iSCSI

Refer to Block (iSCSI) (page 203) for instructions on configuring iSCSI. To start the iSCSI service, click its entry in Services.

Note: A warning message is shown if the iSCSI service is stopped when initiators are connected. Open the Shell (page 297) and type `ctladm islist` to determine the names of the connected initiators.

### 11.7 LLDP

The Link Layer Discovery Protocol (LLDP) is used by network devices to advertise their identity, capabilities, and neighbors on an Ethernet network. FreeNAS® uses the `ladvd` ([https://github.com/sspans/ladvd](https://github.com/sspans/ladvd)) LLDP implementation. If the network contains managed switches, configuring and starting the LLDP service will tell the FreeNAS® system to advertise itself on the network.

*Figure 11.7 shows the LLDP configuration screen and Table 11.5 summarizes the configuration options for the LLDP service.*
Table 11.5: LLDP Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface De-</td>
<td>checkbox</td>
<td>Set to enable receive mode and to save received peer information in interface descriptions.</td>
</tr>
<tr>
<td>Country Code</td>
<td>string</td>
<td>Required for LLDP location support. Enter a two-letter ISO 3166 country code.</td>
</tr>
<tr>
<td>Location</td>
<td>string</td>
<td>Optional. Specify the physical location of the host.</td>
</tr>
</tbody>
</table>

11.8 Netdata

Netdata is a real-time performance and monitoring system. It displays data as web dashboards. Start the Netdata service from the Services (page 216) screen. Click the wrench icon to display the Netdata settings dialog shown in Figure 11.8.

Click the Take me to the Netdata UI button to view the web dashboard as shown in Figure 11.9.
More information on configuring and using Netdata is available at the Netdata website (https://my-netdata.io/).

11.9 NFS

The settings that are configured when creating NFS Shares in Sharing → Unix (NFS) Shares → Add Unix (NFS) Share are specific to each configured NFS Share. In contrast, global settings which apply to all NFS shares are configured in Services → NFS.

Figure 11.10 shows the configuration screen and Table 11.6 summarizes the configuration options for the NFS service.
Table 11.6: NFS Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of servers</td>
<td>integer</td>
<td>Specify how many servers to create. Increase if NFS client responses are slow. To limit CPU context switching, keep this number less than or equal to the number of CPUs reported by <code>sysctl -n kern.smp.cpus</code>.</td>
</tr>
<tr>
<td>Serve UDP NFS clients</td>
<td>checkbox</td>
<td>Set if NFS clients need to use UDP.</td>
</tr>
<tr>
<td>Bind IP Addresses</td>
<td>checkboxes</td>
<td>Select the IP addresses to listen on for NFS requests. When unselected, NFS listens on all available addresses.</td>
</tr>
</tbody>
</table>

Continued on next page
### Table 11.6 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allow non-root mount</td>
<td>checkbox</td>
<td>Set only if the NFS client requires it.</td>
</tr>
<tr>
<td>Enable NFSv4</td>
<td>checkbox</td>
<td>Set to switch from NFSv3 to NFSv4. The default is NFSv3.</td>
</tr>
<tr>
<td>NFSv3 ownership model for NFSv4</td>
<td>checkbox</td>
<td>Grayed out unless Enable NFSv4 is checked and, in turn, grays out Support&gt;16 groups which is incompatible. Set this option if NFSv4 ACL support is needed without requiring the client and the server to sync users and groups.</td>
</tr>
<tr>
<td>Require Kerberos for NFSv4</td>
<td>checkbox</td>
<td>Set to force NFS shares to fail if the Kerberos ticket is unavailable.</td>
</tr>
<tr>
<td>mountd(8) bind port</td>
<td>integer</td>
<td>Optional. Specify the port that mountd(8) binds to.</td>
</tr>
<tr>
<td>rpc.statd(8) bind port</td>
<td>integer</td>
<td>Optional. Specify the port that rpc.statd(8) binds to.</td>
</tr>
<tr>
<td>rpc.lockd(8) bind port</td>
<td>integer</td>
<td>Optional. Specify the port that rpc.lockd(8) binds to.</td>
</tr>
<tr>
<td>Support&gt;16 groups</td>
<td>checkbox</td>
<td>Set this option if any users are members of more than 16 groups (useful in AD environments). Note this assumes group membership is configured correctly on the NFS server.</td>
</tr>
<tr>
<td>Log mountd(8) requests</td>
<td>checkbox</td>
<td>Enable logging of mountd(8) requests by syslog.</td>
</tr>
<tr>
<td>Log rpc.statd(8) and rpc.lockd(8)</td>
<td>checkbox</td>
<td>Enable logging of rpc.statd(8) and rpc.lockd(8) requests by syslog.</td>
</tr>
</tbody>
</table>

Note: NFSv4 sets all ownership to nobody:nobody if user and group do not match on client and server.

### 11.10 Rsync

Services → Rsync is used to configure an rsync server when using rsync module mode. Refer to **Rsync Module Mode** (page 105) for a configuration example.

This section describes the configurable options for the rsyncd service and rsync modules.

#### 11.10.1 Configure Rsyncd

Figure 11.11 shows the rsyncd configuration screen which is accessed from Services → Rsync → Configure Rsyncd.

![Fig. 11.11: Rsyncd Configuration](image)
Table 11.7 summarizes the configuration options for the rsync daemon:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP Port</td>
<td>integer</td>
<td>Port for rsyncd to listen on. Default is 873.</td>
</tr>
<tr>
<td>Auxiliary parameters</td>
<td>string</td>
<td>Enter any additional parameters from rsyncd.conf(5) (<a href="https://www.samba.org/ftp/rsync/rsyncd.conf.html">https://www.samba.org/ftp/rsync/rsyncd.conf.html</a>).</td>
</tr>
</tbody>
</table>

**11.10.2 Rsync Modules**

Figure 11.12 shows the configuration screen that appears after clicking Services → Rsync → Rsync Modules → Add Rsync Module.

Table 11.8 summarizes the configuration options when creating a rsync module.

Fig. 11.12: Adding an Rsync Module

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module name</td>
<td>string</td>
<td>Mandatory. This is required to match the setting on the rsync client.</td>
</tr>
<tr>
<td>Comment</td>
<td>string</td>
<td>Optional description.</td>
</tr>
<tr>
<td>Path</td>
<td>browse button</td>
<td>Browse to the volume or dataset to hold received data.</td>
</tr>
<tr>
<td>Access Mode</td>
<td>drop-down menu</td>
<td>Choices are Read and Write, Read-only, or Write-only.</td>
</tr>
<tr>
<td>Maximum connections</td>
<td>integer</td>
<td>0 is unlimited.</td>
</tr>
<tr>
<td>User</td>
<td>drop-down menu</td>
<td>Select the user to control file transfers to and from the module.</td>
</tr>
<tr>
<td>Group</td>
<td>drop-down menu</td>
<td>Select the group to control file transfers to and from the module.</td>
</tr>
</tbody>
</table>

**Continued on next page**
Table 11.8 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hosts allow</td>
<td>string</td>
<td>Enter a list of patterns to match with the hostname and IP address of a connecting client. Separate patterns with whitespace or comma. See rsyncd.conf(5) (<a href="https://www.samba.org/ftp/rsync/rsyncd.conf.html">https://www.samba.org/ftp/rsync/rsyncd.conf.html</a>) for allowed formats.</td>
</tr>
<tr>
<td>Hosts deny</td>
<td>string</td>
<td>Enter a list of patterns to match with the hostname and IP address of a connecting client. Separate patterns with whitespace or comma. See rsyncd.conf(5) (<a href="https://www.samba.org/ftp/rsync/rsyncd.conf.html">https://www.samba.org/ftp/rsync/rsyncd.conf.html</a>) for allowed formats.</td>
</tr>
<tr>
<td>Auxiliary parameters</td>
<td>string</td>
<td>Enter any additional additional parameters from rsyncd.conf(5) (<a href="https://www.samba.org/ftp/rsync/rsyncd.conf.html">https://www.samba.org/ftp/rsync/rsyncd.conf.html</a>).</td>
</tr>
</tbody>
</table>

11.11 S3

S3 is a distributed or clustered filesystem protocol compatible with Amazon S3 cloud storage. The FreeNAS® S3 service uses Minio (https://minio.io/) to provide S3 storage hosted on the FreeNAS® system itself. Minio also provides features beyond the limits of the basic Amazon S3 specifications.

Figure 11.13 shows the S3 service configuration screen and Table 11.9 summarizes the configuration options. After configuring the S3 service, start it in Services → Control Services.

![Fig. 11.13: Configuring S3](image-url)
Table 11.9: S3 Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>drop-down menu</td>
<td>Enter the IP address on which to run the S3 service. 0.0.0.0 sets the server to listen on all addresses.</td>
</tr>
<tr>
<td>Port</td>
<td>string</td>
<td>Enter the TCP port on which to provide the S3 service. Default is 9000.</td>
</tr>
<tr>
<td>Access Key</td>
<td>string</td>
<td>Enter the S3 user name. Must be between 5 to 20 characters long.</td>
</tr>
<tr>
<td>Secret Key</td>
<td>string</td>
<td>Enter the password to be used by connecting S3 systems. Must be at least 8 but no more than 40 characters long.</td>
</tr>
<tr>
<td>Confirm S3 Key</td>
<td>string</td>
<td>Re-enter the S3 password to confirm.</td>
</tr>
<tr>
<td>Disks</td>
<td>string</td>
<td>Required. Directory where the S3 filesystem will be mounted. Ownership of this directory and all subdirectories is set to minio:minio. Create a separate dataset (page 131) for Minio to avoid issues with conflicting directory permissions or ownership.</td>
</tr>
<tr>
<td>Certificate</td>
<td>drop-down menu</td>
<td>The SSL certificate to be used for secure S3 connections. To create a certificate, use System → Certificates.</td>
</tr>
<tr>
<td>Enable Browser</td>
<td>checkbox</td>
<td>Set to enable the web user interface for the S3 service.</td>
</tr>
</tbody>
</table>

11.12 S.M.A.R.T.

S.M.A.R.T., or Self-Monitoring, Analysis, and Reporting Technology (https://en.wikipedia.org/wiki/S.M.A.R.T.), is an industry standard for disk monitoring and testing. Drives can be monitored for status and problems, and several types of self-tests can be run to check the drive health.

Tests run internally on the drive. Most tests can run at the same time as normal disk usage. However, a running test can greatly reduce drive performance, so they should be scheduled at times when the system is not busy or in normal use. It is very important to avoid scheduling disk-intensive tests at the same time. For example, do not schedule S.M.A.R.T. tests to run at the same time, or preferably, even on the same days as Scrubs (page 160).

Of particular interest in a NAS environment are the Short and Long S.M.A.R.T. tests. Details vary between drive manufacturers, but a Short test generally does some basic tests of a drive that takes a few minutes. The Long test scans the entire disk surface, and can take several hours on larger drives.

FreeNAS® uses the smartd(8) (https://www.smartmontools.org/browser/trunk/smartmontools/smartd.8.in) service to monitor S.M.A.R.T. information. A complete configuration consists of:

2. Enabling or disabling S.M.A.R.T. for each disk member of a volume in Volumes → View Disks. This setting is enabled by default for disks that support S.M.A.R.T.
3. Checking the configuration of the S.M.A.R.T. service as described in this section.
4. Starting the S.M.A.R.T. service with Services → Control Services.

Figure 11.14 shows the configuration screen that appears after clicking Services → S.M.A.R.T.
Fig. 11.14: S.M.A.R.T Configuration Options

Note: `smartd` wakes up at the configured Check Interval. It checks the times configured in Tasks → S.M.A.R.T. Tests to see if a test must begin. Since the smallest time increment for a test is an hour, it does not make sense to set a Check Interval value higher than 60 minutes. For example, if the Check Interval is set to 120 minutes and the smart test to every hour, the test will only be run every two hours because `smartd` only activates every two hours.

Table 11.10 summarizes the options in the S.M.A.R.T configuration screen.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check interval</td>
<td>integer</td>
<td>Define in minutes how often <code>smartd</code> activates to check if any tests are configured to run.</td>
</tr>
<tr>
<td>Power mode</td>
<td>drop-down menu</td>
<td>Tests are not performed if the system enters the specified power mode: Never, Sleep, Standby, or Idle.</td>
</tr>
<tr>
<td>Difference</td>
<td>integer in degrees Celsius</td>
<td>Enter number of degrees in Celsius. S.M.A.R.T reports if the temperature of a drive has changed by N degrees Celsius since the last report. Default of 0 disables this option.</td>
</tr>
<tr>
<td>Informational</td>
<td>integer in degrees Celsius</td>
<td>Enter a threshold temperature in Celsius. S.M.A.R.T will message with a log level of LOG_INFO if the temperature is higher than specified degrees in Celsius. Default of 0 disables this option.</td>
</tr>
<tr>
<td>Critical</td>
<td>integer in degrees Celsius</td>
<td>Enter a threshold temperature in Celsius. S.M.A.R.T will message with a log level of LOG_CRIT and send an email if the temperature is higher than specified degrees in Celsius. Default of 0 disables this option.</td>
</tr>
<tr>
<td>Email to report</td>
<td>string</td>
<td>Email address to receive S.M.A.R.T. alerts. Use a space to separate multiple email addresses.</td>
</tr>
</tbody>
</table>

11.13 SMB

The settings configured when creating SMB Shares in Sharing → Windows (SMB) Shares → Add Windows (SMB) Share are specific to each configured SMB Share. In contrast, global settings which apply to all SMB shares are configured in Services → SMB.

Note: After starting the SMB service, it can take several minutes for the master browser election

(https://www.samba.org/samba/docs/old/Samba3-HOWTO/NetworkBrowsing.html#id2581357) to occur and for the FreeNAS® system to become available in Windows Explorer.

Figure 11.15 shows the global SMB configuration options which are described in Table 11.11. This configuration screen is really a front-end to smb4.conf (https://www.freebsd.org/cgi/man.cgi?query=smb4.conf&manpath=FreeBSD+11.0-RELEASE+and+Ports).
### Global SMB Configuration

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NetBIOS name:</td>
<td>freenas</td>
</tr>
<tr>
<td>NetBIOS alias:</td>
<td></td>
</tr>
<tr>
<td>Workgroup:</td>
<td>WORKGROUP</td>
</tr>
<tr>
<td>Description:</td>
<td>FreeNAS Server</td>
</tr>
<tr>
<td>Enable SMB1 support:</td>
<td></td>
</tr>
<tr>
<td>DOS charset:</td>
<td>CP437</td>
</tr>
<tr>
<td>UNIX charset:</td>
<td>UTF-8</td>
</tr>
<tr>
<td>Log level:</td>
<td>Minimum</td>
</tr>
<tr>
<td>Use syslog only:</td>
<td></td>
</tr>
<tr>
<td>Local Master:</td>
<td></td>
</tr>
<tr>
<td>Domain logons:</td>
<td></td>
</tr>
<tr>
<td>Time Server for Domain:</td>
<td></td>
</tr>
<tr>
<td>Guest account:</td>
<td>nobody</td>
</tr>
<tr>
<td>File mask:</td>
<td></td>
</tr>
<tr>
<td>Directory mask:</td>
<td></td>
</tr>
<tr>
<td>Allow Empty Password:</td>
<td></td>
</tr>
<tr>
<td>Auxiliary parameters:</td>
<td></td>
</tr>
<tr>
<td>Unix Extensions:</td>
<td></td>
</tr>
<tr>
<td>Zeroconf share discovery:</td>
<td></td>
</tr>
</tbody>
</table>
Table 11.11: Global SMB Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NetBIOS Name</td>
<td>string</td>
<td>Automatically populated with the original hostname of the system. Limited to 15 characters. It must be different from the Workgroup name.</td>
</tr>
<tr>
<td>NetBIOS Alias</td>
<td>string</td>
<td>Enter an alias. Limited to 15 characters</td>
</tr>
<tr>
<td>Workgroup</td>
<td>string</td>
<td>Must match Windows workgroup name. This setting is ignored if the Active Directory (page 167) or LDAP (page 172) service is running.</td>
</tr>
<tr>
<td>Description</td>
<td>string</td>
<td>Enter an optional server description.</td>
</tr>
<tr>
<td>Enable SMB1 support</td>
<td>checkbox</td>
<td>Allow legacy SMB clients to connect to the server. Warning: SMB1 is not secure and has been deprecated by Microsoft. See Do Not Use SMB1 (<a href="https://www.ixsystems.com/blog/library/do-not-use-smb1/">https://www.ixsystems.com/blog/library/do-not-use-smb1/</a>).</td>
</tr>
<tr>
<td>DOS charset</td>
<td>drop-down menu</td>
<td>The character set Samba uses when communicating with DOS and Windows 9x/ME clients. Default is CP437.</td>
</tr>
<tr>
<td>UNIX charset</td>
<td>drop-down menu</td>
<td>Default is UTF-8 which supports all characters in all languages.</td>
</tr>
<tr>
<td>Log level</td>
<td>drop-down menu</td>
<td>Choices are Minimum, Normal, or Debug.</td>
</tr>
<tr>
<td>Use syslog only</td>
<td>checkbox</td>
<td>Set to log authentication failures to /var/log/messages instead of the default of /var/log/samba4/log.smbd.</td>
</tr>
<tr>
<td>Local Master</td>
<td>checkbox</td>
<td>Set to determine if the system will participate in a browser election. Disable when network contains an AD or LDAP server or Vista or Windows 7 machines are present.</td>
</tr>
<tr>
<td>Domain logons</td>
<td>checkbox</td>
<td>Set if it is necessary to provide the netlogin service for older Windows clients.</td>
</tr>
<tr>
<td>Time Server for Domain</td>
<td>checkbox</td>
<td>Determines if the system advertises itself as a time server to Windows clients. Disable when network contains an AD or LDAP server.</td>
</tr>
<tr>
<td>Guest Account</td>
<td>drop-down menu</td>
<td>Select the account to be used for guest access. Default is nobody. Account must have permission to access the shared volume/dataset. If Guest Account user is deleted, resets to nobody.</td>
</tr>
<tr>
<td>File mask</td>
<td>integer</td>
<td>Overrides default file creation mask of 0666 which creates files with read and write access for everybody.</td>
</tr>
<tr>
<td>Directory mask</td>
<td>integer</td>
<td>Overrides default directory creation mask of 0777 which grants directory read, write and execute access for everybody.</td>
</tr>
<tr>
<td>Allow Empty Password</td>
<td>checkbox</td>
<td>Set to allow users to press Enter when prompted for a password. Requires the username/password to be the same as the Windows user account.</td>
</tr>
<tr>
<td>Unix Extensions</td>
<td>checkbox</td>
<td>Set to allow non-Windows SMB clients to access symbolic links and hard links, has no effect on Windows clients.</td>
</tr>
<tr>
<td>Zeroconf share discovery</td>
<td>checkbox</td>
<td>Enable if Mac clients will be connecting to the SMB share.</td>
</tr>
<tr>
<td>Hostname lookups</td>
<td>checkbox</td>
<td>Set to allow using hostnames rather than IP addresses in the Hosts Allow or Hosts Deny fields of a SMB share. Unset if IP addresses are used to avoid the delay of a host lookup.</td>
</tr>
<tr>
<td>Allow execute always</td>
<td>checkbox</td>
<td>If set, Samba will allow the user to execute a file, even if that user’s permissions are not set to execute.</td>
</tr>
<tr>
<td>Obey pam restrictions</td>
<td>checkbox</td>
<td>Unset this option to allow: Cross-domain authentication. Users and groups to be managed on another forest. Permissions to be delegated from Active Directory (page 167) users and groups to domain admins on another forest.</td>
</tr>
<tr>
<td>NTLMv1 auth</td>
<td>checkbox</td>
<td>Set to allow NTLMv1 authentication. Required by Windows XP clients and sometimes by clients in later versions of Windows.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 11.11 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bind IP Addresses</td>
<td>checkboxes</td>
<td>Select the IPv4 and IPv6 addresses SMB will listen on. Always add the loopback interface 127.0.0.1 as Samba utilities connect to the loopback IP (<a href="https://wiki.samba.org/index.php/Configure_Samba_to_Bind_to_Specific_Interfaces">https://wiki.samba.org/index.php/Configure_Samba_to_Bind_to_Specific_Interfaces</a>) if no host name is provided.</td>
</tr>
<tr>
<td>Idmap Range Low</td>
<td>integer</td>
<td>The beginning UID/GID for which this system is authoritative. Any UID/GID lower than this value is ignored, providing a way to avoid accidental UID/GID overlaps between local and remotely defined IDs.</td>
</tr>
<tr>
<td>Idmap Range High</td>
<td>integer</td>
<td>The ending UID/GID for which this system is authoritative. Any UID/GID higher than this value is ignored, providing a way to avoid accidental UID/GID overlaps between local and remotely defined IDs.</td>
</tr>
</tbody>
</table>

Changes to SMB settings take effect immediately. Changes to share settings only take effect after the client and server negotiate a new session.

Note: Do not set the directory name cache size as an Auxiliary parameter. Due to differences in how Linux and BSD handle file descriptors, directory name caching is disabled on BSD systems to improve performance.

Note: SMB (page 236) cannot be disabled while Active Directory (page 167) is enabled.

11.13.1 Troubleshooting SMB

Do not connect to SMB shares as root, and do not add the root user in the SMB user database. There are security implications in attempting to do so, and Samba 4 and later take measures to prevent such actions. This can produce auth_check_ntlm_password and FAILED with error NT_STATUS_WRONG_PASSWORD errors.

Samba is single threaded, so CPU speed makes a big difference in SMB performance. A typical 2.5Ghz Intel quad core or greater should be capable of handling speeds in excess of Gb LAN while low power CPUs such as Intel Atoms and AMD C-30sE-350E-450 will not be able to achieve more than about 30-40MB/sec typically. Remember that other loads such as ZFS will also require CPU resources and may cause Samba performance to be less than optimal.

Samba's write cache parameter has been reported to improve write performance in some configurations and can be added to the Auxiliary parameters field. Use an integer value which is a multiple of _SC_PAGESIZE (typically 4096) to avoid memory fragmentation. This will increase Samba's memory requirements and should not be used on systems with limited RAM.

Windows automatically caches file sharing information. If changes are made to an SMB share or to the permissions of a volume/dataset being shared by SMB and the share becomes inaccessible, try logging out and back in to the Windows system. Alternately, users can type `net use /delete` from the command line to clear their SMB sessions.

Windows also automatically caches login information. To require users to log in every time they access the system, reduce the cache settings on the client computers.


If a particular user cannot connect to a SMB share, ensure their password does not contain the `?` character. If it does, have the user change the password and try again.

If permissions work for Windows users but not for macOS users, try disabling Unix Extensions and restarting the SMB service.

If the SMB service will not start, run this command from Shell (page 297) to see if there is an error in the configuration:

```
testparm /usr/local/etc/smb4.conf
```

If clients have problems connecting to the SMB share, go to Services → SMB and verify that Server maximum protocol is set to SMB2.

240
Using a dataset for SMB sharing is recommended. When creating the dataset, make sure that the Share type is set to Windows.

Do not use `chmod` to attempt to fix the permissions on a SMB share as it destroys the Windows ACLs. The correct way to manage permissions on a SMB share is to manage the share security from a Windows system as either the owner of the share or a member of the group that owns the share. To do so, right-click on the share, click Properties and navigate to the Security tab. If the ACLs are already destroyed by using `chmod`, `winacl` can be used to fix them. Type `winacl` from Shell (page 297) for usage instructions.

The Common Errors (https://www.samba.org/samba/docs/old/Samba3-HOWTO/domain-member.html#id2573692) section of the Samba documentation contains additional troubleshooting tips.


Directory listing speed in folders with a large number of files is sometimes a problem. A few specific changes can help improve the performance. However, changing these settings can affect other usage. In general, the defaults are adequate. Do not change these settings unless there is a specific need.

- Hostname Lookups and Log Level can also have a performance penalty. When not needed, they can be disabled or reduced in the global SMB service options (page 239).

- Make Samba datasets case insensitive by setting Case Sensitivity to Insensitive when creating them. This ZFS property is only available when creating a dataset. It cannot be changed on an existing dataset. To convert such datasets, back up the data, create a new case-insensitive dataset, create an SMB share on it, set the share level auxiliary parameter `case_sensitive = true`, then copy the data from the old one onto it. After the data has been checked and verified on the new share, the old one can be deleted.

- If present, remove options for extended attributes and DOS attributes in Auxiliary Parameters (page 194).

- Disable as many VFS Objects as possible in the share settings (page 194). Many have performance overhead.

The SMB1 protocol is deprecated and vulnerable. Before enabling it, see Do Not Use SMB1 (https://www.ixsystems.com/blog/library/do-not-use-smb1/).

### 11.14 SNMP

SNMP (Simple Network Management Protocol) is used to monitor network-attached devices for conditions that warrant administrative attention. FreeNAS® uses Net-SNMP (http://net-snmp.sourceforge.net/) to provide SNMP. When starting the SNMP service, this port will be enabled on the FreeNAS® system:

- UDP 161 (listens here for SNMP requests)

Available MIBS are located in `/usr/local/share/snmp/mibs`.

Figure 11.16 shows the SNMP configuration screen. Table 11.12 summarizes the configuration options.
Fig. 11.16: Configuring SNMP

Table 11.12: SNMP Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>string</td>
<td>Optional description of the system location.</td>
</tr>
<tr>
<td>Contact</td>
<td>string</td>
<td>Optional. Enter the administrator email address.</td>
</tr>
<tr>
<td>SNMP v3 Support</td>
<td>checkbox</td>
<td>Set to enable support for SNMP version 3.</td>
</tr>
<tr>
<td>Community</td>
<td>string</td>
<td>Default is public. Change this for security reasons! The value can only con-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tain alphanumeric characters, underscores, dashes, periods, and spaces. This value can be empty for SNMPv3 networks.</td>
</tr>
</tbody>
</table>
### Table 11.12 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>string</td>
<td>Only applies if SNMP v3 Support is set. Specify the username to register with this service. Refer to <a href="http://netsnmp.sourceforge.net/docs/man/snmpd.conf.html">snmpd.conf(5)</a> for more information about configuring this and the Authentication Type, Password, Privacy Protocol, and Privacy Passphrase fields.</td>
</tr>
<tr>
<td>Authentication Type</td>
<td>drop-down menu</td>
<td>Only applies if SNMP v3 Support is enabled. Choices are MD5 or SHA.</td>
</tr>
<tr>
<td>Password</td>
<td>string</td>
<td>Only applies if SNMP v3 Support is enabled. Specify and confirm a password of at least eight characters.</td>
</tr>
<tr>
<td>Privacy Protocol</td>
<td>drop-down menu</td>
<td>Only applies if SNMP v3 Support is enabled. Choices are AES or DES.</td>
</tr>
<tr>
<td>Privacy Passphrase</td>
<td>string</td>
<td>If not specified, Password is used.</td>
</tr>
<tr>
<td>Log Level</td>
<td>drop-down menu</td>
<td>Choices range from fewest log entries (Emergency) to the most (Debug).</td>
</tr>
<tr>
<td>Auxiliary Parameters</td>
<td>string</td>
<td>Enter additional <a href="http://netsnmp.sourceforge.net/docs/man/snmpd.conf.html">snmpd.conf(5)</a> options not covered in this screen, one option per line.</td>
</tr>
</tbody>
</table>

### 11.15 SSH

Secure Shell (SSH) is used to transfer files securely over an encrypted network. When a FreeNAS® system is used as an SSH server, the users in the network must use [SSH client software](https://en.wikipedia.org/wiki/Comparison_of_SSH_clients) to transfer files with SSH.

This section shows the FreeNAS® SSH configuration options, demonstrates an example configuration that restricts users to their home directory, and provides some troubleshooting tips.

**Figure 11.17** shows the Services → SSH configuration screen. After configuring SSH, remember to start it in Services → Control Services.

![SSH Configuration](image)

**Fig. 11.17: SSH Configuration**

**Table 11.13** summarizes the configuration options. Some settings are only available in Advanced Mode. To see these settings, either click the Advanced Mode button, or configure the system to always display these settings by enabling the Show advanced fields by default option in System → Advanced.
Table 11.13: SSH Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bind Interfaces</td>
<td>selection</td>
<td>✓</td>
<td>By default, SSH listens on all interfaces unless specific interfaces are highlighted in the Available field and added to the Selected field.</td>
</tr>
<tr>
<td>TCP Port</td>
<td>integer</td>
<td></td>
<td>Port to open for SSH connection requests. 22 by default.</td>
</tr>
<tr>
<td>Login as Root with password</td>
<td>checkbox</td>
<td></td>
<td>As a security precaution, root logins are discouraged and disabled by default. If enabled, a password must be set for the root user in View Users.</td>
</tr>
<tr>
<td>Allow Password Authentication</td>
<td>checkbox</td>
<td></td>
<td>Unset to require key-based authentication for all users. Requires additional setup (<a href="http://the.earth.li/~sgtatham/putty/0.55/htmldoc/Chapter8.html">http://the.earth.li/~sgtatham/putty/0.55/htmldoc/Chapter8.html</a>) on both the SSH client and server.</td>
</tr>
<tr>
<td>Allow Kerberos Authentication</td>
<td>checkbox</td>
<td>✓</td>
<td>Before setting this option, ensure Kerberos Realms (page 175) and Kerberos Keytabs (page 176) are configured and FreeNAS® can communicate with the Kerberos Domain Controller (KDC).</td>
</tr>
<tr>
<td>Allow TCP Port Forwarding</td>
<td>checkbox</td>
<td></td>
<td>Set to allow users to bypass firewall restrictions using the SSH port forwarding feature (<a href="https://www.symantec.com/connect/articles/ssh-port-forwarding">https://www.symantec.com/connect/articles/ssh-port-forwarding</a>).</td>
</tr>
<tr>
<td>Compress Connections</td>
<td>checkbox</td>
<td></td>
<td>Set to attempt to reduce latency over slow networks.</td>
</tr>
<tr>
<td>SFTP Log Level</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Select the syslog(3) (<a href="https://www.freebsd.org/cgi/man.cgi?query=syslog">https://www.freebsd.org/cgi/man.cgi?query=syslog</a>) level of the SFTP server.</td>
</tr>
<tr>
<td>SFTP Log Facility</td>
<td>drop-down menu</td>
<td>✓</td>
<td>Select the syslog(3) (<a href="https://www.freebsd.org/cgi/man.cgi?query=syslog">https://www.freebsd.org/cgi/man.cgi?query=syslog</a>) facility of the SFTP server.</td>
</tr>
<tr>
<td>Extra Options</td>
<td>string</td>
<td>✓</td>
<td>Add any additional sshd_config(5) (<a href="https://www.freebsd.org/cgi/man.cgi?query=sshd_config">https://www.freebsd.org/cgi/man.cgi?query=sshd_config</a>) options not covered in this screen, one per line. These options are case-sensitive and misspellings can prevent the SSH service from starting.</td>
</tr>
</tbody>
</table>

A few sshd_config(5) (https://www.freebsd.org/cgi/man.cgi?query=sshd_config) options that are useful to enter in the Extra Options field include:

- increase the ClientAliveInterval if SSH connections tend to drop
- ClientMaxStartup defaults to 10. Increase this value if more concurrent SSH connections are required.

11.15.1 SCP Only

When SSH is configured, authenticated users with a user account created using Account → Users → Add User can use ssh to log into the FreeNAS® system over the network. The user home directory is the pool or dataset specified in the Home Directory field of the FreeNAS® account for that user. While the SSH login defaults to the user home directory, users are able to navigate outside their home directory, which can pose a security risk.

It is possible to allow users to use scp and sftp to transfer files between their local computer and their home directory on the FreeNAS® system, while restricting them from logging into the system using ssh. To configure this scenario, go to Account → Users → View Users, select the user, and click Modify User. Change the Shell to scponly. Repeat for each user that needs restricted SSH access.

Test the configuration from another system by running the sftp, ssh, and scp commands as the user. sftp and scp will work but ssh will fail.
Note: Some utilities like WinSCP and Filezilla can bypass the scponly shell. This section assumes that users are accessing the system using the command line versions of `scp` and `sftp`.

### 11.15.2 Troubleshooting SSH

Keywords listed in `sshd_config(5)` ([https://www.freebsd.org/cgi/man.cgi?query=sshd_config](https://www.freebsd.org/cgi/man.cgi?query=sshd_config)) are case sensitive. This is important to remember when adding any Extra options. The configuration will not function as intended if the upper and lowercase letters of the keyword are not an exact match.

If clients are receiving “reverse DNS” or timeout errors, add an entry for the IP address of the FreeNAS® system in the Host name database field of Network → Global Configuration.

When configuring SSH, always test the configuration as an SSH user account to ensure the user is limited by the configuration and they have permission to transfer files within the intended directories. If the user account is experiencing problems, the SSH error messages are specific in describing the problem. Type this command within Shell (page 297) to read these messages as they occur:

```
tail -f /var/log/messages
```

Additional messages regarding authentication errors are found in `/var/log/auth.log`.

### 11.16 TFTP

Trivial File Transfer Protocol (TFTP) is a light-weight version of FTP typically used to transfer configuration or boot files between machines, such as routers, in a local environment. TFTP provides an extremely limited set of commands and provides no authentication.

If the FreeNAS® system will be used to store images and configuration files for network devices, configure and start the TFTP service. Starting the TFTP service opens UDP port 69.

Figure 11.18 shows the TFTP configuration screen and Table 11.14 summarizes the available options:

![TFTP Configuration](image)

Fig. 11.18: TFTP Configuration
<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directory</td>
<td>browse</td>
<td>Browse to an existing directory to be used for storage. Some devices require a specific directory name, refer to the device documentation for details.</td>
</tr>
<tr>
<td>Allow New Files</td>
<td>checkbox</td>
<td>Enable if network devices need to send files to the system (for example, to back up their configuration).</td>
</tr>
<tr>
<td>Port</td>
<td>integer</td>
<td>Enter the UDP port to listen for TFTP requests. Default is 69.</td>
</tr>
<tr>
<td>Username</td>
<td>drop-down</td>
<td>Select the account to be used for TFTP requests. The account must have permission to the Directory.</td>
</tr>
<tr>
<td>File Permissions</td>
<td>checkboxes</td>
<td>Set permissions for newly created files. The default is everyone can read and only the owner can write. Some devices require less strict permissions.</td>
</tr>
<tr>
<td>Extra options</td>
<td>string</td>
<td>Add any additional tftpd(8) (<a href="https://www.freebsd.org/cgi/man.cgi?query=tftpd">https://www.freebsd.org/cgi/man.cgi?query=tftpd</a>) options not shown in this screen, one option per line.</td>
</tr>
</tbody>
</table>

### 11.17 UPS

FreeNAS® uses NUT (http://networkupstools.org/) (Network UPS Tools) to provide UPS support. If the FreeNAS® system is connected to a UPS device, configure the UPS service then start it in Services → Control Services.

Figure 11.19 shows the UPS configuration screen:
<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPS Mode:</td>
<td>Master</td>
</tr>
<tr>
<td>Identifier:</td>
<td>ups</td>
</tr>
<tr>
<td>Driver:</td>
<td>---</td>
</tr>
<tr>
<td>Port:</td>
<td>---</td>
</tr>
<tr>
<td>Auxiliary parameters (ups.conf):</td>
<td></td>
</tr>
<tr>
<td>Auxiliary parameters (upsd.conf):</td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>Shutdown mode:</td>
<td>UPS goes on battery</td>
</tr>
<tr>
<td>Shutdown timer:</td>
<td>30</td>
</tr>
<tr>
<td>Shutdown Command:</td>
<td>/sbin/shutdown -p now</td>
</tr>
<tr>
<td>No Communication Warning Time:</td>
<td></td>
</tr>
<tr>
<td>Monitor User:</td>
<td>upsmon</td>
</tr>
<tr>
<td>Monitor Password:</td>
<td>fixmepass</td>
</tr>
<tr>
<td>Extra users (upsd.users):</td>
<td></td>
</tr>
<tr>
<td>Remote Monitor:</td>
<td></td>
</tr>
<tr>
<td>Send Email Status Updates:</td>
<td></td>
</tr>
<tr>
<td>To email:</td>
<td></td>
</tr>
<tr>
<td>Email Subject:</td>
<td>UPS report generated by %h</td>
</tr>
<tr>
<td>Power Off UPS:</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 11.19: UPS Configuration Screen
Table 11.15 summarizes the options in the UPS Configuration screen.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPS Mode</td>
<td>drop-down menu</td>
<td>Select Master if the UPS is plugged directly into the system serial port. The UPS will remain the last item to shut down. Select Slave to have the system shut down before Master.</td>
</tr>
<tr>
<td>Identifier</td>
<td>string</td>
<td>Describe the UPS device. Can contain alphanumeric, period, comma, hyphen, and underscore characters.</td>
</tr>
<tr>
<td>Port</td>
<td>drop-down menu</td>
<td>Select the serial or USB port the UPS is plugged into (see NOTE (page 248)).</td>
</tr>
<tr>
<td>Auxiliary Parameters (ups.conf)</td>
<td>string</td>
<td>Enter any additional options from <a href="http://networkupstools.org/docs/man/ups.conf.html">ups.conf(5)</a>.</td>
</tr>
<tr>
<td>Auxiliary Parameters (upsd.conf)</td>
<td>string</td>
<td>Enter any additional options from <a href="http://networkupstools.org/docs/man/upsd.conf.html">upsd.conf(5)</a>.</td>
</tr>
<tr>
<td>Description</td>
<td>string</td>
<td>Optional. Enter any notes about the UPS service.</td>
</tr>
<tr>
<td>Shutdown mode</td>
<td>drop-down menu</td>
<td>Choose when the UPS initiates shutdown. Choices are UPS goes on battery and UPS reaches low battery.</td>
</tr>
<tr>
<td>Shutdown timer</td>
<td>integer</td>
<td>Select a value in seconds for the UPS to wait before initiating shutdown. Shutdown will not occur if the power is restored while the timer is counting down. The value only applies when Shutdown Mode is set to UPS goes on battery.</td>
</tr>
<tr>
<td>Shutdown Command</td>
<td>string</td>
<td>Enter the command to run to shut down the computer when battery power is low or shutdown timer runs out.</td>
</tr>
<tr>
<td>No Communication Warning Time</td>
<td>string</td>
<td>Enter a value in seconds to wait before alerting that the service cannot reach any UPS. Warnings continue until the situation is fixed.</td>
</tr>
<tr>
<td>Monitor User</td>
<td>string</td>
<td>Enter a user to associate with this service. Default is upsmon.</td>
</tr>
<tr>
<td>Monitor Password</td>
<td>string</td>
<td>Default is the known value fixmepass. Change this to enhance system security. Cannot contain a space or #.</td>
</tr>
<tr>
<td>Extra users</td>
<td>string</td>
<td>Enter the accounts with administrative access. See <a href="http://networkupstools.org/docs/man/upsd.users.html">upsd.users(5)</a> for examples.</td>
</tr>
<tr>
<td>Remote monitor</td>
<td>checkbox</td>
<td>If set, be aware the default is to listen on all interfaces and use the known values user upsmon and password fixmepass.</td>
</tr>
<tr>
<td>Send Email Status Updates</td>
<td>checkbox</td>
<td>Set to enable the system to send email updates to the configured To email address.</td>
</tr>
<tr>
<td>To email</td>
<td>email address</td>
<td>Enter the email address to receive status updates. Separate multiple email addresses with a semicolon (;).</td>
</tr>
<tr>
<td>Email Subject</td>
<td>string</td>
<td>Enter a subject line to be used in email status updates.</td>
</tr>
<tr>
<td>Power Off UPS</td>
<td>checkbox</td>
<td>Set to power off the UPS after shutting down the FreeNAS system.</td>
</tr>
</tbody>
</table>

Note: For USB devices, the easiest way to determine the correct device name is to enable the Show console messages option in System → Advanced. Plug in the USB device and look for a /dev/ugen or /dev/uhid device name in the console messages.

[ups(8)](http://networkupstools.org/docs/man/upsc.html) can be used to get status variables from the UPS daemon such as the current charge and input voltage. It can be run from [Shell](page 297) using this syntax:

```
upsc ups@localhost
```

The [ups(8)](http://networkupstools.org/docs/man/upsc.html) man page gives some other usage examples.

[upsmd](8) can be used to send commands directly to the UPS, assuming the hardware supports the command being sent. Only users with administrative rights can use this command. These users are created in the Extra users field.
11.17.1 Multiple Computers with One UPS

A UPS with adequate capacity can power multiple computers. One computer is connected to the UPS data port with a serial or USB cable. This master makes UPS status available on the network for other computers. These slave computers are powered by the UPS, but receive UPS status data from the master computer. See the NUT User Manual (http://networkupstools.org/docs/user-manual.chunked/index.html) and NUT User Manual Pages (http://networkupstools.org/docs/man/index.html#User_man).

11.18 WebDAV

The WebDAV service can be configured to provide a file browser over a web connection. Before starting this service, at least one WebDAV share must be created using Sharing → WebDAV Shares → Add WebDAV Share. Refer to WebDAV Shares (page 192) for instructions on how to create a share and connect to it when the service is configured and started.

Figure 11.20 shows the WebDAV configuration screen. Table 11.16 summarizes the available options.

![WebDAV Configuration Screen](#)

**Table 11.16: WebDAV Configuration Options**

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>drop-down menu</td>
<td>HTTP* keeps the connection always unencrypted. HTTPS always encrypts the connection. HTTP+HTTPS allows both types of connections.</td>
</tr>
<tr>
<td>HTTP Port</td>
<td>string</td>
<td>Specify a port for unencrypted connections. Only appears if the selected Protocol is HTTP or HTTP+HTTPS. The default of 8080 is recommended. Do not use a port number already being used by another service.</td>
</tr>
<tr>
<td>HTTPS Port</td>
<td>string</td>
<td>Specify a port for encrypted connections. Only appears if the selected Protocol is HTTPS or HTTP+HTTPS. The default of 8081 is recommended. Do not reuse a port number.</td>
</tr>
<tr>
<td>Webdav SSL Certificate</td>
<td>drop-down menu</td>
<td>Select the SSL certificate to use for encrypted connections. Only appears if the selected Protocol is HTTPS or HTTP+HTTPS. To create a certificate, use System → Certificates.</td>
</tr>
<tr>
<td>HTTP Authentication</td>
<td>drop-down menu</td>
<td>Choices are No Authentication, Basic Authentication (unencrypted), or Digest Authentication (encrypted).</td>
</tr>
<tr>
<td>Webdav Password</td>
<td>string</td>
<td>Default is davtest. This is a known value and is recommended to be changed.</td>
</tr>
</tbody>
</table>
FreeNAS® 8.2.0 introduced the ability to extend the built-in NAS services by providing a mechanism for installing additional software. This mechanism was known as the Plugins architecture and is based on FreeBSD jails (https://en.wikipedia.org/wiki/Freebsd_jail) and PC-BSD 9.x PBIs (http://wiki.pcbsd.org/index.php/AppCafe%C2%AE/9.2). This allowed users to install and configure additional applications once they had created and configured a plugins jail.

FreeNAS® 9.x simplifies this procedure by providing two methods for software installation. The Plugins method, described in this section, is meant for users who prefer to browse for, install, and configure available software using the GUI. This method is very easy to use, but is limited in the amount of software that is available. Each application will automatically be installed into its own jail, meaning this method may not be suitable for users who wish to run multiple applications within the same jail.

The Jails method provides much more control over software installation but assumes that the user is comfortable working from the command line can and has a good understanding of networking basics and software installation on FreeBSD-based systems.

Look through the Plugins (page 250) and Jails (page 257) sections to become familiar with the features and limitations of each. Choose the method that best meets the software needs.

Note: Plugins created for FreeNAS® 9.3 or later are expected to work on the current release. Plugins created for earlier releases of FreeNAS® must be reinstalled.

12.1 Installing Plugins

A plugin is a self-contained application installer which has been designed to integrate into the FreeNAS® GUI. A plugin offers several advantages:

- the FreeNAS® GUI provides a browser for viewing the list of available plugins
- the FreeNAS® GUI provides buttons for installing, starting, managing, and deleting plugins
- if the plugin has configuration options, a screen will be added to the FreeNAS® GUI so that these options can be configured from the GUI

To install a plugin, click Plugins. Figure 12.1 shows the list of available plugins.
### Available Plugins

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>bacula-ad</td>
<td>Network backup solution (server)</td>
<td>5.2.12_8</td>
</tr>
<tr>
<td>CouchPots</td>
<td>An automatic NZB and torrent downloader</td>
<td>autoupdate 9_5</td>
</tr>
<tr>
<td>crashplan</td>
<td>Crashplan backs up data to remote servers, other computers, or hard drives</td>
<td>3.6.3_1</td>
</tr>
<tr>
<td>Emby</td>
<td>A home media server built using other popular open source technologies</td>
<td>8.2.13.0</td>
</tr>
<tr>
<td>plex</td>
<td>Firefly (int-daapd) is an open-source media server for the Roku Soundbridge and Apple iTunes</td>
<td>1.698_8</td>
</tr>
<tr>
<td>Headphones</td>
<td>Automatic music downloader for SABnzbd</td>
<td>9.3.1</td>
</tr>
<tr>
<td>HTFManager</td>
<td>A fully responsive interface to manage all your favorite software on your HTPC</td>
<td>autoupdate 9_2</td>
</tr>
<tr>
<td>LazyLibrarian</td>
<td>A program to follow authors and grab metadata for all your digital reading needs</td>
<td>9.3.0</td>
</tr>
<tr>
<td>Modsonic</td>
<td>A web-based media streamer and jukibox fork of Subsonic</td>
<td>6.1</td>
</tr>
<tr>
<td>Metaserver</td>
<td>A simple web interface to act as a nice overview/frontpage for an XBMC HTPC</td>
<td>9.3.1</td>
</tr>
<tr>
<td>MinOS</td>
<td>A web interface to create and manage Minecraft server instances</td>
<td>9.3.5</td>
</tr>
<tr>
<td>Mylar</td>
<td>An automated Comic Book downloader (cbz/cbf) trying to follow in the laws of sickbeard and headphones</td>
<td>9.3.2</td>
</tr>
<tr>
<td>Nextcloud</td>
<td>Nextcloud is a system for the creation and management of personal cloud resources</td>
<td>10.0.1</td>
</tr>
<tr>
<td>NZBHydra</td>
<td>A meta search for NZB indexers</td>
<td>autoupdate 9_1</td>
</tr>
<tr>
<td>ownCloud</td>
<td>Owncloud is a system for the creation and management of personal cloud resources</td>
<td>9.1.2</td>
</tr>
<tr>
<td>PlexMediaServer</td>
<td>The Plex Media Server component</td>
<td>1.5.5.3634</td>
</tr>
<tr>
<td>Plex</td>
<td>Distributed peer-to-peer file syncing application</td>
<td>2.4.4</td>
</tr>
<tr>
<td>s3cmd</td>
<td>A plugin which allows you to backup a dataset to Amazon’s S3 service</td>
<td>1.0.1_1</td>
</tr>
<tr>
<td>SABnzbd</td>
<td>Open Source Binary Newsreader</td>
<td>2.0.0</td>
</tr>
<tr>
<td>SickBeard</td>
<td>PVR for newsgroup users</td>
<td>9.3.1</td>
</tr>
<tr>
<td>SickRage</td>
<td>Video File Manager for TV Shows</td>
<td>autoupdate 9_1</td>
</tr>
<tr>
<td>Sonarr</td>
<td>Smart PVR for newsgroup and bittorrent users</td>
<td>2.0.0.3732</td>
</tr>
<tr>
<td>Subsonic</td>
<td>A free, web-based media streamer, providing ubiquitous access to your music.</td>
<td>6.0.2</td>
</tr>
<tr>
<td>Synch</td>
<td>Open Source Continuous Replication / Cluster Synchronization Thing</td>
<td>0.24.3</td>
</tr>
<tr>
<td>Transmission</td>
<td>A lightweight, yet powerful BitTorrent client</td>
<td>2.92</td>
</tr>
<tr>
<td>XDM</td>
<td>Extendable Download Manager. Plugin based media collection manager</td>
<td>9.3.1</td>
</tr>
</tbody>
</table>

Fig. 12.1: Viewing the List of Available Plugins

Note: if the list of available plugins is not displayed, open Shell (page 297) and verify that the FreeNAS® system can ping an address on the Internet. If it cannot, you may have to add a default gateway address and/or DNS server address in Network → Global Configuration.

Highlight the plugin to install, click Install, then click OK. In the example shown in Figure 12.2, SABnzbd is selected for installation.
The installation will take a few minutes as the system will first download and configure a jail to store the plugin application. It will then install the plugin and add it to the Installed tab as shown in Figure 12.3.

Warning: Be patient and wait for the installation to finish. Navigating away from the installation before it is finished will cause problems with the installation.
As seen in the example shown in Figure 12.3, entries for the installed PBI will appear in these locations:

- the Installed tab of Plugins
- the Plugins section of the tree
- the Jails section of the tree

The entry in the Installed tab of Plugins will display the plugin name and version, the name of the PBI that was installed, the name of the jail that was created, whether the application status is ON or OFF, and a button to delete the application and its associated jail. If a newer version of the application is available as a plugin, a button to update the application will also appear.

Note: The Service status of a plugin must be turned to ON before the installed application is available. Before starting the service, check to see if it has a configuration menu by clicking its entry in the Plugins section of the tree. If the application is configurable, this will open a screen that contains the available configuration options. Plugins which are not configurable will instead display a message with a hyperlink for accessing the software. However, that hyperlink does not work until the plugin is started.

Always review a plugin’s configuration options before attempting to start it. Some plugins have options that need to be set before their service will successfully start. If you have never configured that application before, check the application’s website to see what documentation is available. A link to the website for each available plugin can be found in Available Plugins (page 255).

If the application requires access to the data stored on the FreeNAS® system, click the entry for the associated jail in the Jails section of the tree and add a storage as described in Add Storage (page 263).

If you need to access the shell of the jail containing the application to complete or test your configuration, click the entry for the associated jail in the Jails section of the tree. You can then click its “shell” icon as described in Managing Jails (page 261).

Once the configuration is complete, click the red OFF button for the entry for the plugin. If the service starts successfully, it will change to a blue ON. If it fails to start, click the jail’s Shell icon and type `tail /var/log/messages` to see if any errors were logged.
12.2 Updating Plugins

When a newer version of a plugin becomes available in the official repository, an Update button is added to the entry for the plugin in the Installed tab. In the example shown in Figure 12.4, a newer version of Transmission is available.

Click the OK button to start the download and installation of the latest version of the plugin. Once the update is complete, the entry for the plugin will be refreshed to show the new version number and the Update button will disappear.

12.3 Uploading Plugins

The Available tab of Plugins contains an Upload button. This button allows installation of plugins that are not yet available in the official repository or which are still being tested. These plugins must be manually downloaded and should end in a .pbi extension. When downloading a plugin, make sure that it is 64-bit and that it was developed for 9.x. As 8.x and 10.x applications will not work on a 9.x FreeNAS® system.

Upload the new plugin with the Upload button. As seen in the example in Figure 12.5, this prompts you to browse to the location of the plugin file. Select the file and click Upload to begin the installation.

When the installation is complete, an entry for the plugin will be added to the Installed tab and its associated jail is listed under Jails. However, if it is not a FreeNAS® plugin, it will not be added to Plugins in the tree. In this case, any required jail configuration must be done from the command line of the jail’s shell instead of from the GUI.

12.4 Deleting Plugins

When you install a plugin, an associated jail is created. If you decide to delete a plugin, the associated jail is also deleted as it is no longer required. Before deleting a plugin, make sure that you do not have any data or configuration in the jail that
you need to save. If you do, back up that data first, before deleting the plugin.

In the example shown in Figure 12.6, Sabnzbd has been installed and the user has clicked its Delete button. A pop-up message asks the user if they are sure that they want to delete. This is the one and only warning. If the user clicks Yes, the plugin and the associated jail are permanently deleted.

![Figure 12.6: Deleting an Installed Plugin](image)

### 12.5 Available Plugins

These plugins are available for FreeNAS® 11.1:

- bacula-sd (storage daemon) ([http://blog.bacula.org/](http://blog.bacula.org/))
- CouchPotato ([https://couchpotato.to/](https://couchpotato.to/))
- Emby ([https://emby.media/](https://emby.media/))
- Headphones ([https://github.com/rembo10/headphones](https://github.com/rembo10/headphones))
- HTPC-Manager ([http://htpc.io/](http://htpc.io/))
- LazyLibrarian ([https://github.com/lazylibrarian/LazyLibrarian](https://github.com/lazylibrarian/LazyLibrarian))
- Madsonic ([http://beta.madsonic.org/pages/index.jsp](http://beta.madsonic.org/pages/index.jsp))
- Mylar ([https://github.com/evilhero/mylar](https://github.com/evilhero/mylar))
- Nextcloud ([https://nextcloud.com/](https://nextcloud.com/))
- NZBHydra ([https://github.com/theotherp/nzbhydra](https://github.com/theotherp/nzbhydra))
- ownCloud ([https://owncloud.org/](https://owncloud.org/))
- PlexMediaServer ([https://www.plex.tv/](https://www.plex.tv/))
- Resilio ([https://www.resilio.com/](https://www.resilio.com/))
- s3cmd ([http://s3tools.org/s3cmd](http://s3tools.org/s3cmd))
- SABnzbd ([https://sabnzbd.org/](https://sabnzbd.org/))
- SickBeard ([http://sickbeard.com/](http://sickbeard.com/))
- SickRage ([https://github.com/SiCKRAGETV/SickRage](https://github.com/SiCKRAGETV/SickRage))
• **Sonarr** (https://sonarr.tv/)
• **Subsonic** (http://www.subsonic.org/pages/index.jsp)
• **Syncthing** (https://syncthing.net/)
• **Transmission** (https://transmissionbt.com/)
• **XDM** (https://github.com/lad1337/XDM)
• **XMRig** (https://github.com/xmrig/xmrig)

While the FreeNAS® Plugins system makes it easy to install software, it is still up to you to know how to configure and use the installed application. When in doubt, refer to the documentation for that application.
The previous section described how to find, install, and configure software using Plugins (page 250).

This section describes how to use Jails, which allow users who are comfortable with the command line to have more control over software installation and management. Any software installed using Jails must be managed from the command line of the jail. If you prefer to use a GUI to manage software, use Plugins (page 250) instead.

Note: The jails infrastructure is transitioning from the old warden backend to the new iocage backend. This transition process requires the middleware API calls to be rewritten for the new UI. It is expected that the transition will be complete with FreeNAS® version 11.2. Since jails created in the old UI use the warden backend, jails created in the new UI use the iocage backend, and both use different API versions, they are not compatible. While a migration script will be made available when the transition is complete, it will not be able to anticipate every configuration scenario for every application installed in jails. At that time, the recommendation will be to: create new jails using the new UI, copy over any existing configurations, and delete the old jail datasets once the new jails are working as expected.

FreeNAS® automatically creates a jail whenever a plugin is installed, but does not let the user install multiple plugins into the same jail. In contrast, using Jails allows users to create as many jails as needed and to customize the operating system and installed software within each jail.

By default, a FreeBSD jail (https://en.wikipedia.org/wiki/Freebsd_jail) is created. This provides a very light-weight, operating system-level virtualization. Consider it as another independent instance of FreeBSD running on the same hardware, without all of the overhead usually associated with virtualization. The jail will install the FreeBSD software management utilities so FreeBSD ports can be compiled and FreeBSD packages can be installed from the command line of the jail.

It is important to understand that any users, groups, installed software, and configurations within a jail are isolated from both the FreeNAS® operating system and any other jails running on that system. During creation, the VIMAGE option can be selected to provide the jail with an independent networking stack. The jail can then do its own IP broadcasting, which is required by some applications.

Advanced users can also create custom templates to automate the creation of pre-installed and customized operating systems.

The ability to create multiple jails running different operating systems offers great flexibility regarding software management. For example, the administrator can choose to provide application separation by installing different applications in each jail, or to create one jail for all installed applications, or to mix and match how software is installed into each jail.

Note: Jails created with FreeNAS® 9.3 or later are expected to work with the current release. Jails created on older versions of FreeNAS® must be reinstalled due to ABI changes.

The rest of this section describes:

- Jails Configuration (page 258)
- Adding Jails (page 259)
- Managing Jail Templates (page 270)
- Using iocage (page 273)
13.1 Jails Configuration

Jails are stored in a volume or dataset. Using a separate dataset for the Jail Root is strongly recommended. The volume or dataset to be used must already exist or can be created with Volume Manager (page 124).

Note: The Jail Root volume or dataset cannot be created on a Share (page 178).

Begin global jail configuration by choosing Jails → Configuration to open the screen shown in Figure 13.1. Jails are automatically installed into their own dataset under the specified path as they are created. For example, if the Jail Root is set to /mnt/volume1/dataset1 and a jail named jail1 is created, it is installed into its own dataset named /mnt/volume1/dataset1/jail1.

![Jails Configuration](image)

**Fig. 13.1: Global Jail Configuration**

**Warning:** If any Plugins (page 250) have already been installed, the Jail Root, IPv4 Network, IPv4 Network Start Address, and IPv4 Network End Address are automatically filled. Double-check that the pre-configured IP address values are appropriate for the jails and do not conflict with addresses used by other systems on the network.

Table 13.1 summarizes the fields in this configuration screen. Refer to the text below the table for more details on how to properly configure the Jail Root and network settings. Some settings are only available in Advanced Mode. To see these settings, either click the Advanced Mode button or configure the system to always display these settings by checking the box Show advanced fields by default in System → Advanced.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jail Root</td>
<td>browse button</td>
<td></td>
<td>mandatory; jails cannot be added until this is set</td>
</tr>
<tr>
<td>IPv4 DHCP</td>
<td>checkbox</td>
<td></td>
<td>check this box if the network has a DHCP server</td>
</tr>
<tr>
<td>IPv4 Network</td>
<td>string</td>
<td>✓</td>
<td>format is IP address of network/CIDR mask</td>
</tr>
<tr>
<td>IPv4 Network Start Address</td>
<td>string</td>
<td>✓</td>
<td>enter the first IP address in the reserved range in the format host/CIDR mask</td>
</tr>
<tr>
<td>IPv4 Network End Address</td>
<td>string</td>
<td>✓</td>
<td>enter the last IP address in the reserved range in the format host/CIDR mask</td>
</tr>
<tr>
<td>IPv6 Autoconfigure</td>
<td>checkbox</td>
<td></td>
<td>check this box if the network has a DHCPv6 server and IPv6 will be used to access jails</td>
</tr>
<tr>
<td>IPv6 Network</td>
<td>string</td>
<td>✓</td>
<td>enter the network address for a properly configured IPv6 network</td>
</tr>
</tbody>
</table>

Continued on next page
When selecting the Jail Root, ensure that the size of the selected volume or dataset is sufficient to hold the number of jails to be installed as well as any software, log files, and data to be stored within each jail. At a bare minimum, budget at least 2 GB per jail and do not select a dataset that is less than 2 GB in size.

Note: If you plan to add storage to a jail, be aware that the path size is limited to 88 characters. Make sure that the length of the volume name plus the dataset name plus the jail name does not exceed this limit.

If the network contains a DHCP server, it is recommended to check the box IPv4 DHCP (or IPv6 Autoconfigure, for a properly configured IPv6 network). This will prevent IP address conflicts on the network as the DHCP server will automatically assign the jail the next available lease and record the lease as in use.

If a static IP address is needed so that users always know the IP address of the jail, enter the start and end address for the IPv4 and/or IPv6 network. The range defined by the start and end addresses will be automatically assigned as jails are created. For example, if you plan to create 5 jails on the 192.168.1.0 network, enter a IPv4 Network Start Address of 192.168.1.100 and a IPv4 Network End Address of 192.168.1.104.

If you create a start and end range on a network that contains a DHCP server, it is very important that you also reserve those addresses on the DHCP server. Otherwise, the DHCP server will not be aware that those addresses are being used by jails and there will be IP address conflicts and weird networking errors on the network. When troubleshooting jails that do not install or which are unavailable, double-check that the IP address being used by the jail is not also being used by another jail or system in the network.

FreeNAS® will automatically detect and display the IPv4 Network to which the administrative interface is connected. This setting is important. The IP addresses used by the jails must be pingable from the FreeNAS® system for the jails and any installed software to be accessible. If the network topology requires changing the default value, a default gateway and possibly a static route need to be added to the specified network. After changing this value, ensure that the subnet mask value is correct, as an incorrect mask can make the IP network unreachable. When in doubt, keep the default setting for IPv4 Network. With VMware, make sure that the vswitch is set to “promiscuous mode”. With VirtualBox, make sure Network -> Advanced -> Promiscuous Mode is not set to “Deny”.

After clicking the Save button to save the configuration, the system is ready to create and manage jails as described in the rest of this chapter.

### 13.2 Adding Jails

To create a jail, click Jails → Add Jail to access the screen shown in Figure 13.2.

Note: the Add Jail menu item will not appear until after you configure Jails → Configuration.
By default, the only required value to create a jail is a name. FreeBSD jails are created by default. Table 13.2 summarizes the available options. Most settings are only available in Advanced Mode and are not needed if the intent is to create a FreeBSD jail. To see these settings, either click the Advanced Mode button or configure the system to always display these settings by checking the box Show advanced fields by default in System → Advanced.

Table 13.2: Jail Configuration Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jail Name</td>
<td>string</td>
<td></td>
<td>mandatory; can only contain letters, numbers, dashes, or the underscore character</td>
</tr>
<tr>
<td>Template</td>
<td>drop-down menu</td>
<td>✓</td>
<td>contains any created custom templates as described in Managing Jail Templates (page 270)</td>
</tr>
<tr>
<td>IPv4 DHCP</td>
<td>checkbox</td>
<td>✓</td>
<td>if unchecked, make sure that the defined address does not conflict with the DHCP server's pool of available addresses</td>
</tr>
<tr>
<td>IPv4 address</td>
<td>integer</td>
<td>✓</td>
<td>this and the other IPv4 settings are grayed out if IPv4 DHCP is checked; enter a unique IP address that is in the local network and not already used by any other computer</td>
</tr>
<tr>
<td>IPv4 netmask</td>
<td>drop-down menu</td>
<td>✓</td>
<td>select the subnet mask associated with IPv4 address</td>
</tr>
<tr>
<td>IPv4 bridge address</td>
<td>integer</td>
<td>✓</td>
<td>grayed out unless VIMAGE is checked; see NOTE below</td>
</tr>
<tr>
<td>IPv4 bridge netmask</td>
<td>drop-down menu</td>
<td>✓</td>
<td>select the subnet mask associated with IPv4 bridge address; grayed out unless VIMAGE is checked</td>
</tr>
<tr>
<td>IPv4 default gateway</td>
<td>string</td>
<td>✓</td>
<td>grayed out unless VIMAGE is checked</td>
</tr>
<tr>
<td>IPv6 Autoconfigure</td>
<td>checkbox</td>
<td>✓</td>
<td>if unchecked, make sure that the defined address does not conflict with the DHCP server's pool of available addresses</td>
</tr>
<tr>
<td>IPv6 address</td>
<td>integer</td>
<td>✓</td>
<td>this and other IPv6 settings are grayed out if IPv6 Autoconfigure is checked; enter a unique IPv6 address that is in the local network and not already used by any other computer</td>
</tr>
<tr>
<td>IPv6 prefix length</td>
<td>drop-down menu</td>
<td>✓</td>
<td>select the prefix length associated with IPv6 address</td>
</tr>
<tr>
<td>IPv6 bridge address</td>
<td>integer</td>
<td>✓</td>
<td>grayed out unless VIMAGE is checked; see NOTE below</td>
</tr>
<tr>
<td>IPv6 bridge prefix length</td>
<td>drop-down menu</td>
<td>✓</td>
<td>grayed out unless VIMAGE is checked; select the prefix length associated with IPv6 address</td>
</tr>
</tbody>
</table>

Continued on next page
Table 13.2 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Advanced Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 default gateway</td>
<td>string</td>
<td>✓</td>
<td>grayed out unless VIMAGE is checked; used to set the jail's default gateway IPv6 address</td>
</tr>
<tr>
<td>MAC</td>
<td>string</td>
<td>✓</td>
<td>grayed out unless VIMAGE is checked; if a static MAC address is entered, unique static MAC addresses must be entered for every jail created</td>
</tr>
<tr>
<td>NIC</td>
<td>drop-down menu</td>
<td>✓</td>
<td>grayed out if VIMAGE is checked; can be used to specify the interface to use for jail connections</td>
</tr>
<tr>
<td>Sysctls</td>
<td>string</td>
<td>✓</td>
<td>comma-delimited list of sysctls to set inside jail (like allow.sysvipc=1, allow.raw_sockets=1)</td>
</tr>
<tr>
<td>Autostart</td>
<td>checkbox</td>
<td>✓</td>
<td>uncheck if the jail will be started manually</td>
</tr>
<tr>
<td>VIMAGE</td>
<td>checkbox</td>
<td>✓</td>
<td>gives a jail its own virtualized network stack; requires promiscuous mode be enabled on the interface</td>
</tr>
<tr>
<td>NAT</td>
<td>checkbox</td>
<td>✓</td>
<td>grayed out for Linux jails or if VIMAGE is unchecked; enables Network Address Translation for the jail</td>
</tr>
</tbody>
</table>

Note: The IPv4 and IPv6 bridge interface is used to bridge the epair(4) (https://www.freebsd.org/cgi/man.cgi?query=epair) device, which is automatically created for each started jail, to a physical network device. The default network device is the one that is configured with a default gateway. So, if em0 is the FreeBSD name of the physical interface and three jails are running, these virtual interfaces are automatically created: bridge0, epair0a, epair1a, and epair2a. The physical interface em0 will be added to the bridge, as well as each epair device. The other half of the epair will be placed inside the jail and will be assigned the IP address specified for that jail. The bridge interface will be assigned an alias of the default gateway for that jail, if configured, or the bridge IP, if configured; either is correct.

The only time an IP address and mask are required for the bridge is when the jail will be on a different network than the FreeNAS® system. For example, if the FreeNAS® system is on the 10.0.0.0/24 network and the jail will be on the 192.168.0.0/24 network, set the IPv4 bridge address and IPv4 bridge netmask fields for the jail.

If both the VIMAGE and NAT boxes are unchecked, the jail must be configured with an IP address within the same network as the interface it is bound to, and that address will be assigned as an alias on that interface. To use a VIMAGE jail on the same subnet, uncheck NAT and configure an IP address within the same network. In both of these cases, configure only an IP address and do not configure a bridge or a gateway address.

After making selections, click the OK button. The jail is created and added to the Jails tab as well as in the tree menu under Jails. Jails start automatically. To prevent this, uncheck the Autostart box.

The first time a jail is added or used as a template, the GUI automatically downloads the necessary components from the internet. A progress bar indicates the status of the download and provides an estimated time for the process to complete. If it is unable to connect to the internet, jail creation fails.

After the first jail is created or a template has been used, subsequent jails will be added very quickly because the downloaded base for creating the jail has been saved to the Jail Root.

13.2.1 Managing Jails

Click Jails to view and configure the added jails. In the example shown in Figure 13.3, the list entry for the jail named xdm_1 has been clicked to enable that jail's configuration options. The entry indicates the jail name, IP address, whether it will start automatically at system boot, if it is currently running, and jail type: standard for a FreeBSD jail, or pluginjail if it was installed using Plugins (page 250).
From left to right, these configuration icons are available:

Edit Jail: edit the jail settings which were described in Table 13.2.

After a jail has been created, the jail name and type cannot be changed, so these fields will be grayed out.

Note: To modify the IP address information for a jail, use the Edit Jail button instead of the associated networking commands from the command line of the jail.

Add Storage: configure the jail to access an area of storage as described in Add Storage (page 263).

Upload Plugin: manually upload a plugin previously downloaded from the plugins repository (http://download.freenas.org/plugins/9/x64/).

Start/Stop: this icon changes appearance depending on the current Status of the jail. When the jail is not running, the icon is green and clicking it starts the jail. When the jail is already running, the icon is red and clicking it stops the jail. A stopped jail and its applications are inaccessible until it is restarted.

Restart: restart the jail.

Shell: access a root command prompt to configure the selected jail from the command line. When finished, type `exit` to close the shell.

Delete: delete the jail and any periodic snapshots of it. The contents of the jail are entirely removed.
Warning: Back up data and programs in the jail before deleting it. There is no way to recover the contents of a jail after deletion.

13.2.1.1 Accessing a Jail Using SSH

ssh can be used to access a jail instead of the jail's Shell icon. This requires starting the ssh service and creating a user account for ssh access. Start by clicking the Shell icon for the desired jail.

Find the sshd_enable= line in the jail's /etc/rc.conf and set it to "YES":

sshd_enable="YES"

Then start the SSH daemon:

```
service sshd start
```

The first time the service runs, the jail's RSA key pair is generated and the key fingerprint and random art image displayed.

Add a user account by typing adduser and following the prompts. If the user needs superuser privileges, they must be added to the wheel group. For those users, enter wheel at this prompt:

```
Login group is user1. Invite user1 into other groups? {}: wheel
```

After creating the user, set the root password so that the new user will be able to use the su command to gain superuser privilege. To set the password, type passwd then enter and confirm the desired password.

Finally, test from another system that the user can successfully ssh in and become the superuser. In this example, a user named user1 uses ssh to access the jail at 192.168.2.3. The first time the user logs in, they will be asked to verify the fingerprint of the host:

```
ssh user1@192.168.2.3
The authenticity of host '192.168.2.3 (192.168.2.3)' can't be established.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.2.3' (RSA) to the list of known hosts.
Password: type_password_here
```

Note: Each jail has its own user accounts and service configuration. These steps must be repeated for each jail that requires SSH access.

13.2.1.2 Add Storage

It is possible to give a FreeBSD jail access to an area of storage on the FreeNAS® system. This is useful for applications that store a large amount of data or if an application in a jail needs access to the data stored on the FreeNAS® system. One example is transmission, which stores torrents. The storage is added using the mount_nullfs(8) (https://www.freebsd.org/cgi/man.cgi?query=mount_nullfs) mechanism, which links data that resides outside of the jail as a storage area within the jail.

To add storage, click the Add Storage button for a highlighted jail's entry to open the screen shown in Figure 13.4. This screen can also be accessed by expanding the jail name in the tree view and clicking Storage → Add Storage.
Browse to the Source and Destination, where:

- **Source**: is the directory or dataset on the FreeNAS® system which will be accessed by the jail. This directory must reside outside of the volume or dataset being used by the jail. This is why it is recommended to create a separate dataset to store jails, so the dataset holding the jails is always separate from any datasets used for storage on the FreeNAS® system.
- **Destination**: select an existing, empty directory within the jail to link to the Source storage area. If that directory does not exist yet, enter the desired directory name and check the Create directory box.

Storage is typically added because the user and group account associated with an application installed inside of a jail needs to access data stored on the FreeNAS® system. Before selecting the Source, it is important to first ensure that the permissions of the selected directory or dataset grant permission to the user/group account inside of the jail. This is not the default, as the users and groups created inside of a jail are totally separate from the users and groups of the FreeNAS® system.

The workflow for adding storage usually goes like this:

1. Determine the name of the user and group account used by the application. For example, the installation of the transmission application automatically creates a user account named transmission and a group account also named transmission. When in doubt, check the files `/etc/passwd` (to find the user account) and `/etc/group` (to find the group account) inside the jail. Typically, the user and group names are similar to the application name. Also, the UID and GID are usually the same as the port number used by the service.

   A media user and group (GID 8675309) are part of the base system. Having applications run as this group or user makes it possible to share storage between multiple applications in a single jail, between multiple jails, or even between the host and jails.

2. On the FreeNAS® system, create a user account and group account that match the user and group names used by the application in the jail.
3. Decide whether the jail should have access to existing data or if a new area of storage will be set aside for the jail to use.

4. If the jail will access existing data, edit the permissions of the volume or dataset so the user and group accounts have the desired read and write access. If multiple applications or jails are to have access to the same data, create a new group and add each needed user account to that group.

5. If an area of storage is being set aside for that jail or individual application, create a dataset. Edit the permissions of that dataset so the user and group account has the desired read and write access.

6. Use the Add Storage button of the jail and select the configured volume/dataset as the Source.

To prevent writes to the storage, check the box Read-Only.

By default, the Create directory box is checked. This means that the directory will automatically be created under the specified Destination path if the directory does not already exist.

After storage has been added or created, it appears in the tree under the specified jail. In the example shown in Figure 13.5, a dataset named `volume1/data` has been chosen as the Source as it contains the files stored on the FreeNAS® system. When the storage was created, the user browsed to `volume1/jails/freebsd1/usr/local` in the Destination field, then entered `test` as the directory. Since this directory did not already exist, it was created, because the Create directory box was left checked. The resulting storage was added to the freenas1 entry in the tree as `/usr/local/test`. The user has clicked this `/usr/local/test` entry to access the Edit screen.

![Fig. 13.5: Example Storage](image)

Storage is normally mounted as it is created. To unmount the storage, uncheck the Mounted? box.

**Note:** A mounted dataset will not automatically mount any of its child datasets. While the child datasets may appear to be browsable inside the jail, any changes will not be visible. Since each dataset is considered to be its own filesystem, each child dataset must have its own mount point, so separate storage must be created for any child datasets which need to be mounted.
To delete the storage, click its Delete button.

**Warning:** It is important to realize that added storage is really just a pointer to the selected storage directory on the FreeNAS® system. It does not copy that data to the jail. Files that are deleted from the Destination directory in the jail are really deleted from the Source directory on the FreeNAS® system. However, removing the jail storage entry only removes the pointer, leaving the data intact but not accessible from the jail.

### 13.2.2 Installing FreeBSD Packages

The quickest and easiest way to install software inside the jail is to install a FreeBSD package. FreeBSD packages are pre-compiled. They contain all the binaries and a list of dependencies required for the software to run on a FreeBSD system.

A huge amount of software has been ported to FreeBSD, currently over 24,000 applications, and most of that software is available as a package. One way to find FreeBSD software is to use the search bar at [FreshPorts.org](https://www.freshports.org/).

After finding the name of the desired package, use the `pkg install` command to install it. For example, to install the `audiotag` package, use this command:

```
pkg install audiotag
```

When prompted, type `y` to complete the installation. The installation messages will indicate if the package and its dependencies successfully download and install.

**Warning:** Some older versions of FreeBSD used package systems which are now obsolete. Do not use commands from those obsolete package systems in a FreeNAS® jail, as they will cause inconsistencies in the jail’s package management database. Use the current FreeBSD package system as shown in these examples.

A successful installation can be confirmed by querying the package database:

```
pkg info -f audiotag
```

```
audiotag-0.19_1
Name: audiotag
Version: 0.19_1
Installed on: Fri Nov 21 10:10:34 PST 2014
Origin: audio/audiotag
Architecture: freebsd:9:x86:64
Prefix: /usr/local
Categories: multimedia audio
Licenses: GPLv2
Maintainer: ports@FreeBSD.org
WWW: http://github.com/Daenyth/audiotag
Comment: Command-line tool for mass tagging/rename of audio files
Options:
 DOCS: on
 FLAC: on
 ID3: on
 MP4: on
 VORBIS: on
Annotations:
 repo_type: binary
 repository: FreeBSD
Flat size: 62.8KiB
Description: Audiotag is a command-line tool for mass tagging/rename of audio files
 it supports the vorbis comment, id3 tags, and mp4 tags.
WWW: http://github.com/Daenyth/audiotag
```

To show what was installed by the package:
pkg info -l audiotag
audiotag-0.19_1:
/usr/local/bin/audiotag
/usr/local/share/doc/audiotag/COPYING
/usr/local/share/doc/audiotag/ChangeLog
/usr/local/share/doc/audiotag/README
/usr/local/share/licenses/audiotag-0.19_1/GPLv2
/usr/local/share/licenses/audiotag-0.19_1/LICENSE
/usr/local/share/licenses/audiotag-0.19_1/catalog.mk

In FreeBSD, third-party software is always stored in `/usr/local` to differentiate it from the software that came with the operating system. Binaries are almost always located in a subdirectory called `bin` or `sbin` and configuration files in a subdirectory called `etc`.

### 13.2.3 Compiling FreeBSD Ports

Software is typically installed into FreeBSD jails using packages. But sometimes there are good reasons to compile a port instead. Compiling ports offers these advantages:

- Not every port has an available package. This is usually due to licensing restrictions or known, unaddressed security vulnerabilities.
- Sometimes the package is out-of-date and a feature is needed that only became available in the newer version.
- Some ports provide compile options that are not available in the pre-compiled package. These options are used to add or remove features or options.

Compiling a port has these disadvantages:

- It takes time. Depending upon the size of the application, the amount of dependencies, the speed of the CPU, the amount of RAM available, and the current load on the FreeNAS® system, the time needed can range from a few minutes to a few hours or even to a few days.

**Note:** If the port does not provide any compile options, it saves time and preserves the FreeNAS® system's resources to just use the `pkg install` command instead.

The FreshPorts.org (https://www.freshports.org/) listing shows whether a port has any configurable compile options. Figure 13.6 shows the Configuration Options for audiotag.
Fig. 13.6: Configuration Options for Audiotag

This port has five configurable options (DOCS, FLAC, ID3, MP4, and VORBIS) and each option is enabled (on) by default.

FreeBSD packages are always built using the default options. When compiling a port yourself, those options are presented in a menu, allowing the default values to be changed.

The Ports Collection must be installed in a jail before ports can be compiled. Inside the jail, use the `portsnap` utility. This command downloads the ports collection and extracts it to the jail's `/usr/ports/` directory:

```
portsnap fetch extract
```

Note: To install additional software at a later date, make sure the ports collection is updated with `portsnap fetch update`.

```
portbuild /usr/ports/audio/audiotag
make install clean
```

Since this port has configurable options, the first time this command is run, the configure screen shown in Figure 13.7 is displayed:
Use the arrow keys to select an option and press spacebar to toggle the value. When all the values are as desired, press Enter. The port will begin to compile and install.

Note: The configuration screen will not be shown again, even if the build is stopped and restarted. It can be redisplayed by typing `make config`. Change the settings, then rebuild with `make clean install clean`.

Many ports depend on other ports. Those other ports can also have configuration screens that will be shown before compiling begins. It is a good idea to keep an eye on the compile until it finishes and the command prompt returns.

When the port is installed, it is registered in the same package database that manages packages. The same `pkg info` command can be used to determine what was installed, as described in the previous section.

### 13.2.4 Starting Installed Software

After packages or ports are installed, they need to be configured and started. If you are familiar with the software, look for the configuration file in `/usr/local/etc` or a subdirectory of it. Many FreeBSD packages contain a sample configuration file as a reference. If you are unfamiliar with the software, you will need to spend some time at the software's website to learn which configuration options are available and which configuration files require editing.

Most FreeBSD packages that contain a startable service include a startup script which is automatically installed to `/usr/local/etc/rc.d/`. After the configuration is complete, the starting of the service can be tested by running the script with the `onestart` option. As an example, if openvpn is installed into the jail, these commands run its startup script and verify that the service started:

```
/usr/local/etc/rc.d/openvpn onestart
Starting openvpn.
```

```
/usr/local/etc/rc.d/openvpn onestatus
openvpn is running as pid 45560.
```

```
sockstat -4
USER COMMAND PID FD PROTO LOCAL ADDRESS FOREIGN ADDRESS
root openvpn 48386 4 udp4 *:54789 *:*
```

If it produces an error:
Run `tail /var/log/messages` to see if any error messages hint at the problem. Most startup failures are related to a misconfiguration: either a typo or a missing option in a configuration file.

After verifying that the service starts and is working as intended, add a line to `/etc/rc.conf` to start the service automatically when the jail is started. The line to start a service always ends in `_enable="YES"` and typically starts with the name of the software. For example, this is the entry for the `openvpn` service:

```
openvpn_enable="YES"
```

When in doubt, the startup script shows the line to put in `/etc/rc.conf`. This is the description in `/usr/local/etc/rc.d/openvpn`:

```
This script supports running multiple instances of openvpn.
To run additional instances link this script to something like
% ln -s openvpn openvpn_foo

and define additional openvpn_foo.* variables in one of
/etc/rc.conf, /etc/rc.conf.local or /etc/rc.conf.d /openvpn_foo

Below NAME should be substituted with the name of this script. By default
it is openvpn, so read as openvpn_enable. If you linked the script to
openvpn_foo, then read as openvpn_foo_enable etc.
#
The following variables are supported (defaults are shown).
You can place them in any of
/etc/rc.conf, /etc/rc.conf.local or /etc/rc.conf.d/NAME
#
NAME_enable="NO"
set to YES to enable openvpn
```

The startup script also indicates if any additional parameters are available:

```
NAME_if=
driver(s) to load, set to "tun", "tap" or "tun tap"
it is OK to specify the if_ prefix.
#
optional:
NAME_flags=
additional command line arguments
NAME_configfile="/usr/local/etc/openvpn/NAME.conf"
--config file
NAME_dir="/usr/local/etc/openvpn"
--cd directory
```

### 13.3 Managing Jail Templates

FreeNAS® supports the ability to add custom templates to the Templates drop-down menu described in Table 13.2.

To create a custom template, first install the desired operating system and configure it as needed. The installation can be either to an existing jail or on another system.

Next, create an mtree specification using this command, replacing `/path/to/jail` with the actual path to the jail:
After configuration is complete, create a tarball of the entire operating system to be used as a template. This tarball needs to be compressed with `gzip` and end in a `.tgz` extension. Be careful when creating the tarball as it is possible to end up in a recursive loop. In other words, the resulting tarball must be saved outside of the operating system being tarballed, such as to an external USB drive or network share. Alternately, create a temporary directory within the operating system and use the `--exclude` switch to `tar` to exclude this directory from the tarball. The exact `tar` command to use will vary, depending upon the operating system being used to create the tarball.

Save the generated `.mtree` and `.tgz` files to either an FTP share or an HTTP server. The FTP or HTTP URL is needed to add the template to the list of available templates.

To add the template, click Jails → Templates → Add Jail Templates which opens the screen shown in Figure 13.8.

![Add Jail Template](image)

Fig. 13.8: Adding A Custom Jail Template

Table 13.3 summarizes the fields in this screen.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>string</td>
<td>value appears in the Name column of View Jail Templates</td>
</tr>
<tr>
<td>OS</td>
<td>drop-down menu</td>
<td>choices are FreeBSD or Linux</td>
</tr>
<tr>
<td>Architecture</td>
<td>drop-down menu</td>
<td>choices are x86 (32-bit) or x64 (64-bit)</td>
</tr>
<tr>
<td>URL</td>
<td>string</td>
<td>enter the full URL to the <code>.tgz</code> file, including the protocol (ftp:// or http://)</td>
</tr>
<tr>
<td>Mtree</td>
<td>string</td>
<td>paste the mtree specification for the template</td>
</tr>
</tbody>
</table>

Added templates appear in Jails → Templates. An example is shown in Figure 13.9.
The listing contains these columns:

- Name: appears in the Template drop-down menu when adding a new jail.
- URL: when adding a new jail using this template, the template is downloaded from this location.
- Instances: indicates if the template has been used to create a jail. In this example, the template has not yet been used, so Instances shows as 0.

Click the entry for a template to access its Edit and Delete buttons. Clicking a template’s Edit button opens the configuration screen shown in Figure 13.10.

Fig. 13.10: Editing Template Options

Clicking a template’s Delete button shows a warning message that prompts for confirmation of the deletion. Note that once
a template is deleted, it is removed from the Templates drop-down menu and will no longer be available for creating new jails.

13.4 Using iocage

Beginning with FreeNAS® 9.10.1, the iocage (https://github.com/iocage/iocage) command line utility is included for creating and managing jails. Click the Shell option to open the command line and begin using iocage.

Note: The jails infrastructure is transitioning from the old warden backend to the new iocage backend. This transition process requires the middleware API calls to be rewritten for the new UI. It is expected that the transition will be complete with FreeNAS® version 11.2. Since jails created in the old UI use the warden backend, jails created in the new UI use the iocage backend, and both use different API versions, they are not compatible. While a migration script will be made available when the transition is complete, it will not be able to anticipate every configuration scenario for every application installed in jails. At that time, the recommendation will be to: create new jails using the new UI, copy over any existing configurations, and delete the old jail datasets once the new jails are working as expected.

Iocage has several options to help users:

- There is built-in help displayed by entering iocage --help | more. Each subcommand also has help, displayed by giving the subcommand name followed by the --help flag. For example, help for the activate subcommand displays with iocage activate --help.
- The iocage manual page is accessed by typing man iocage.
- The iocage project also has documentation available on readthedocs.io (http://iocage.readthedocs.io/en/latest/index.html).

13.4.1 Managing iocage Jails

Creating a jail automatically starts the iocage configuration process for the FreeNAS® system. Jail properties can also be specified with the iocage create command.

In this example a new jail named examplejail is created. Additional properties are a manually designated IP address of 192.168.1.10, a netmask of /24 on the em0 interface, and using the FreeBSD 11.1-RELEASE:

```
[root@freenas ~]# iocage create -n examplejail ip4_addr="em0|192.168.1.10/24" -r 11.1-RELEASE
... examplejail successfully created!
```

Jail creation may take a few moments. After completion, start the new jail with iocage start:

```
[root@freenas ~]# iocage start examplejail
* Starting examplejail
 + Started OK
 + Starting services OK
```

To open the console in the started jail, use iocage console

```
[root@freenas ~]# iocage console examplejail
FreeBSD 11.1-RELEASE (FreeNAS.amd64) #0 35e0ef284(freenas/11-stable): Wed Oct 18 17:44:36 UTC 2017
Welcome to FreeBSD!
FreeBSD FAQ: https://www.FreeBSD.org/faq/
```
FreeBSD Forums: https://forums.FreeBSD.org/

Documents installed with the system are in the /usr/local/share/doc/freebsd/ directory, or can be installed later with: pkg install en-freebsd-doc
For other languages, replace "en" with a language code like de or fr.

Show the version of FreeBSD installed: freebsd-version ; uname -a
Please include that output and any error messages when posting questions.

Introduction to manual pages: man man
FreeBSD directory layout: man hier

Edit /etc/motd to change this login announcement.
root@examplejail:~ #

Jails can be shut down with iocage stop:

[root@freenas ~]# iocage stop examplejail
* Stopping examplejail
  + Running prestop OK
  + Stopping services OK
  + Removing jail process OK
  + Running poststop OK

Jails are deleted with iocage destroy:

[root@freenas ~]# iocage destroy examplejail
This will destroy jail examplejail
Are you sure? [y/N]: y
Destroying examplejail

To adjust the properties of a jail, use iocage set and iocage get. All properties of a jail are viewed with iocage get all:

Tip: This example shows an abbreviated list of examplejail's properties. The iocage manual page (man iocage) describes even more configurable properties for jails.

[root@freenas ~]# iocage get all examplejail | less
allow_mount:0
allow_mount_devfs:0
allow_sysvipc:0
available:readonly
basejail:no
boot:off
bpf:no
children_max:0
cloned_release:11.1-RELEASE
comment:none
compression:lz4
compressratio:readonly
coredumpsize:off
count:1
cpuset:off
cputime:off
datastore:off
dedup:off
defaultrouter:none
defaultrouter6:none
...
To adjust a jail property, use `iocage set`:

```
[root@freenas ~]# iocage set notes="This is a testing jail." examplejail
Property: notes has been updated to This is a testing jail.
```
A Virtual Machine (VM) is an environment on a host computer that can be used as if it were a separate physical computer. VMs can be used to run multiple operating systems simultaneously on a single computer. Operating systems running inside a VM see emulated virtual hardware rather than the actual hardware of the host computer. This provides more isolation than Jails (page 257), although there is additional overhead. A portion of system RAM is assigned to each VM, and each VM uses a zvol (page 134) for storage. While a VM is running, these resources are not available to the host computer or other VMs.

FreeNAS® VMs use the `bhyve(8)` virtual machine software. This type of virtualization requires an Intel processor with Extended Page Tables (EPT) or an AMD processor with Rapid Virtualization Indexing (RVI) or Nested Page Tables (NPT).

To verify that an Intel processor has the required features, use Shell (page 297) to run `grep VT-x /var/run/dmesg.boot`. If the EPT and UG features are shown, this processor can be used with bhyve.

To verify that an AMD processor has the required features, use Shell (page 297) to run `grep POPCNT /var/run/dmesg.boot`. If the output shows the POPCNT feature, this processor can be used with bhyve.

Note: By default, new VMs have the `bhyve(8)` -H option set. This causes the virtual CPU thread to yield when a HLT instruction is detected, and prevents idle VMs from consuming all of the host's CPU.

Note: AMD K10 “Kuma” processors include POPCNT but do not support NRIPS, which is required for use with bhyve. Production of these processors ceased in 2012 or 2013.

14.1 Creating VMs

Select VMs → Add VM for the Add VM dialog shown in Figure 14.1:
VM configuration options are described in Table 14.1.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM Type</td>
<td>drop-down menu</td>
<td>Select the VM type. Choices are Virtual Machine for a typical instance, or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Docker VM for a special VM to run Docker.</td>
</tr>
<tr>
<td>Name</td>
<td>string</td>
<td>Enter a name to identify the VM.</td>
</tr>
<tr>
<td>Description</td>
<td>string</td>
<td>Enter a short description of the VM or its purpose.</td>
</tr>
<tr>
<td>Virtual CPUs</td>
<td>integer</td>
<td>Select the number of virtual CPUs to allocate to the VM. The maximum is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 unless the host CPU limits the maximum. The VM operating system might also</td>
</tr>
<tr>
<td></td>
<td></td>
<td>have operational or licensing restrictions on the number of CPUs.</td>
</tr>
<tr>
<td>Memory Size (MiB)</td>
<td>integer</td>
<td>Allocate the amount of RAM in mebibytes (<a href="https://simple.wikipedia.org/wiki/Mebibyte">https://simple.wikipedia.org/wiki/Mebibyte</a>) for the VM.</td>
</tr>
<tr>
<td>Boot Method</td>
<td>drop-down menu</td>
<td>Select UEFI for newer operating systems, or UEFI-CSM for (Compatibility</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Support Mode) older operating systems that only understand BIOS booting.</td>
</tr>
<tr>
<td>Autostart</td>
<td>checkbox</td>
<td>Set to start the VM automatically when the system boots.</td>
</tr>
</tbody>
</table>

14.2 Adding Devices to a VM

After creating the VM, click it to select it, then click Devices and Add Device to add virtual hardware to it:
Select the name of the VM from the VM drop-down menu, then select the Type of device to add. These types are available:

- **Network Interfaces** (page 278)
- **Disk Devices** (page 279)
- **Raw Files** (page 279)
- **CD-ROMs** (page 280)
- **VNC Interface** (page 280)

**Note:** Docker VMs (page 283) are not compatible with VNC connections.

Figure 14.3 shows the fields that appear when Network Interface is the selected Type.

### 14.2.1 Network Interfaces

The default Adapter Type emulates an Intel e82545 (e1000) Ethernet card for compatibility with most operating systems. VirtIO can provide better performance when the operating system installed in the VM supports VirtIO paravirtualized network drivers.
If the system has multiple physical network interface cards, use the Nic to attach drop-down menu can be used to specify which physical interface to associate with the VM.

By default, the VM receives an auto-generated random MAC address. To override the default with a custom value, enter the desired address into the MAC Address field.

### 14.2.2 Disk Devices

Zvols (page 134) are typically used as virtual hard drives. After creating a zvol (page 134), associate it with the VM by selecting Add device, choose the VM, select a Type of Disk, select the created zvol, then set the Mode. If a specific sector size is required, enter the number of bytes into Disk sector size. The default of 0 leaves the sector size unset.

Fig. 14.4: VM Disk Device

AHCI emulates an AHCI hard disk for best software compatibility. VirtIO uses paravirtualized drivers and can provide better performance, but requires the operating system installed in the VM to support VirtIO disk devices.

### 14.2.3 Raw Files

Raw Files are similar to Zvol (page 134) disk devices, but the disk image comes from a file. These are typically used with existing read-only binary images of drives, like an installer disk image file meant to be copied onto a USB stick.

After obtaining and copying the image file to the FreeNAS® system, select Add device, choose the VM, select a Type of Raw File, browse to the image file, then set the Mode. AHCI emulates an AHCI hard disk for best software compatibility. VirtIO uses paravirtualized drivers and can provide better performance, but requires the operating system installed in the VM to support VirtIO disk devices.

If a specific sector size is required, enter the number of bytes into Disk sector size. The default of 0 leaves the sector size unset.
14.2.4 CD-ROM Devices

Adding a CD-ROM device makes it possible to boot the VM from a CD-ROM image, typically an installation CD. The image must be present on an accessible portion of the FreeNAS® storage. In this example, a FreeBSD installation image is shown:

Note: VMs from other virtual machine systems can be recreated for use in FreeNAS®. Back up the original VM, then create a new FreeNAS® VM with virtual hardware as close as possible to the original VM. Binary-copy the disk image data into the zvol (page 134) created for the FreeNAS® VM with a tool that operates at the level of disk blocks, like dd(1) (https://www.freebsd.org/cgi/man.cgi?query=dd). For some VM systems, it is best to back up data, install the operating system from scratch in a new FreeNAS® VM, and restore the data into the new VM.

14.2.5 VNC Interface

VMs set to UEFI booting are also given a VNC (Virtual Network Computing) remote connection. A standard VNC (https://en.wikipedia.org/wiki/Virtual_Network_Computing) client can connect to the VM to provide screen output and keyboard and mouse input.
Figure 14.7 shows the fields that appear when VNC is the selected Type.

![Fig. 14.7: VM VNC Device](image)

The Resolution drop-down menu can be used to modify the default screen resolution used by the VNC session.

The VNC port can be set to 0, left empty for FreeNAS® to assign a port when the VM is started, or set to a fixed, preferred port number.

Select the IP address for VNC to listen on with the Bind to drop-down menu.

Set Wait to boot to indicate that the VNC client should wait until the VM has booted before attempting the connection.

To automatically pass the VNC password, enter it into the Password field. Note that the password is limited to 8 characters.

To use the VNC web interface, set VNC Web.

Tip: If a RealVNC 5.X Client shows the error RFB protocol error: invalid message type, disable the Adapt to network speed option and move the slider to Best quality. On later versions of RealVNC, select File → Preferences, click Expert, ProtocolVersion, then select 4.1 from the drop-down menu.

### 14.2.6 Virtual Serial Ports

VMs automatically include a virtual serial port.

- `/dev/nmdm1B` is assigned to the first VM
- `/dev/nmdm2B` is assigned to the second VM

And so on. These virtual serial ports allow connecting to the VM console from the Shell (page 297).
Tip: The `nmdm` device is dynamically created. The actual `nmdm` name can differ on each system.

To connect to the first VM:

```bash
cu -s 9600 -l /dev/nmdm1B
```

See `cu(1)` for more information on operating `cu`.

### 14.3 Running VMs

Select VMs to see a list of configured VMs. Configuration and control buttons appear at the bottom of the screen when an individual VM is selected with a mouse click:

![Fig. 14.8: VM Configuration and Control Buttons](image)

The name, description, running state, VNC port (if present), and other configuration values are shown. Click on an individual VM for additional options.

Some standard buttons are shown for all VMs:

- **Edit** changes VM settings.
- **Delete** removes the VM (page 282).
- **Devices** is used to add and remove devices to this VM.

When a VM is not running, these buttons are available:

- **Start** starts the VM.
- **Clone** clones or copies the VM to a new VM. The new VM is given the same name as the original, with _cloneN appended.

When a VM is already running, these buttons are available:

- **Stop** shuts down the VM.
- **Power off** immediately halts the VM, equivalent to disconnecting the power on a physical computer.
- **Restart** restarts the VM.
- **Vnc via Web** starts a web VNC connection to the VM. The VM must have a VNC device, and VNC Web enabled in that device.

### 14.4 Deleting VMs

A VM is deleted by clicking the VM, then Delete at the bottom of the screen. A dialog will show any related devices that will also be deleted and ask for confirmation.
Tip: Zvols (page 134) used in disk devices (page 279) and image files used in raw file (page 279) devices are not removed when a VM is deleted. These resources can be removed manually after it is determined that the data in them has been backed up or is no longer needed.

14.5 Docker/Rancher VM

Docker (https://www.docker.com/what-docker) is Open Source software for automating application deployment inside containers. A container provides a complete filesystem, runtime, system tools, and system libraries, so applications always see the same environment.

Rancher (https://rancher.com/) is a GUI tool for managing Docker containers.

FreeNAS® runs the Rancher GUI as a separate VM.

14.5.1 Rancher VM Requirements

The system BIOS must have virtualization support enabled for a Docker VM to run properly after installation. On Intel systems this is typically an option called VT-x. AMD systems generally have an SVM option.

20 GiB of storage space is required for the Rancher VM. For setup, the SSH (page 243) service must be enabled.

The Rancher VM requires 2 GiB of RAM while running.

14.5.2 Create the Rancher VM

Click VMs, then the Add VM button. Set the VM Type to Docker VM. Enter RancherUI for the name, Rancher UI VM for the Description, leave the number of Virtual CPUs at 1, and enter 2048 for the Memory Size. To have the Rancher VM start when the FreeNAS® system boots, enable the Autostart option. Click OK to create the virtual machine.
Fig. 14.9: Rancher VM Configuration

A location to store the disk image must now be chosen. In this example, a dataset (page 131) called vm-storage has already been created as a location to store VM data. Click VMs, then click on the RancherUI line to select it. Click on the Devices button to show the devices attached to that VM. Click on the RAW device to select it, then click the Edit button. In the Raw File field, browse to the dataset and select it. Then add a filename by typing /rancherui.img at the end of the path in the text box.

Set the Disk boot option, enter a password for the rancher user in the Password field, then enter 20G in the Disk size field. Click OK to save the device.

Note: The Password will fail if it contains a space.
14.5.3 Start the Rancher VM

Click VMs, then click on the RancherUI line to select it. Click the Start button and then Yes to start the VM.

The first time the Rancher VM is started, it downloads the Rancher disk image file. How long this takes to complete depends...
on the speed of the network connection. A status dialog reports the progress of the download. After the image is downloaded, the VM starts.

### 14.5.4 Installing the Rancher Server

Click VMs and locate the line for the RancherUI VM. The Info column shows the Com Port for the Rancher VM. In this example, /dev/nmdm3B is used.

Further setup of the Rancher VM is done from the command line. Use an SSH client to connect to the FreeNAS® server. Remember that this requires the SSH (page 243) service to be running. Depending on local configuration, it might also require changes to the setting of the service, like allowing root user login with a password.

At the FreeNAS® console prompt, connect to the Rancher VM with `cu` (https://www.freebsd.org/cgi/man.cgi?query=cu), replacing `/dev/nmdm3B` with the value from the RancherUI Info column:

```
cu -l /dev/nmdm3B
```

If the terminal does not show a rancher login: prompt, press Enter.

Enter rancher as the username, press Enter, then type the password that was entered when the raw file was created above and press Enter again. After logging in, a `[rancher@rancher ~]$` prompt is displayed.

Ensure Rancher has functional networking and can ping an outside website. Adjust the VM Network Interface (page 278) and reboot the VM if necessary.

Download and install the Rancher system with this command:

```
sudo docker run -d --restart=unless-stopped -p 8080:8080 rancher/server
```

**Note:** If the error Cannot connect to the Docker daemon is shown, run `sudo dockerd`. Then give the `sudo docker run` command above again.

Installation time varies with processor and network connection speed, but typically takes a few minutes. After the process finishes and a command prompt is shown, type this command:

```
ifconfig eth0 | grep 'inet addr'
```

The first value is the IP address of the Rancher server. Enter the IP address and port 8080 as the URL in a web browser. For example, if the IP address was `10.231.3.208`, enter `10.231.3.208:8080` as the URL in the web browser.

The Rancher server takes a few minutes to start. The web browser might show a connection error while the Rancher GUI is still starting. If the browser shows a connection has timed out or a similar error, wait one minute and try again.

In the Rancher GUI, click Add a host and enter the same IP address and port number. Click Save to save the information. For more information on using Rancher, see the Rancher Quick Start Guide (https://rancher.com/docs/rancher/v1.6/en/quick-start-guide/).
Reporting displays several graphs, as seen in Figure 15.1. Click the tab for a device type to see those specific graphs.

FreeNAS® uses collectd (https://collectd.org/) to provide reporting statistics. The resulting graphs are grouped into several tabs on the Reporting page:

• CPU
  - CPU (https://collectd.org/wiki/index.php/Plugin:CPU) shows the amount of time spent by the CPU in various states such as executing user code, executing system code, and being idle.

• Disk
  - Disk (https://collectd.org/wiki/index.php/Plugin:Disk) shows statistics on I/O, percent busy, latency, operations per second, pending I/O requests, and disk temperature.

• Memory
  - Swap (https://collectd.org/wiki/index.php/Plugin:Swap) displays the amount of free and used swap space.

• Network
Interface (https://collectd.org/wiki/index.php/Plugin:Interface) shows received and transmitted traffic in bits per second for each configured interface.

- **Partition**
  - **Disk space** (https://collectd.org/wiki/index.php/Plugin:DF) displays free and used space for each volume and dataset. However, the disk space used by an individual zvol is not displayed as it is a block device.

- **System**
  - **Processes and Uptime** (https://collectd.org/wiki/index.php/Plugin:Processes) displays the number of processes. It is grouped by state.
  - **Uptime** (https://collectd.org/wiki/index.php/Plugin:Uptime) keeps track of the system uptime, the average running time, and the maximum reached uptime.

- **Target**
  - Target shows bandwidth statistics for iSCSI ports.

- **ZFS**

Reporting data is saved to permit viewing and monitoring usage trends over time. This data is preserved across system upgrades and restarts.

Data files are saved in `/var/db/collectd/rrd/`.

The reporting data file recording method is controlled by the System → System Dataset Reporting database option. When deselected, data files are recorded in a temporary filesystem and copied hourly to on-disk files.

When System → System Dataset Reporting database is enabled, data files are written directly to the System Dataset (page 76).

```
Warning: Reporting data is frequently written and should not be stored on the boot pool or boot device.
```

Use the magnifier buttons next to each graph to increase or decrease the displayed time increment from 10 minutes, hourly, daily, weekly, or monthly. The << and >> buttons can be used to scroll through the output.

**Update on using Graphite with FreeNAS** (http://cmhramblings.blogspot.com/2015/12/update-on-using-graphite-with-freenas.html) contains instructions for sending the collected information to a Graphite (http://graphiteapp.org/) server.
FreeNAS® provides a wizard which helps complete the steps needed to quickly configure FreeNAS® for serving data over a network. The wizard can be run at any time by clicking the Wizard icon. Figure 16.1 shows the first wizard configuration screen.

Note: You can exit the wizard at any time by clicking the Exit button. However, exiting the wizard will not save any selections. The wizard can always be run again by clicking the Wizard icon. Alternately, the FreeNAS® GUI can be used to configure the system, as described in the rest of this Guide.

This screen can be used to change the default language, keyboard map, and timezone. After making your selections, click Next. The next screen depends on whether or not the storage disks have already been formatted into a ZFS pool. Figure 16.2 shows the configuration screen that appears if the storage disks have not yet been formatted.
Note: The wizard will not recognize an encrypted ZFS pool. If your ZFS pool is GELI-encrypted, cancel the wizard and use the instructions in Importing an Encrypted Pool (page 137) to import the encrypted volume. You can then rerun the wizard afterwards, if you wish to use it for post-configuration, and it will recognize that the volume has been imported and will not prompt to reformat the disks.

Enter a name for the ZFS pool that conforms to these naming conventions (https://docs.oracle.com/cd/E23824_01/html/821-1448/gbcpt.html). It is recommended to choose a name that will stick out in the logs (e.g. not data or freenas).

Decide if the pool should provide disk redundancy, and if so, which type. The ZFS Primer (page 327) discusses RAIDZ redundancy in more detail. If you prefer to make a more complex configuration, click the Exit button to close the wizard and instead use Volume Manager (page 124).

These redundancy types are available:

- Automatic: automatically creates a mirrored, RAIDZ1, or RAIDZ2 pool, depending upon the number of disks. If you prefer to control the type of redundancy, select one of the other options.
- RAID 10: creates a striped mirror and requires a minimum of 4 disks.
- RAIDZ2: requires a minimum of 4 disks. Up to 2 disks can fail without data loss.
- RAIDZ1: requires a minimum of 3 disks. Up to 1 disk can fail without data loss.
- Stripe: requires a minimum of 1 disk. Provides no redundancy, meaning if any of the disks in the stripe fails, all data in the stripe is lost.

Once you have made your selection, click Next to continue.

If the disks have already been formatted with ZFS and the disks have not been encrypted, the next screen will instead prompt to import the volume, as shown in Figure 16.3.
Select the existing volume from the drop-down menu and click Next to continue.
The next screen in the wizard is shown in Figure 16.4.

If the FreeNAS® system is on a network that does not contain an Active Directory, LDAP, or NIS server, click Next to skip to the next screen.
However, if the FreeNAS® system is on a network containing an Active Directory, LDAP, or NIS server and you wish to import the users and groups from that server, select the type of directory service in the Directory Service drop-down menu. The rest of the fields in this screen will vary, depending upon which directory service is selected. Available configuration options for each directory service are summarized in Tables 16.1 through 16.3.

Note: Additional configuration options are available for each directory service. The wizard can be used to set the initial values required to connect to that directory service. You can then review the other available options in Directory Services (page 167) to determine if additional configuration is required.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain Name</td>
<td>string</td>
<td>name of Active Directory domain (e.g. example.com) or child domain (e.g. sales.example.com)</td>
</tr>
<tr>
<td>Domain Account Name</td>
<td>string</td>
<td>name of the Active Directory administrator account</td>
</tr>
<tr>
<td>Domain Account Password</td>
<td>string</td>
<td>password for the Active Directory administrator account</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname</td>
<td>string</td>
<td>hostname or IP address of LDAP server</td>
</tr>
<tr>
<td>Base DN</td>
<td>string</td>
<td>top level of the LDAP directory tree to be used when searching for resources (e.g. dc=test,dc=org)</td>
</tr>
</tbody>
</table>
Table 16.2 – continued from previous page

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bind DN</td>
<td>string</td>
<td>name of administrative account on LDAP server (e.g. cn=Manager,dc=test,dc=org)</td>
</tr>
<tr>
<td>Base password</td>
<td>string</td>
<td>password for</td>
</tr>
</tbody>
</table>

Table 16.3: NIS Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIS domain</td>
<td>string</td>
<td>name of NIS domain</td>
</tr>
<tr>
<td>NIS servers</td>
<td>string</td>
<td>comma delimited list of hostnames or IP addresses</td>
</tr>
<tr>
<td>Secure mode</td>
<td>checkbox</td>
<td>if checked, ypbind(8) (<a href="https://www.freebsd.org/cgi/man.cgi?query=ypbind">https://www.freebsd.org/cgi/man.cgi?query=ypbind</a>) will refuse to bind to any NIS server that is not running as root on a TCP port number over 1024</td>
</tr>
<tr>
<td>Manycast</td>
<td>checkbox</td>
<td>if checked, ypbind will bind to the server that responds the fastest; this is useful when no local NIS server is available on the same subnet</td>
</tr>
</tbody>
</table>

The next configuration screen, shown in Figure 16.5, is used to create network shares.

![Wizard](Fig. 16.5: Network Shares)

FreeNAS® supports several types of shares for providing storage data to the clients in a network. The initial wizard can be used to quickly make shares using default permissions which should “just work” for common scenarios. For more complex scenarios, refer to the section on Sharing (page 178).

To create a share using the wizard, enter a name for the share, then select the Purpose of the share:
• Windows (SMB): this type of share can be accessed by any operating system using a SMB client. Check the box for Allow Guest to allow users to access the share without a password. SMB shares created with the wizard can be fine-tuned afterward with Windows (SMB) Shares (page 193).

• Mac OS X (AFP): this type of share can be accessed by Mac OS X users. Check the box for Time Machine if Mac users will be using the FreeNAS® system as a backup device. AFP shares created with the wizard can be fine-tuned afterward with Apple (AFP) Shares (page 179).

• Generic Unix (NFS): this type of share can be accessed by any operating system using a NFS client. NFS shares created using the wizard can be fine-tuned afterward with Unix (NFS) Shares (page 186).

• Block Storage (iSCSI): this type of share can be accessed by any operating system using iSCSI initiator software. Enter the size of the block storage to create in the format 20G (for 20 GB). iSCSI shares created with the wizard can be fine-tuned afterward with iSCSI (page 228).

After selecting the Purpose, click the Ownership button to see the screen shown in Figure 16.6.

![Figure 16.6: Share Permissions](image)

The default permissions for the share are displayed. To create a user or group, enter the desired name, then check the Create User box to create that user and the Create Group box to create the group. Check or uncheck the boxes in the Mode section to set the initial access permissions for the share. When finished, click the Return button to return to the share creation screen. Click the Add button to finish creating that share, which will then appear in the Name frame.

The Delete button can be used to remove the share highlighted in the Name frame. To edit a share, highlight it, make the change, then press the Update button.

When finished making shares, click the Next button to advance to the screen shown in Figure 16.7.
This screen can be used to configure these settings:

- Console messages: check this box if you would like to view system messages at the bottom of the graphical administrative interface. This can be handy when troubleshooting a service that will not start. When using the console message view, if you click the console messages area, it will pop-up as a window, allowing you to scroll through the output and to copy its contents.

- Root E-mail: FreeNAS® provides an “Alert” icon in the upper right corner to provide a visual indication of events that warrant administrative attention. The alert system automatically emails the root user account whenever an alert is issued. It is important to enter the email address of the person to receive these alerts and other administrative emails. The rest of the email settings in this screen should also be reviewed and edited as necessary. Before leaving this screen, click the “Send Test Mail” button to ensure that email notifications are working correctly.

- From email: the from email address to use when sending email notifications.
- Outgoing mail server: hostname or IP address of SMTP server.
- Port to connect to: port number used by the SMTP server.
- TLS/SSL: encryption type used by the SMTP server.
- Use SMTP Authentication: check this box if the SMTP server requires authentication.
- Username: enter the username if the SMTP server requires authentication.
- Password: enter the password if the SMTP server requires authentication.

When finished, click Next. A message will indicate that the wizard is ready to perform all of the saved actions. To make changes, click the Return to Wizard button to review your edits. If you click the Exit without saving button, none of your selections will be saved. To save your edits, click the Confirm button. A status bar will indicate when the wizard has completed applying the new settings.

In addition to the settings that you specify, the wizard will automatically enable S.M.A.R.T. Tests (page 108), create a boot environment, and add the new boot environment to the boot menu. If you also wish to save a backup of the configuration database to the system being used to access the administrative graphical interface, go to System → General, click the Save
Config button, and browse to the directory where the configuration will be saved. Always back up your configuration after making any configuration changes.

The rest of this Guide describes the FreeNAS® graphical interface in more detail. The layout of this Guide follows the order of the menu items in the tree located in the left frame of the graphical interface.

Note: It is important to use the GUI (or the Console Setup menu) for all configuration changes. FreeNAS® uses a configuration database to store its settings. While it is possible to use the command line to modify your configuration, changes made at the command line are not written to the configuration database. This means that any changes made at the command line will not persist after a reboot and will be overwritten by the values in the configuration database during an upgrade.
Clicking Display System Processes opens a screen showing the output of `top(1)` (https://www.freebsd.org/cgi/man.cgi?query=top). An example is shown in **Figure 17.1**.

![Running Processes](image)

**Fig. 17.1: System Processes Running on FreeNAS®**

The display automatically refreshes itself. The display is read-only.
Beginning with version 8.2.0, the FreeNAS® GUI provides a web shell, making it convenient to run command line tools from the web browser as the root user. The link to Shell is the fourth entry from the bottom of the menu tree. In Figure 18.1, the link has been clicked and Shell is open.

![Fig. 18.1: Web Shell](image)

The prompt indicates that the current user is root, the hostname is freenas, and the current working directory is ~ (root’s home directory).

To change the size of the shell, click the 80x25 drop-down menu and select a different size.

To copy text from shell, highlight the text, right-click, and select Copy from the right-click menu. To paste into the shell, click the Paste button, paste the text into the box that opens, and click the OK button to complete the paste operation.

Shell provides history (use your up arrow to see previously entered commands and press Enter to repeat the currently displayed command) and tab completion (type a few letters and press tab to complete a command name or filename in the current directory). When you are finished using Shell, type exit to leave the session.
While you are in Shell, you will not have access to any of the other GUI menus. If you need to have access to a prompt while using the GUI menus, use `tmux` (page 321) instead as it supports multiple shell sessions and the detachment and reattachment of sessions.

Note: Not all of Shell's features render correctly in Chrome. Firefox is the recommended browser for using Shell.

Most FreeBSD command line utilities are available in Shell. Additional troubleshooting utilities that are provided by FreeNAS® are described in Command Line Utilities (page 308).
Click the Log Out entry in the FreeNAS® GUI to log out.
After logging out, a message appears with a link to log back in.
Clicking the Reboot entry in the tree shows the warning message in Figure 20.1. The browser screen color changes to red to indicate that this option will negatively impact current users of the FreeNAS® system.

![Fig. 20.1: Reboot Warning Message](image)

An additional warning message appears when a restart is attempted on a system with a scrub or resilver is in progress. In this case, it is recommended to Cancel the reboot request and to periodically run `zpool status` from Shell until it is verified that the scrub or resilver process is complete. Once complete, the reboot request can be reissued.

Click the Cancel button to cancel the reboot request. Otherwise, click the Reboot button to reboot the system. Rebooting the system disconnects all clients, including the web administration GUI. The URL in the web browser changes to add `/system/reboot/` to the end of the IP address. Wait a few minutes for the system to boot, then use the back button in the browser to return to the IP address of the FreeNAS® system. The GUI login screen appears after a successful reboot. If the login screen does not appear, using a monitor and keyboard to physically access the FreeNAS® system is required to determine the problem that is preventing the system from resuming normal operation.
Clicking the Shutdown entry in the tree opens the warning message shown in Figure 21.1. The browser window color changes to red to indicate that this command will negatively impact current users of the FreeNAS® system.

![Fig. 21.1: Shutdown Warning Message](image)

If a scrub or resilver is running, a warning is shown. Clicking Cancel is recommended. `zpool status` can be run from the Shell (page 297) to watch for the scrub or resilver to complete. Then the system can be shut down normally.

Confirm the command and click Shutdown to shutdown the system. Shutting down the system disconnects all clients, including the web administration GUI. Physical access to the FreeNAS® system is required to turn it back on.
The Support icon, the third icon from the left in the top menu bar, provides a shortcut to System → Support. This screen can be used to create a support ticket. Refer to Support (page 90) for detailed usage instructions.
The FreeNAS® User Guide with complete configuration instructions is available by clicking Guide in the FreeNAS® user interface or at https://www.ixsystems.com/documentation/freenas/.
The FreeNAS® alert system provides a visual warning of any conditions that require administrative attention. The Alert button in the far right corner flashes red when there is an outstanding alert. In the example alert shown in Figure 24.1, the system is warning that the S.M.A.R.T. service is not running.

![Alert System](image)

**WARNING:** April 18, 2016, 5:49 a.m. - smartd is not running.

**Fig. 24.1: Example Alert Message**

Informational messages have a green OK, warning messages flash yellow, and messages requiring attention are listed as a red CRITICAL. CRITICAL messages are also emailed to the root user account. To remove the flashing alert for a message, deselect the option next to it.

Behind the scenes, an alert daemon checks for various alert conditions, such as volume and disk status, and writes the current conditions to `/var/tmp/alert`. The daemon retrieves the current alert status every minute and changes the solid green alert icon to flashing red when a new alert is detected.

Current alerts can also be viewed from the Shell option of the Console Setup Menu (Figure 3.1) or from the Web Shell (Figure 18.1) by running `alertcli.py`.

Some of the conditions that trigger an alert include:

- used space on a volume, dataset, or zvol goes over 80%; the alert goes red at 95%
- new OpenZFS feature flags are available for the pool; this alert can be unchecked if a pool upgrade is not desired at present
- a new update is available
- the system reboots itself
- non-optimal multipath states are detected
- ZFS pool status changes from HEALTHY
- a S.M.A.R.T. error occurs
- the system dataset does not reside on the boot pool
- the system is unable to bind to the WebGUI IPv4 Address set in System → General
- the system cannot find an IP address configured on an iSCSI portal
- a periodic snapshot or replication task fails
- a VMware login or a VMware-Snapshot (page 165) task fails
- deleting a VMware snapshot fails
• a Certificate Authority or certificate is invalid or malformed
• an update failed, or the system needs to reboot to complete a successful update
• a re-key operation fails on an encrypted pool
• LDAP failed to bind to the domain
• any member interfaces of a lagg interface are not active
• the status of an Avago MegaRAID SAS controller has changed; mfiutil(8) (https://www.freebsd.org/cgi/man.cgi?query=mfiutil) is included for managing these devices
FreeNAS® has a large installation base and an active user community. This means that many usage questions have already been answered and the details are available on the Internet. If an issue occurs while using FreeNAS®, it can be helpful to spend a few moments searching the Internet for the word FreeNAS with some keywords that describe the error message or the function that is being implemented.

This section discusses resources available to FreeNAS® users:

- Website and Social Media (page 306)
- Forums (page 306)
- IRC (page 307)
- Videos (page 307)
- Professional Support (page 307)

### 25.1 Website and Social Media

The FreeNAS® website (http://www.freenas.org/) contains links to all of the available documentation, support, and social media resources. Major announcements are also posted to the main page.

Users are welcome to network on the FreeNAS® social media sites:

- LinkedIn (https://www.linkedin.com/groups/3903140/profile)
- Google+ (https://plus.google.com/110373675402281849911/posts)
- Facebook FreeNAS Community (https://www.facebook.com/freenascommunity)
- Facebook FreeNAS Consortium (please request to be added) (https://www.facebook.com/groups/1707686686200221)
- Twitter (https://twitter.com/freenas)

### 25.2 Forums

The FreeNAS Forums (https://forums.freenas.org/index.php) are an active online resource where people can ask questions, receive help, and share findings with other FreeNAS® users. New users are encouraged to post a brief message about themselves and how they use FreeNAS® in the Introductions (https://forums.freenas.org/index.php?forums/introductions.25/) forum.

The Resources (https://forums.freenas.org/index.php?resources/) section contains categorized, user-contributed guides on many aspects of building and using FreeNAS® systems.

Language-specific categories are available under International.

- Chinese (https://forums.freenas.org/index.php?forums/chinese-%E4%B8%AD%E6%96%87.60/)
25.3 IRC

To ask a question in real time, use the #freenas channel on IRC Freenode (http://freenode.net/). Depending on the time of day and your time zone, FreeNAS® developers or other users may be available to provide assistance. If no one answers right away, remain on the channel, as other users tend to read the channel history to answer questions as time permits.

Typically, an IRC client (https://en.wikipedia.org/wiki/Comparison_of_Internet_Relay_Chat_clients) is used to access the #freenas IRC channel. Alternately, use webchat (http://webchat.freenode.net/?channels=freenas) from a web browser.

To get the most out of the IRC channel, keep these points in mind:

- Do not ask “Can anyone help me?” Just ask the question.
- Do not ask a question and then leave. Users who know the answer cannot help you if you disappear.
- If no one answers, the question may be difficult to answer or it has been asked before. Research other resources while waiting for the question to be answered.
- Do not post error messages in the channel. Instead, use a pasting service such as pastebin (https://pastebin.com/) and paste the resulting URL into the IRC discussion.

25.4 Videos

A series of instructional videos are available for FreeNAS®:

- Install Murmur (Mumble server) on FreeNAS/FreeBSD (https://www.youtube.com/watch?v=aAeZRNfarJc)
- FreeNAS® 9.10 - Certificate Authority & SSL Certificates (https://www.youtube.com/watch?v=OT1LeSVQIc0)
- How to Update FreeNAS® 9.10 (https://www.youtube.com/watch?v=2nv90AhgL8)
- FreeNAS® 9.10 LAGG & VLAN Overview (https://www.youtube.com/watch?v=qoLSH_uQSArQ)
- FreeNAS 9.10 and Samba (SMB) Permissions (https://www.youtube.com/watch?v=RxgggE935PM)
- FreeNAS® 11 - What's New (https://www.youtube.com/watch?v=-uj_7eG8Kz)
- FreeNAS® 11 - How to Install (https://www.youtube.com/watch?v=R3f-Sr6y-c4)

25.5 Professional Support

In addition to free community resources, support might be available in your area through third-party consultants. Submit a support inquiry using the form at https://www.ixsystems.com/freenas-commercial-support/.
Several command line utilities which are provided with FreeNAS® are demonstrated in this section. These utilities are used for benchmarking and performance testing:

- **Iperf** (page 308): used for measuring maximum TCP and UDP bandwidth performance
- **Netperf** (page 311): a tool for measuring network performance
- **IOzone** (page 312): filesystem benchmark utility used to perform a broad filesystem analysis
- **arcstat** (page 314): used to gather ZFS ARC statistics

These utilities are specific to RAID controllers:

- **tw_cli** (page 319): used to monitor and maintain 3ware RAID controllers
- **MegaCli** (page 320): used to configure and manage Broadcom MegaRAID SAS family of RAID controllers

This section also describes these utilities:

- **freenas-debug** (page 321): the backend used to dump FreeNAS® debugging information
- **tmux** (page 321): a terminal multiplexer similar to GNU screen
- **Dmidecode** (page 322): reports information about system hardware as described in the system's BIOS

### 26.1 Iperf

Iperf is a utility for measuring maximum TCP and UDP bandwidth performance. It can be used to chart network throughput over time. For example, it can be used to test the speed of different types of shares to determine which type best performs on the network.

FreeNAS® includes the Iperf server. To perform network testing, install an Iperf client on a desktop system that has network access to the FreeNAS® system. This section demonstrates how to use the xjperf GUI client (https://code.google.com/archive/p/xjperf/downloads) as it works on Windows, macOS, Linux, and BSD systems.

Since this client is Java-based, the appropriate JRE (http://www.oracle.com/technetwork/java/javase/downloads/index.html) must be installed on the client computer.

Linux and BSD users can install the Iperf package using the package management system for their operating system.

To start xjperf on Windows: unzip the downloaded file, start Command Prompt in Run as administrator mode, cd to the unzipped folder, and run jperf.bat.

To start xjperf on macOS, Linux, or BSD, unzip the downloaded file, cd to the unzipped directory, type chmod u+x jperf.sh, and run ./jperf.sh.

Once the client is ready, start the Iperf server on FreeNAS®.

Note: Beginning with FreeNAS® version 11.1, both iperf2 (https://sourceforge.net/projects/iperf2/) and iperf3 (http://software.es.net/iperf/) are pre-installed. To use iperf2, use iperf. To use iperf3, instead type iperf3. The examples below are for iperf2.
To see the available server options, open Shell and type:

```
iperf --help | more
```

or:

```
iperf3 --help | more
```

For example, to perform a TCP test and start the server in daemon mode (to get the prompt back), type:

```
iperf -sD
```

Server listening on TCP port 5001
TCP window size: 64.0 KByte (default)

Running Iperf Server as a daemon
The Iperf daemon process ID: 4842

Note: The daemon process stops when Shell (page 297) closes. Set up the environment, for example, shares configured and started, before starting the Iperf process.

From the desktop, open the client. Enter the IP of address of the FreeNAS® system, specify the running time for the test under Application layer options → Transmit (the default test time is 10 seconds), and click the Run Iperf! button. Figure 26.1 shows an example of the client running on a Windows system while an SFTP transfer is occurring on the network.
Fig. 26.1: Viewing Bandwidth Statistics Using xjperf

Depending upon the traffic being tested, for example, the type of share running on the network, UDP may need to be tested instead of TCP. To start the Iperf server in UDP mode, use `iperf -s Du` as the `u` specifies UDP; the startup message should indicate that the server is listening for UDP datagrams. If unsure whether the traffic to be tested is UDP or TCP, run this command to determine which services are running on the FreeNAS® system:

```
sockstat -4 | more
```

<table>
<thead>
<tr>
<th>USER</th>
<th>COMMAND</th>
<th>PID</th>
<th>FD</th>
<th>PROTO</th>
<th>LOCAL ADDRESS</th>
<th>FOREIGN ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>root</td>
<td>iperf</td>
<td>4870</td>
<td>6</td>
<td>udp4</td>
<td>*:5001</td>
<td><em>:</em></td>
</tr>
<tr>
<td>root</td>
<td>iperf</td>
<td>4842</td>
<td>6</td>
<td>tcp4</td>
<td>*:812</td>
<td><em>:</em></td>
</tr>
<tr>
<td>www</td>
<td>nginx</td>
<td>4827</td>
<td>3</td>
<td>tcp4</td>
<td>*:812</td>
<td><em>:</em></td>
</tr>
<tr>
<td>www</td>
<td>nginx</td>
<td>4827</td>
<td>5</td>
<td>tcp4</td>
<td>192.168.2.11:80 ; 192.168.2.26:56964</td>
<td></td>
</tr>
<tr>
<td>www</td>
<td>nginx</td>
<td>4827</td>
<td>7</td>
<td>tcp4</td>
<td>*:80</td>
<td><em>:</em></td>
</tr>
<tr>
<td>root</td>
<td>sshd</td>
<td>3852</td>
<td>5</td>
<td>tcp4</td>
<td>*:22</td>
<td><em>:</em></td>
</tr>
<tr>
<td>root</td>
<td>python</td>
<td>2503</td>
<td>5</td>
<td>udp4</td>
<td><em>:</em></td>
<td><em>:</em></td>
</tr>
<tr>
<td>root</td>
<td>mountd</td>
<td>2363</td>
<td>7</td>
<td>udp4</td>
<td>*:812</td>
<td><em>:</em></td>
</tr>
<tr>
<td>root</td>
<td>mountd</td>
<td>2363</td>
<td>8</td>
<td>tcp4</td>
<td>*:812</td>
<td><em>:</em></td>
</tr>
<tr>
<td>root</td>
<td>rpcbind</td>
<td>2359</td>
<td>9</td>
<td>udp4</td>
<td>*:111</td>
<td><em>:</em></td>
</tr>
<tr>
<td>root</td>
<td>rpcbind</td>
<td>2359</td>
<td>10</td>
<td>udp4</td>
<td>*:886</td>
<td><em>:</em></td>
</tr>
<tr>
<td>root</td>
<td>nginx</td>
<td>2044</td>
<td>7</td>
<td>tcp4</td>
<td>*:80</td>
<td><em>:</em></td>
</tr>
<tr>
<td>root</td>
<td>python</td>
<td>2029</td>
<td>3</td>
<td>udp4</td>
<td><em>:</em></td>
<td><em>:</em></td>
</tr>
<tr>
<td>root</td>
<td>python</td>
<td>2029</td>
<td>4</td>
<td>tcp4</td>
<td>127.0.0.1:9042</td>
<td><em>:</em></td>
</tr>
</tbody>
</table>
When testing is finished, either type `killall iperf` or close Shell to terminate the Iperf server process.

### 26.2 Netperf

Netperf is a benchmarking utility that can be used to measure the performance of unidirectional throughput and end-to-end latency.

Before using the `netperf` command, start its server process with this command:

```
netserver
Starting netserver with host 'IN(6)ADDR_ANY' port '12865' and family AF_UNSPEC
```

The following command displays the available options for performing tests with the `netperf` command. The Netperf Manual ([https://hewlettpackard.github.io/netperf/](https://hewlettpackard.github.io/netperf/)) describes each option in more detail and explains how to perform many types of tests. It is the best reference for understanding how each test works and how to interpret the results. When you are finished with the tests, type `killall netserver` to stop the server process.

```
netperf -h | more
Usage: netperf [global options] -- [test options]
Global options:
 -a send,recv Set the local send,recv buffer alignment
 -A send,recv Set the remote send,recv buffer alignment
 -B brandstr Specify a string to be emitted with brief output
 -c [cpu_rate] Report local CPU usage
 -C [cpu_rate] Report remote CPU usage
 -d Increase debugging output
 -D [secs,units] * Display interim results at least every secs seconds
 using units as the initial guess for units per second
 -f G|M|K|g|m|k Set the output units
 -F fill_file Pre-fill buffers with data from fill_file
 -h Display this text
 -H name|ip,fam * Specify the target machine and/or local ip and family
 -i max,min Specify the max and min number of iterations (15,1)
 -I lvl[,intvl] Specify confidence level (95 or 99) (99)
 and confidence interval in percentage (10)
 -j Keep additional timing statistics
 -l testlen Specify test duration (>0 secs) (<0 bytes|trans)
 -L name|ip,fam * Specify the local ip|name and address family
 -o send,recv Set the local send,recv buffer offsets
 -O send,recv Set the remote send,recv buffer offset
 -n numcpu Set the number of processors for CPU util
 -N Establish no control connection, do 'send' side only
 -p port,ipport* Specify netserver port number and/or local port
 -P 0|1 Don't/Do display test headers
 -r Allow confidence to be hit on result only
 -s seconds Wait seconds between test setup and test start
 -S Set SO_KEEPALIVE on the data connection
 -t testname Specify test to perform
 -T lcpu,rcpu Request netperf/netserver be bound to local/remote cpu
 -v verbosity Specify the verbosity level
 -W send,recv Set the number of send,recv buffers
 -v level Set the verbosity level (default 1, min 0)
 -V Display the netperf version and exit
```
For those options taking two parms, at least one must be specified; specifying one value without a comma will set both
parms to that value, specifying a value with a leading comma will set just the second parm, a value with a trailing comma will
set just the first. To set each parm to unique values, specify both and separate them with a comma.

For these options taking two parms, specifying one value with no comma will only set the first parms and will leave the
second at the default value. To set the second value it must be preceded with a comma or be a comma-separated pair. This
is to retain previous netperf behavior.

26.3 IOzone

IOzone is a disk and filesystem benchmarking tool. It can be used to test file I/O performance for the following opera-
tions: read, write, re-read, re-write, read backwards, read strided, fread, fwrite, random read, pread, mmap, aio_read, and
aio_write.

FreeNAS® ships with IOzone, meaning that it can be run from Shell. When using IOzone on FreeNAS®, cd to a directory in a
volume that you have permission to write to, otherwise an error about being unable to write the temporary file will occur.
Before using IOzone, read through the IOzone documentation PDF (http://www.iozone.org/docs/IOzone_msword_98.pdf) as
it describes the tests, the many command line switches, and how to interpret the results.

These resources provide good starting points on which tests to run, when to run them, and how to interpret the results:

- How To Measure Linux Filesystem I/O Performance With iozone (https://www.cyberciti.biz/tips/linux-filesystem-
  benchmarking-with-iozone.html)
- Analyzing NFS Client Performance with IOzone (http://www.iozone.org/docs/NFSClientPerf_revised.pdf)
- 10 iozone Examples for Disk I/O Performance Measurement on Linux (https://www.thegeekstuff.com/2011/05/iozone-
  examples)

Type the following command to receive a summary of the available switches. As you can see from the number of options,
IOzone is comprehensive so it can take some time to learn how to use the tests effectively.

Starting with version 9.2.1, FreeNAS® enables compression on newly created ZFS pools by default. Since IOzone creates test
data that is compressible, this can skew test results. To configure IOzone to generate incompressible test data, include the
options -+w 1 -+y 1 -+C 1.

Alternatively, consider temporarily disabling compression on the ZFS pool or dataset when running IOzone benchmarks.

Note: If a visual representation of the collected data is preferred, scripts are available to render IOzone's output in Gnuplot
(http://www.gnuplot.info/).

```
iozone -h | more
iozone: help mode
Usage: iozone[-s filesize_Kb] [-r record_size_Kb] [-f [path]filename] [-h]
 [-l min_number_procs] [-u max_number_procs] [-v] [-R] [-x] [-o]
 [-d microseconds] [-F path1 path2...] [-V pattern] [-j stride]
 [-J milliseconds] [-X write_telemetry_filename] [-y] [-W]
 [-Y read_telemetry_filename] [-y minrecsize_Kb] [-q maxrecsize_Kb]
 [-u] [-m cluster_filename] [-+d] [+x multiplier] [+p #]
 [-+r] [-+t] [+X] [+Z] [+w percent dedupable] [+y percent_interior_dedup]
 [+C percent_dedup_within]
-a Auto mode
-A Auto2 mode
-b Filename Create Excel worksheet file
-B Use mmap() files
-c Include close in the timing calculations
```

312
-C Show bytes transferred by each child in throughput testing
-d # Microsecond delay out of barrier
-D Use msync(MS_ASYNC) on mmap files
-e Include flush (fsync,fflush) in the timing calculations
-E Run extension tests
-f filename to use
-F filenames for each process/thread in throughput test
-g # Set maximum file size (in Kbytes) for auto mode (or #m or #g)
-G Use msync(MS_SYNC) on mmap files
-h help
-H # Use POSIX async I/O with # async operations
-i # Test to run (0=write/rewrite, 1=read/re-read, 2=random-read/write
3=Read-backwards, 4=Re-write-record, 5=stride-read, 6=fwrite/re-fwrite
7=fread/Re-fread, 8=random_mix, 9=pwrite/Re-pwrite, 10=pread/Re-pread
11=pwritesv/Re-pwritesv, 12=preadv/Re-preadv)
-I Use VxFS VX_DIRECT, O_DIRECT, or O_DIRECTIO for all file operations
-j # Set stride of file accesses to (# * record size)
-J # milliseconds of compute cycle before each I/O operation
-k # Use POSIX async I/O (no bcopy) with # async operations
-K Create jitter in the access pattern for readers
-l # Lower limit on number of processes to run
-L # Set processor cache line size to value (in bytes)
-m Use multiple buffers
-M Report uname -a output
-n # Set minimum file size (in Kbytes) for auto mode (or #m or #g)
-N Report results in microseconds per operation
-o Writes are synch (O_SYNC)
-O Give results in ops/sec.
-p Purge on
-P # Bind processes/threads to processors, starting with this cpu
-q # Set maximum record size (in Kbytes) for auto mode (or #m or #g)
-Q Create offset/latency files
-r # record size in Kb
 or -r #k .. size in Kb
 or -r #m .. size in Mb
 or -r #g .. size in Gb
-R Generate Excel report
-s # file size in Kb
 or -s #k .. size in Kb
 or -s #m .. size in Mb
 or -s #g .. size in Gb
-S # Set processor cache size to value (in Kbytes)
-t # Number of threads or processes to use in throughput test
-T Use POSIX pthreads for throughput tests
-u # Upper limit on number of processes to run
-U Mount point to remount between tests
-v version information
-V # Verify data pattern write/read
-w Do not unlink temporary file
-W Lock file when reading or writing
-x Turn off stone-walling
-X filename Write telemetry file. Contains lines with (offset reclen compute_time) in ascii
-y # Set minimum record size (in Kbytes) for auto mode (or #m or #g)
-Y filename Read telemetry file. Contains lines with (offset reclen compute_time) in ascii
-z Used in conjunction with -a to test all possible record sizes
-Z Enable mixing of mmap I/O and file I/O
++E Use existing non-Iozone file for read-only testing
++m Cluster_filename Enable Cluster testing
++d File I/O diagnostic mode. (To troubleshoot a broken file I/O subsystem)
++u Enable CPU utilization output (Experimental)
26.4 arcstat

Arcstat is a script that prints out ZFS ARC (https://en.wikipedia.org/wiki/Adaptive_replacement_cache) statistics. Originally it was a perl script created by Sun. That perl script was ported to FreeBSD and was then ported as a Python script for use on FreeNAS®.

Watching ARC hits/misses and percentages will provide an indication of how well the ZFS pool is fetching from the ARC rather than using disk I/O. Ideally, there will be as many things fetching from cache as possible. Keep the load in mind while reviewing the stats. For random reads, expect a miss and having to go to disk to fetch the data. For cached reads, expect it to pull out of the cache and have a hit.

Like all cache systems, the ARC takes time to fill with data. This means that it will have a lot of misses until the pool has been in use for a while. If there continues to be lots of misses and high disk I/O on cached reads, there is cause to investigate further and tune the system.

The FreeBSD ZFS Tuning Guide (https://wiki.freebsd.org/ZFSTuningGuide) provides some suggestions for commonly tuned sysctl values. It should be noted that performance tuning is more of an art than a science and that any changes made will probably require several iterations of tune and test. Be aware that what needs to be tuned will vary depending upon the type of workload and that what works for one person's network may not benefit yours.

In particular, the value of pre-fetching depends upon the amount of memory and the type of workload, as seen in this example:

- Understanding ZFS: Prefetch (http://cuddletech.com/?p=204)

FreeNAS® provides two command line scripts which can be manually run from Shell (page 297):

- arc_summary.py: provides a summary of the statistics
- arcstat.py: used to watch the statistics in real time

The advantage of these scripts is that they can be used to provide real time (right now) information, whereas the current GUI reporting mechanism is designed to only provide graphs charted over time.

This forum post (https://forums.freenas.org/index.php?threads/benchmarking-zfs.7928/) demonstrates some examples of using these scripts with hints on how to interpret the results.

To view the help for arcstat.py:
arcstat.py -h
Usage: arcstat [-hx] [-f fields] [-o file] [-s string] [interval [count]]
-h: Print this help message
-v: List all possible field headers and definitions
-x: Print extended stats
-f: Specify specific fields to print (see -v)
-o: Redirect output to the specified file
-s: Override default field separator with custom character or string

Examples:
arcstat -o /tmp/a.log 2 10
arcstat -s "," -o /tmp/a.log 2 10
arcstat -v
arcstat -f time,hit%,dh%,ph%,mh% 1

To view ARC statistics in real time, specify an interval and a count. This command will display every 1 second for a count of five.

Table 26.1 briefly describes the columns in the output.

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>read</td>
<td>total ARC accesses/second</td>
</tr>
<tr>
<td>miss</td>
<td>ARC misses/second</td>
</tr>
<tr>
<td>miss%</td>
<td>ARC miss percentage</td>
</tr>
<tr>
<td>dmis</td>
<td>demand data misses/second</td>
</tr>
<tr>
<td>dm%</td>
<td>demand data miss percentage</td>
</tr>
<tr>
<td>pmis</td>
<td>prefetch misses per second</td>
</tr>
<tr>
<td>pm%</td>
<td>prefetch miss percentage</td>
</tr>
<tr>
<td>mmis</td>
<td>metadata misses/second</td>
</tr>
<tr>
<td>mm%</td>
<td>metadata miss percentage</td>
</tr>
<tr>
<td>arcsz</td>
<td>arc size</td>
</tr>
<tr>
<td>c</td>
<td>arc target size</td>
</tr>
</tbody>
</table>

To receive a summary of statistics, use:

arcsummary.py
System Memory:
- 2.36% 93.40 MiB Active, 8.95% 353.43 MiB Inact
- 8.38% 330.89 MiB Wired, 0.15% 5.90 MiB Cache
- 80.16% 3.09 GiB Free, 0.00% 0 Bytes Gap
Real Installed: 4.00 GiB
Real Available: 99.31% 3.97 GiB
Real Managed: 97.10% 3.86 GiB
Logical Total: 4.00 GiB
Logical Used: 13.93% 570.77 MiB
Logical Free: 86.07% 3.44 GiB
Kernel Memory: 87.62 MiB
Data: 69.91% 61.25 MiB
Text: 30.09% 26.37 MiB
Kernel Memory Map: 3.86 GiB
<table>
<thead>
<tr>
<th><strong>Size</strong></th>
<th>5.11%</th>
<th>201.70 MiB</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Free</strong></td>
<td>94.89%</td>
<td>3.66 GiB</td>
</tr>
</tbody>
</table>

**ARC Summary:** (HEALTHY)
- Storage pool Version: 5000
- Filesystem Version: 5
- Memory Throttle Count: 0

**ARC Misc:**
- Deleted: 8
- Mutex Misses: 0
- Evict Skips: 0

**ARC Size:** 5.83% 170.45 MiB
- Target Size: (Adaptive) 100.00% 2.86 GiB
- Min Size (Hard Limit): 12.50% 365.69 MiB
- Max Size (High Water): 8:1 2.86 GiB

**ARC Size Breakdown:**
- Recently Used Cache Size: 50.00% 1.43 GiB
- Frequently Used Cache Size: 50.00% 1.43 GiB

**ARC Hash Breakdown:**
- Elements Max: 5.90k
- Elements Current: 100.00% 5.90k
- Collisions: 72
- Chain Max: 1
- Chains: 23

**ARC Total accesses:** 954.06k
- Cache Hit Ratio: 99.18% 946.25k
- Cache Miss Ratio: 0.82% 7.81k
- Actual Hit Ratio: 98.84% 943.00k
- Data Demand Efficiency: 99.20% 458.77k

**CACHE HITS BY CACHE LIST:**
- Anonymously Used: 0.34% 3.25k
- Most Recently Used: 3.73% 35.33k
- Most Frequently Used: 95.92% 907.67k
- Most Recently Used Ghost: 0.00% 0
- Most Frequently Used Ghost: 0.00% 0

**CACHE HITS BY DATA TYPE:**
- Demand Data: 48.10% 455.10k
- Prefetch Data: 0.00% 0
- Demand Metadata: 51.56% 487.90k
- Prefetch Metadata: 0.34% 3.25k

**CACHE MISSES BY DATA TYPE:**
- Demand Data: 46.93% 3.66k
- Prefetch Data: 0.00% 0
- Demand Metadata: 49.76% 3.88k
- Prefetch Metadata: 3.30% 258

**ZFS Tunable (sysctl):**
- kern.maxusers 590
- vm.kmem_size 4141375488
- vm.kmem_size_scale 1
- vm.kmem_size_min 0
- vm.kmem_size_max 1319413950874
- vfs.zfs.vol.unmap_enabled 1
- vfs.zfs.vol.mode 2
- vfs.zfs.sync_pass_rewrite 2
- vfs.zfs.sync_pass_dont_compress 5
- vfs.zfs.sync_pass_deferred_free 2
- vfs.zfs.zio.exclude_metadata 0
- vfs.zfs.zio.use_uma 1
- vfs.zfs.cache_flush_disable 0
- vfs.zfs.zil_replay_disable 0
- vfs.zfs.version.zpl 5
- vfs.zfs.version.spa 5000
<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>vfs.zfs.version.acl</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.version.ioctl</td>
<td>5</td>
</tr>
<tr>
<td>vfs.zfs.debug</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.super_owner</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.min_auto_ashift</td>
<td>9</td>
</tr>
<tr>
<td>vfs.zfs.max_auto_ashift</td>
<td>13</td>
</tr>
<tr>
<td>vfs.zfs.vdev.write_gap_limit</td>
<td>4096</td>
</tr>
<tr>
<td>vfs.zfs.vdev.read_gap_limit</td>
<td>32768</td>
</tr>
<tr>
<td>vfs.zfs.vdev.aggregation_limit</td>
<td>131072</td>
</tr>
<tr>
<td>vfs.zfs.vdev.trim_max_active</td>
<td>64</td>
</tr>
<tr>
<td>vfs.zfs.vdev.trim_min_active</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.vdev.scrub_max_active</td>
<td>2</td>
</tr>
<tr>
<td>vfs.zfs.vdev.scrub_min_active</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.vdev.async_write_max_active</td>
<td>10</td>
</tr>
<tr>
<td>vfs.zfs.vdev.async_write_min_active</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.vdev.async_read_max_active</td>
<td>3</td>
</tr>
<tr>
<td>vfs.zfs.vdev.async_read_min_active</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.vdev.sync_write_max_active</td>
<td>10</td>
</tr>
<tr>
<td>vfs.zfs.vdev.sync_write_min_active</td>
<td>10</td>
</tr>
<tr>
<td>vfs.zfs.vdev.sync_read_max_active</td>
<td>10</td>
</tr>
<tr>
<td>vfs.zfs.vdev.sync_read_min_active</td>
<td>10</td>
</tr>
<tr>
<td>vfs.zfs.vdev.max_active</td>
<td>1000</td>
</tr>
<tr>
<td>vfs.zfs.vdev.async_write_active_max_dirty_percent60</td>
<td></td>
</tr>
<tr>
<td>vfs.zfs.vdev.async_write_active_min_dirty_percent30</td>
<td></td>
</tr>
<tr>
<td>vfs.zfs.vdev.mirror.non_rotating_seek_incl</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.vdev.mirror.non_rotating_inc</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.vdev.mirror.rotating_seek_offset</td>
<td>1048576</td>
</tr>
<tr>
<td>vfs.zfs.vdev.mirror.rotating_seek_inc</td>
<td>5</td>
</tr>
<tr>
<td>vfs.zfs.vdev.trim_on_init</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.vdev.larger_ashift_minimal</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.vdev.bio_delete_disable</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.vdev.bio_flush_disable</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.vdev.cache.bshift</td>
<td>16</td>
</tr>
<tr>
<td>vfs.zfs.vdev.cache.size</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.vdev.cache.max</td>
<td>16384</td>
</tr>
<tr>
<td>vfs.zfs.vdev.metaslabs_per_vdev</td>
<td>200</td>
</tr>
<tr>
<td>vfs.zfs.vdev.trim_max_pending</td>
<td>10000</td>
</tr>
<tr>
<td>vfs.zfs.txg.timeout</td>
<td>5</td>
</tr>
<tr>
<td>vfs.zfs.trim.enabled</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.trim.max_interval</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.trim.timeout</td>
<td>30</td>
</tr>
<tr>
<td>vfs.zfs.trim.txg_delay</td>
<td>32</td>
</tr>
<tr>
<td>vfs.zfs.space_map_blkss</td>
<td>4096</td>
</tr>
<tr>
<td>vfs.zfs.spa_slop_shift</td>
<td>5</td>
</tr>
<tr>
<td>vfs.zfs.spa_asize_inflation</td>
<td>24</td>
</tr>
<tr>
<td>vfs.zfs.deadman_enabled</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.deadman_checktime_ms</td>
<td>5000</td>
</tr>
<tr>
<td>vfs.zfs.deadman_synctime_ms</td>
<td>100000</td>
</tr>
<tr>
<td>vfs.zfs.recover</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.spa_load_verify_data</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.spa_load_verify_metadata</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.spa_load_verify_maxinflight</td>
<td>10000</td>
</tr>
<tr>
<td>vfs.zfs.check_hostid</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.mg_fragmentation_threshold</td>
<td>85</td>
</tr>
<tr>
<td>vfs.zfs.mg_noalloc_threshold</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.condense_pct</td>
<td>200</td>
</tr>
<tr>
<td>vfs.zfs.metaslab.bias_enabled</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.metaslab.lba_weighting_enabled</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.metaslab.fragmentation_factor_enabled</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.metaslab.preload_enabled</td>
<td>1</td>
</tr>
<tr>
<td>Variable</td>
<td>Value</td>
</tr>
<tr>
<td>-----------------------------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>vfs.zfs.metaslab.preload_limit</td>
<td>3</td>
</tr>
<tr>
<td>vfs.zfs.metaslab.unload_delay</td>
<td>8</td>
</tr>
<tr>
<td>vfs.zfs.metaslab.load_pct</td>
<td>50</td>
</tr>
<tr>
<td>vfs.zfs.metaslab.min_alloc_size</td>
<td>33554432</td>
</tr>
<tr>
<td>vfs.zfs.metaslab.df_free_pct</td>
<td>4</td>
</tr>
<tr>
<td>vfs.zfs.metaslab.df_alloc_threshold</td>
<td>131072</td>
</tr>
<tr>
<td>vfs.zfs.metaslab.debug_unload</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.metaslab.debug_load</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.metaslab.fragmentation_threshold</td>
<td>70</td>
</tr>
<tr>
<td>vfs.zfs.metaslab.gang bang</td>
<td>16777217</td>
</tr>
<tr>
<td>vfs.zfs.free_bobj_enabled</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.free_max_blocks</td>
<td>18446744073709551615</td>
</tr>
<tr>
<td>vfs.zfs.no_scrub_prefetch</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.no_scrub_io</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.resilver_min_time_ms</td>
<td>3000</td>
</tr>
<tr>
<td>vfs.zfs.free_min_time_ms</td>
<td>1000</td>
</tr>
<tr>
<td>vfs.zfs.scan_min_time_ms</td>
<td>1000</td>
</tr>
<tr>
<td>vfs.zfs.scan_idle</td>
<td>50</td>
</tr>
<tr>
<td>vfs.zfs.scrub_delay</td>
<td>4</td>
</tr>
<tr>
<td>vfs.zfs.resilver_delay</td>
<td>2</td>
</tr>
<tr>
<td>vfs.zfs.top_maxinflight</td>
<td>32</td>
</tr>
<tr>
<td>vfs.zfs.delay_scale</td>
<td>500000</td>
</tr>
<tr>
<td>vfs.zfs.delay_min_dirty_percent</td>
<td>60</td>
</tr>
<tr>
<td>vfs.zfs.dirty_data_sync</td>
<td>67108864</td>
</tr>
<tr>
<td>vfs.zfs.dirty_data_max_percent</td>
<td>10</td>
</tr>
<tr>
<td>vfs.zfs.dirty_data_max</td>
<td>4294967296</td>
</tr>
<tr>
<td>vfs.zfs.dirty_data_max_max</td>
<td>426512793</td>
</tr>
<tr>
<td>vfs.zfs.max_recordsize</td>
<td>1048576</td>
</tr>
<tr>
<td>vfs.zfs.zfetch.array_rd_sz</td>
<td>1048576</td>
</tr>
<tr>
<td>vfs.zfs.zfetch.max_distance</td>
<td>8388608</td>
</tr>
<tr>
<td>vfs.zfs.zfetch.min_sec_reap</td>
<td>2</td>
</tr>
<tr>
<td>vfs.zfs.zfetch.max_streams</td>
<td>8</td>
</tr>
<tr>
<td>vfs.zfs.prefetch_disable</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.mdcomp_disable</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.nopwrite_enabled</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.dedup.prefetch</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.l2c_only_size</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.mfu_ghost_data_lsize</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.mfu_ghost_metadata_lsize</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.mfu_ghost_size</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.mfu_data_lsize</td>
<td>26300416</td>
</tr>
<tr>
<td>vfs.zfs.mfu_metadata_lsize</td>
<td>1780736</td>
</tr>
<tr>
<td>vfs.zfs.mfu_size</td>
<td>29428736</td>
</tr>
<tr>
<td>vfs.zfs.mru_ghost_data_lsize</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.mru_ghost_metadata_lsize</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.mru_ghost_size</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.mru_data_lsize</td>
<td>122090496</td>
</tr>
<tr>
<td>vfs.zfs.mru_metadata_lsize</td>
<td>2235904</td>
</tr>
<tr>
<td>vfs.zfs.mru_size</td>
<td>139389440</td>
</tr>
<tr>
<td>vfs.zfs.anon_data_lsize</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.anon_metadata_lsize</td>
<td>0</td>
</tr>
<tr>
<td>vfs.zfs.anon_size</td>
<td>163840</td>
</tr>
<tr>
<td>vfs.zfs.12arc_norw</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.12arc_feed_again</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.12arc_noprefetch</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.12arc_feed_min_ms</td>
<td>200</td>
</tr>
<tr>
<td>vfs.zfs.12arc_feed_secs</td>
<td>1</td>
</tr>
<tr>
<td>vfs.zfs.12arc_headroom</td>
<td>2</td>
</tr>
<tr>
<td>vfs.zfs.12arc_write_boost</td>
<td>8388608</td>
</tr>
<tr>
<td>vfs.zfs.12arc_write_max</td>
<td>8388608</td>
</tr>
<tr>
<td>vfs.zfs.arc_meta_limit</td>
<td>766908416</td>
</tr>
</tbody>
</table>
When reading the tunable values, 0 means no, 1 typically means yes, and any other number represents a value. To receive a brief description of a "sysctl" value, use `sysctl -d`. For example:

```
sysctl -d vfs.zfs.zio.use_uma
vfs.zfs.zio.use_uma: Use uma(9) for ZIO allocations
```

The ZFS tunables require a fair understanding of how ZFS works, meaning that reading man pages and searching for the meaning of acronyms is required. Do not change a tunable's value without researching it first. If the tunable takes a numeric value (rather than 0 for no or 1 for yes), do not make one up. Instead, research examples of beneficial values that match your workload.

If any of the ZFS tunables are changed, continue to monitor the system to determine the effect of the change. Using `sysctl` at the command line to test the changes first is recommended. For example, to disable pre-fetch (i.e. change disable to 1 or yes):

```
sysctl vfs.zfs.prefetch_disable=1
vfs.zfs.prefetch_disable: 0 -> 1
```

The output will indicate the old value followed by the new value. If the change is not beneficial, change it back to the original value. If the change turns out to be beneficial, it can be made permanent by creating a `sysctl` using the instructions in Tunables (page 76).

### 26.5 tw_cli

FreeNAS® includes the `tw_cli` command line utility for providing controller, logical unit, and drive management for AMCC/3ware ATA RAID Controllers. The supported models are listed in the man pages for the `twe(4)` ([https://www.freebsd.org/cgi/man.cgi?query=twe](https://www.freebsd.org/cgi/man.cgi?query=twe)) and `twa(4)` ([https://www.freebsd.org/cgi/man.cgi?query=twa](https://www.freebsd.org/cgi/man.cgi?query=twa)) drivers.

Before using this command, read its man page ([https://www.cyberciti.biz/files/tw_cli.8.html](https://www.cyberciti.biz/files/tw_cli.8.html)) as it describes the terminology and provides some usage examples.

When `tw_cli` is entered in Shell, the prompt will change, indicating interactive mode is enabled where all sorts of maintenance commands on the controller and its arrays can be run.

Alternately, you can specify one command to run. For example, to view the disks in the array:

```
tw_cli /c0 show
```

<table>
<thead>
<tr>
<th>Unit</th>
<th>UnitType</th>
<th>Status</th>
<th>%RCmpl</th>
<th>%V/I/M</th>
<th>Stripe</th>
<th>Size(GB)</th>
<th>Cache</th>
<th>AVrfy</th>
</tr>
</thead>
<tbody>
<tr>
<td>u0</td>
<td>RAID-6</td>
<td>OK</td>
<td>-</td>
<td>-</td>
<td>256K</td>
<td>5587.88</td>
<td>RIW</td>
<td>ON</td>
</tr>
<tr>
<td>u1</td>
<td>SPARE</td>
<td>OK</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>931.505</td>
<td>-</td>
<td>OFF</td>
</tr>
<tr>
<td>u2</td>
<td>RAID-10</td>
<td>OK</td>
<td>-</td>
<td>-</td>
<td>256K</td>
<td>1862.62</td>
<td>RIW</td>
<td>ON</td>
</tr>
</tbody>
</table>

```
VPort Status Unit Size Type Phy Encl-Slot Model
p8 OK u0 931.51 GB SAS - /c0/e0/slt0 SEAGATE ST31000640SS
p9 OK u0 931.51 GB SAS - /c0/e0/slt1 SEAGATE ST31000640SS
p10 OK u0 931.51 GB SAS - /c0/e0/slt2 SEAGATE ST31000640SS
p11 OK u0 931.51 GB SAS - /c0/e0/slt3 SEAGATE ST31000640SS
p12 OK u0 931.51 GB SAS - /c0/e0/slt4 SEAGATE ST31000640SS
p13 OK u0 931.51 GB SAS - /c0/e0/slt5 SEAGATE ST31000640SS
p14 OK u0 931.51 GB SAS - /c0/e0/slt6 SEAGATE ST31000640SS
p15 OK u0 931.51 GB SAS - /c0/e0/slt7 SEAGATE ST31000640SS
p16 OK u1 931.51 GB SAS - /c0/e0/slt8 SEAGATE ST31000640SS
```

319
If the disks added to the array do not appear in the GUI, try running this command:

```
tw_cli /c0 rescan
```

Use the drives to create units and export them to the operating system. When finished, run `camcontrol rescan all` and they should now be available in the FreeNAS® GUI.

This forum post (https://forums.freenas.org/index.php?threads/3ware-drive-monitoring.13835/) contains a handy wrapper script that will notify you of errors.

### 26.6 MegaCli

MegaCli is the command line interface for the Broadcom :MegaRAID SAS family of RAID controllers. FreeNAS® also includes the `mfiutil(8)` utility which can be used to configure and manage connected storage devices.

The MegaCli command is quite complex with several dozen options. The commands demonstrated in the Emergency Cheat Sheet (http://tools.rapidsoft.de/perc/perc-cheat-sheet.html) can get you started.
26.7 freenas-debug

The FreeNAS® GUI provides an option to save debugging information to a text file using System → Advanced → Save Debug. This debugging information is created by the freenas-debug command line utility and a copy of the information is saved to /var/tmp/fndebug.

This command can be run manually from Shell (page 297) to gather specific debugging information. To see a usage explanation listing all options, run the command without any options:

```
freenas-debug
Usage: /usr/local/bin/freenas-debug <options>
Where options are:

-A Dump all debug information
-B Dump System Configuration Database
-C Dump SMB Configuration
-D Dump Domain Controller Configuration
-G Dump Grub Configuration
-I Dump IPMI Configuration
-M Dump SATA DOMs Information
-N Dump NFS Configuration
-S Dump SMART Information
-T Loader Configuration Information
-Z Remove old debug information
-a Dump Active Directory Configuration
-c Dump (AD|LDAP) Cache
-e Email debug log to this comma-delimited list of email addresses
-f Dump AFP Configuration
-g Dump GEOM Configuration
-h Dump Hardware Configuration
-i Dump iSCSI Configuration
-j Dump Jail Information
-l Dump LDAP Configuration
-n Dump Network Configuration
-s Dump SSL Configuration
-t Dump System Information
-v Dump Boot System File Verification Status and Inconsistencies
-y Dump Sysctl Configuration
-z Dump ZFS Configuration
```

Individual tests can be run alone. For example, when troubleshooting an Active Directory configuration, use:

```
freenas-debug -a
```

To collect the output of every module, use -A:

```
freenas-debug -A
```

26.8 tmux

tmux is a terminal multiplexer which enables a number of :terminals to be created, accessed, and controlled from a single :screen. tmux is an alternative to GNU screen. Similar to screen, tmux can be detached from a screen and continue running in the background, then later reattached. Unlike Shell (page 297), tmux allows you to have access to a command prompt while still providing access to the graphical administration screens.

To start a session, simply type tmux. As seen in Figure 26.2, a new session with a single window opens with a status line at the bottom of the screen. This line shows information on the current session and is used to enter interactive commands.
To create a second window, press `Ctrl+b` then `*`. To close a window, type `exit` within the window.

[tmux(1)](http://man.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man1/tmux.1?query=tmux) lists all of the key bindings and commands for interacting with `tmux` windows and sessions.

If Shell (page 297) is closed while `tmux` is running, it will detach its session. The next time Shell is open, run `tmux attach` to return to the previous session. To leave the `tmux` session entirely, type `exit`. If multiple windows are running, `exit` out of each first.

These resources provide more information about using `tmux`:

- [A tmux Crash Course](https://robots.thoughtbot.com/a-tmux-crash-course)
- [TMUX - The Terminal Multiplexer](http://blog.hawkhost.com/2010/06/28/tmux-the-terminal-multiplexer/)

**26.9 Dmidecode**

Dmidecode reports hardware information as reported by the system BIOS. Dmidecode does not scan the hardware, it only reports what the BIOS told it to. A sample output can be seen [here](http://www.nongnu.org/dmidecode/sample/dmidecode.txt).

To view the BIOS report, type the command with no arguments:

```
dmidecode | more
```

dmidecode(8) ([https://linux.die.net/man/8/dmidecode](https://linux.die.net/man/8/dmidecode)) describes the supported strings and types.
FreeNAS® is an open source community, relying on the input and expertise of its users to help grow and improve FreeNAS®. When you take time to assist the community, your contributions benefit everyone who uses FreeNAS®.

This section describes some areas of participation to get you started. It is by no means an exhaustive list. If you have an idea that you think would benefit the FreeNAS® community, bring it up on one of the resources mentioned in Support Resources (page 306).

This section demonstrates how you can:

- Help with Translation (page 323)

### 27.1 Translation

Not everyone speaks English, and having a complete translation of the user interface into native languages can make FreeNAS® much more useful to communities around the world.

FreeNAS® uses Weblate (https://weblate.org/en/) to manage the translation of text shown in the FreeNAS® graphical administrative interface. Weblate provides an easy-to-use web-based editor and commenting system, making it possible for individuals to assist with translation or comment on existing translations.

To see the status of translations, open https://weblate.trueos.org/projects/freenas/, as shown in Figure 27.1.
To assist with translating FreeNAS®, create an account by clicking the Register button. Enter the information requested, then a confirmation email will be sent. Follow the link in the email to set a password and complete the account creation. The Dashboard screen is shown after logging in:

Fig. 27.2: Weblate Dashboard

Click Manage your languages to choose languages for translation. Select languages, then click Save. Click the Dashboard link at the top of the screen to go back to the dashboard, then choose Your languages from the drop-down menu:

Fig. 27.3: Selected Languages

Projects are a collection of text to be translated. In this example, the Django and DjangoJS projects have both been partially translated into Spanish. Click one of the entries under Project to help translate that project.

The Overview screen shows the current translation status along with categories of translatable strings:
Fig. 27.4: Translation Overview

Click on a category of string, like Strings needing action, to see the translation screen:
Enter translations here, clicking Save to save the work. The controls at the top of the screen can be used to skip forward and back in the list of strings to be translated. Click Dashboard at the top of the screen to return to the Dashboard.

All assistance with translations helps to benefit the FreeNAS® community. Thank you!

Fig. 27.5: Translate Strings
ZFS is an advanced, modern filesystem that was specifically designed to provide features not available in traditional UNIX filesystems. It was originally developed at Sun with the intent to open source the filesystem so that it could be ported to other operating systems. After the Oracle acquisition of Sun, some of the original ZFS engineers founded OpenZFS (http://openzfs.org/wiki/Main_Page) to provide continued, collaborative development of the open source version. To differentiate itself from Oracle ZFS version numbers, OpenZFS uses feature flags. Feature flags are used to tag features with unique names in order to provide portability between OpenZFS implementations running on different platforms, as long as all of the feature flags enabled on the ZFS pool are supported by both platforms. FreeNAS® uses OpenZFS and each new version of FreeNAS® keeps up-to-date with the latest feature flags and OpenZFS bug fixes.

Here is an overview of the features provided by ZFS:

ZFS is a transactional, Copy-On-Write (COW) (https://en.wikipedia.org/wiki/ZFS#Copy-on-write_transactional_model) filesystem. For each write request, a copy is made of the associated disk blocks and all changes are made to the copy rather than to the original blocks. When the write is complete, all block pointers are changed to point to the new copy. This means that ZFS always writes to free space, most writes are sequential, and old versions of files are not unlinked until a complete new version has been written successfully. ZFS has direct access to disks and bundles multiple read and write requests into transactions. Most filesystems cannot do this, as they only have access to disk blocks. A transaction either completes or fails, meaning there will never be a write-hole (https://blogs.oracle.com/bonwick/raid-z) and a filesystem checker utility is not necessary. Because of the transactional design, as additional storage capacity is added, it becomes immediately available for writes. To rebalance the data, one can copy it to re-write the existing data across all available disks. As a 128-bit filesystem, the maximum filesystem or file size is 16 exabytes.

ZFS was designed to be a self-healing filesystem. As ZFS writes data, it creates a checksum for each disk block it writes. As ZFS reads data, it validates the checksum for each disk block it reads. Media errors or “bit rot” can cause data to change, and the checksum no longer matches. When ZFS identifies a disk block checksum error on a pool that is mirrored or uses RAIDZ, it replaces the corrupted data with the correct data. Since some disk blocks are rarely read, regular scrubs should be scheduled so that ZFS can read all of the data blocks to validate their checksums and correct any corrupted blocks. While multiple disks are required in order to provide redundancy and data correction, ZFS will still provide data corruption detection to a system with one disk. FreeNAS® automatically schedules a monthly scrub for each ZFS pool and the results of the scrub are displayed by selecting the Volume (page 124) and clicking Volume Status. Checking scrub results provides an early indication of potential disk problems.

Unlike traditional UNIX filesystems, it is not necessary to define partition sizes when filesystems are created. Instead, a group of disks, known as a vdev, are built into a ZFS pool. Filesystems are created from the pool as needed. As more capacity is needed, identical vdevs can be striped into the pool. In FreeNAS®, Volume Manager (page 124) is used to create or extend ZFS pools. After a pool is created, it can be divided into dynamically-sized datasets or fixed-size zvols as needed. Datasets can be used to optimize storage for the type of data being stored as permissions and properties such as quotas and compression can be set on a per-dataset level. A zvol is essentially a raw, virtual block device which can be used for applications that need raw-device semantics such as iSCSI device extents.

ZFS supports real-time data compression. Compression happens when a block is written to disk, but only if the written data will benefit from compression. When a compressed block is accessed, it is automatically decompressed. Since compression happens at the block level, not the file level, it is transparent to any applications accessing the compressed data. ZFS pools created on FreeNAS® version 9.2.1 or later use the recommended LZ4 compression algorithm.

ZFS provides low-cost, instantaneous snapshots of the specified pool, dataset, or zvol. Due to COW, snapshots initially take no additional space. The size of a snapshot increases over time as changes to the files in the snapshot are written to disk. Snapshots can be used to provide a copy of data at the point in time the snapshot was created. When a file is deleted, its disk
blocks are added to the free list; however, the blocks for that file in any existing snapshots are not added to the free list until all referencing snapshots are removed. This makes snapshots a clever way to keep a history of files, useful for recovering an older copy of a file or a deleted file. For this reason, many administrators take snapshots often, store them for a period of time, and store them on another system. Such a strategy allows the administrator to roll the system back to a specific time. If there is a catastrophic loss, an off-site snapshot can restore the system up to the last snapshot interval (e.g., within 15 minutes of the data loss). Snapshots are stored locally but can also be replicated to a remote ZFS pool. During replication, ZFS does not do a byte-for-byte copy but instead converts a snapshot into a stream of data. This design means that the ZFS pool on the receiving end does not need to be identical and can use a different RAIDZ level, volume size, or compression settings.

ZFS boot environments provide a method for recovering from a failed upgrade. In FreeNAS®, a snapshot of the dataset the operating system resides on is automatically taken before an upgrade or a system update. This saved boot environment is automatically added to the GRUB boot loader. Should the upgrade or configuration change fail, simply reboot and select the previous boot environment from the boot menu. Users can also create their own boot environments in System → Boot as needed, for example before making configuration changes. This way, the system can be rebooted into a snapshot of the system that did not include the new configuration changes.

ZFS provides a write cache in RAM as well as a ZFS Intent Log (ZIL (http://www.freenas.org/blog/zfs-zil-and-slog-demystified/)). The ZIL is a storage area that temporarily holds synchronous writes until they are written to the ZFS pool (https://pthree.org/2013/04/19/zfs-administration-appendix-a-visualizing-the-zfs-intent-log/). Adding a fast (low-latency), power-protected SSD as a SLOG (Separate Log) device permits much higher performance. This is a necessity for NFS over ESXi, and highly recommended for database servers or other applications that depend on synchronous writes. More detail on SLOG benefits and usage is available in these blog and forum posts:

- The ZFS ZIL and SLOG Demystified (http://www.freenas.org/blog/zfs-zil-and-slog-demystified/)
- ZFS Intent Log (http://nex7.blogspot.com/2013/04/zfs-intent-log.html)

Synchronous writes are relatively rare with SMB, AFP, and iSCSI, and adding a SLOG to improve performance of these protocols only makes sense in special cases. The zilstat utility can be run from Shell (page 297) to determine if the system will benefit from a SLOG. See this website (http://www.richardelling.com/Home/scripts-and-programs-1/zilstat) for usage information.

ZFS currently uses 16 GB of space for SLOG. Larger SSDs can be installed, but the extra space will not be used. SLOG devices cannot be shared between pools. Each pool requires a separate SLOG device. Bandwidth and throughput limitations require that a SLOG device must only be used for this single purpose. Do not attempt to add other caching functions on the same SSD, or performance will suffer.

In mission-critical systems, a mirrored SLOG device is highly recommended. Mirrored SLOG devices are required for ZFS pools at ZFS version 19 or earlier. The ZFS pool version is checked from the Shell (page 297) with zpool get version poolname. A version value of - means the ZFS pool is version 5000 (also known as Feature Flags) or later.

ZFS provides a read cache in RAM, known as the ARC, which reduces read latency. FreeNAS® adds ARC stats to top(1) (https://www.freebsd.org/cgi/man.cgi?query=top) and includes the arc_summary.py and arcstat.py tools for monitoring the efficiency of the ARC. If an SSD is dedicated as a cache device, it is known as an L2ARC (http://www.brendangregg.com/blog/2008-07-22/zfs-l2arc.html). Additional read data is cached here, which can increase random read performance. L2ARC does not reduce the need for sufficient RAM. In fact, L2ARC needs RAM to function. If there is not enough RAM for an adequately-sized ARC, adding an L2ARC will not increase performance. Performance actually decreases in most cases, potentially causing system instability. RAM is always faster than disks, so always add as much RAM as possible before considering whether the system can benefit from an L2ARC device.

When applications perform large amounts of random reads on a dataset small enough to fit into L2ARC, read performance can be increased by adding a dedicated cache device. SSD cache devices only help if the active data is larger than system RAM but small enough that a significant percentage fits on the SSD. As a general rule, L2ARC should not be added to a system with less than 32 GB of RAM, and the size of an L2ARC should not exceed ten times the amount of RAM. In some cases, it may be more efficient to have two separate pools: one on SSDs for active data, and another on hard drives for rarely used content. After adding an L2ARC device, monitor its effectiveness using tools such as arcstat. To increase the size of an existing L2ARC, stripe another cache device with it. The GUI will always stripe L2ARC, not mirror it, as the contents of L2ARC are recreated at boot. Failure of an individual SSD from an L2ARC pool will not affect the integrity of the pool, but may have
an impact on read performance, depending on the workload and the ratio of dataset size to cache size. Note that dedicated L2ARC devices cannot be shared between ZFS pools.

ZFS was designed to provide redundancy while addressing some of the inherent limitations of hardware RAID such as the write-hole and corrupt data written over time before the hardware controller provides an alert. ZFS provides three levels of redundancy, known as RAIDZ, where the number after the RAIDZ indicates how many disks per vdev can be lost without losing data. ZFS also supports mirrors, with no restrictions on the number of disks in the mirror. ZFS was designed for commodity disks so no RAID controller is needed. While ZFS can also be used with a RAID controller, it is recommended that the controller be put into JBOD mode so that ZFS has full control of the disks.

When determining the type of ZFS redundancy to use, consider whether the goal is to maximize disk space or performance:

- RAIDZ1 maximizes disk space and generally performs well when data is written and read in large chunks (128K or more).
- RAIDZ2 offers better data availability and significantly better mean time to data loss (MTTDL) than RAIDZ1.
- A mirror consumes more disk space but generally performs better with small random reads. For better performance, a mirror is strongly favored over any RAIDZ, particularly for large, uncachable, random read loads.
- Using more than 12 disks per vdev is not recommended. The recommended number of disks per vdev is between 3 and 9. With more disks, use multiple vdevs.
- Some older ZFS documentation recommends that a certain number of disks is needed for each type of RAIDZ in order to achieve optimal performance. On systems using LZ4 compression, which is the default for FreeNAS® 9.2.1 and higher, this is no longer true.

These resources can also help determine the RAID configuration best suited to the specific storage requirements:

- [A Closer Look at ZFS, Vdevs and Performance](https://constantin.glez.de/2010/06/04/a-closer-look-zfs-vdevs-and-performance/)

**Warning:** RAID AND DISK REDUNDANCY ARE NOT A SUBSTITUTE FOR A RELIABLE BACKUP STRATEGY. BAD THINGS HAPPEN AND A GOOD BACKUP STRATEGY IS STILL REQUIRED TO PROTECT VALUABLE DATA. See [Periodic Snapshot Tasks](page 148) and [Replication Tasks](page 150) to use replicated ZFS snapshots as part of a backup strategy.

ZFS manages devices. When an individual drive in a mirror or RAIDZ fails and is replaced by the user, ZFS adds the replacement device to the vdev and copies redundant data to it in a process called resilvering. Hardware RAID controllers usually have no way of knowing which blocks were in use and must copy every block to the new device. ZFS only copies blocks that are in use, reducing the time it takes to rebuild the vdev. Resilvering is also interruptable. After an interruption, resilvering resumes where it left off rather than starting from the beginning.

While ZFS provides many benefits, there are some caveats:

- At 90% capacity, ZFS switches from performance-based optimization, which has massive performance implications. For maximum write performance and to prevent problems with drive replacement, add more capacity before a pool reaches 80%. If using iSCSI, it is recommended to not let the pool go over 50% capacity to prevent fragmentation issues.
- When considering the number of disks to use per vdev, consider the size of the disks and the amount of time required for resilvering, which is the process of rebuilding the vdev. The larger the size of the vdev, the longer the resilvering time. When replacing a disk in a RAIDZ, it is possible that another disk will fail before the resilvering process completes. If the number of failed disks exceeds the number allowed per vdev for the type of RAIDZ, the data in the pool will be lost. For this reason, RAIDZ1 is not recommended for drives over 1 TB in size.
- Using drives of equal sizes is recommended when creating a vdev. While ZFS can create a vdev using disks of differing sizes, its capacity will be limited by the size of the smallest disk.

For those new to ZFS, the Wikipedia entry on ZFS ([https://en.wikipedia.org/wiki/Zfs](https://en.wikipedia.org/wiki/Zfs)) provides an excellent starting point to learn more about its features. These resources are also useful for reference:

- [FreeBSD ZFS Tuning Guide](https://wiki.freebsd.org/ZFSTuningGuide)
• Becoming a ZFS Ninja (video) (https://www.youtube.com/watch?v=6_K55Ir1aCs)
• A Crash Course on ZFS (http://www.bsdnow.tv/tutorials/zfs)
• ZFS: The Last Word in File Systems - Part 1 (video) (https://www.youtube.com/watch?v=UT2i2ryhCio)
• The Zettabyte Filesystem (https://www.youtube.com/watch?v=ptY6-K78McY)
VMware’s vStorage APIs for Array Integration, or VAAI, allows storage tasks such as large data moves to be offloaded from the virtualization hardware to the storage array. These operations are performed locally on the NAS without transferring bulk data over the network.

29.1 VAAI for iSCSI

VAAI for iSCSI supports these operations:

- Atomic Test and Set (ATS) allows multiple initiators to synchronize LUN access in a fine-grained manner rather than locking the whole LUN and preventing other hosts from accessing the same LUN simultaneously.
- Clone Blocks (XCOPY) copies disk blocks on the NAS. Copies occur locally rather than over the network. The operation is similar to Microsoft ODX (https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/hh831628(v=ws.11)).
- LUN Reporting allows a hypervisor to query the NAS to determine whether a LUN is using thin provisioning.
- Stun pauses running virtual machines when a volume runs out of space. The space issue can then be fixed and the virtual machines can continue rather than reporting write errors.
- Threshold Warning the system reports a warning when a configurable capacity is reached. In FreeNAS®, this threshold can be configured at the pool level when using zvols (see Table 10.6) or at the extent level (see Table 10.11) for both file- and device-based extents. Typically, the warning is set at the pool level, unless file extents are used, in which case it must be set at the extent level.
- Unmap informs FreeNAS® that the space occupied by deleted files should be freed. Without unmap, the NAS is unaware of freed space created when the initiator deletes files. For this feature to work, the initiator must support the unmap command.
- Zero Blocks or Write Same zeros out disk regions. When allocating virtual machines with thick provisioning, the zero write is done locally, rather than over the network. This makes virtual machine creation and any other zeroing of disk regions much quicker.
A REST API is provided to be used as an alternate mechanism for remotely controlling a FreeNAS® system.

REST provides an easy-to-read, HTTP implementation of functions, known as resources, which are available beneath a specified base URL. Each resource is manipulated using the HTTP methods defined in RFC 2616, such as GET, PUT, POST, or DELETE.

As shown in Figure 30.1, an online version of the API is available at api.freenas.org.

The rest of this section shows code examples to illustrate the use of the API.

Note: Beginning with FreeNAS® 9.10.2, a new API has been added. The old API is still present for compatibility. Documentation for the new API is available on the FreeNAS® system at the /api/docs/ URL. For example, if the FreeNAS® system is at IP address 192.168.1.119, enter http://192.168.1.119/api/docs/ in a browser to see the API documentation.

### 30.1 A Simple API Example

The api directory of the FreeNAS® github repository contains some API usage examples. This section provides a walk-through of the newuser.py script, shown below, as it provides...
a simple example that creates a user.

A FreeNAS® system running at least version 9.2.0 is required when creating a customized script based on this example. To test the scripts directly on the FreeNAS® system, create a user account and select an existing volume or dataset for the user’s Home Directory. After creating the user, start the SSH service using Services → Control Services. That user will now be able to ssh to the IP address of the FreeNAS® system to create and run scripts. Alternately, scripts can be tested on any system with the required software installed as shown in the previous section.

To customize this script, copy the contents of this example into a filename that ends in .py. The text that is highlighted in red below can be modified in the new version to match the needs of the user being created. The text in black should not be changed. After saving changes, run the script by typing python scriptname.py. If all goes well, the new user account will appear in Account → Users → View Users in the FreeNAS® GUI.

Here is the example script with an explanation of the line numbers below it.

```python
import json
import requests
r = requests.post('https://freenas.mydomain/api/v1.0/account/users/',
 auth=('root', 'freenas'),
 headers={'Content-Type': 'application/json'},
 verify=False,
 data=json.dumps({
 'bsdusr_uid': '1100',
 'bsdusr_username': 'myuser',
 'bsdusr_mode': '755',
 'bsdusr_creategroup': 'True',
 'bsdusr_password': '12345',
 'bsdusr_shell': '/usr/local/bin/bash',
 'bsdusr_full_name': 'Full Name',
 'bsdusr_email': 'name@provider.com',
 })),
print r.text
```

Where:

Lines 1-2: import the Python modules used to make HTTP requests and handle data in JSON format.

Line 4: replace freenas.mydomain with the Hostname value in System → System Information. Note that the script will fail if the machine running it is not able to resolve that hostname. Change https to http to use HTTP rather than HTTPS to access the FreeNAS® system.

Line 5: replace freenas with the password used to access the FreeNAS® system.

Line 7: if you are using HTTPS and want to force validation of the SSL certificate, change False to True.

Lines 8-16: set the values for the user being created. The Users resource (http://api.freenas.org/resources/account.html#users) describes this in more detail. Allowed parameters are listed in the JSON Parameters section of that resource. Since this resource creates a FreeBSD user, the values entered must be valid for a FreeBSD user account. Table 30.1 summarizes acceptable values. This resource uses JSON, so the boolean values are True or False.

Table 30.1: JSON Parameters for Users Create Resource

<table>
<thead>
<tr>
<th>JSON Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bsdusr_username</td>
<td>string</td>
<td>maximum 32 characters, though a maximum of 8 is recommended for interoperability; can include numerals but cannot include a space</td>
</tr>
<tr>
<td>bsdusr_full_name</td>
<td>string</td>
<td>may contain spaces and uppercase characters</td>
</tr>
<tr>
<td>bsdusr_password</td>
<td>string</td>
<td>can include a mix of upper and lowercase letters, characters, and numbers</td>
</tr>
<tr>
<td>bsdusr_uid</td>
<td>integer</td>
<td>by convention, user accounts have an ID greater than 1000 with a maximum allowable value of 65,535</td>
</tr>
<tr>
<td>bsdusr_group</td>
<td>integer</td>
<td>if bsdusr_creategroup is set to False, specify the numeric ID of the group to create</td>
</tr>
</tbody>
</table>
Table 30.1 – continued from previous page

<table>
<thead>
<tr>
<th>JSON Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bsdusr_creategroup</td>
<td>boolean</td>
<td>if set to True, a primary group with the same numeric ID as bsdusr_uid will be created automatically</td>
</tr>
<tr>
<td>bsdusr_mode</td>
<td>string</td>
<td>sets default numeric UNIX permissions of user's home directory</td>
</tr>
<tr>
<td>bsdusr_shell</td>
<td>string</td>
<td>specify full path to a UNIX shell that is installed on the system</td>
</tr>
<tr>
<td>bsdusr_password_disabled</td>
<td>boolean</td>
<td>if set to True, user is not allowed to log in</td>
</tr>
<tr>
<td>bsdusr_locked</td>
<td>boolean</td>
<td>if set to True, user is not allowed to log in</td>
</tr>
<tr>
<td>bsdusr_sudo</td>
<td>boolean</td>
<td>if set to True, sudo is enabled for the user</td>
</tr>
<tr>
<td>bsdusr_sshpubkey</td>
<td>string</td>
<td>contents of SSH authorized keys file</td>
</tr>
</tbody>
</table>

Note: When using boolean values, JSON returns raw lowercase values but Python uses uppercase values. So use True or False in Python scripts even though the example JSON responses in the API documentation are displayed as true or false.

30.2 A More Complex Example

This section provides a walk-through of a more complex example found in the startup.py script. Use the searchbar within the API documentation to quickly locate the JSON parameters used here. This example defines a class and several methods to create a ZFS volume, create a ZFS dataset, share the dataset over CIFS, and enable the CIFS service. Responses from some methods are used as parameters in other methods. In addition to the import lines seen in the previous example, two additional Python modules are imported to provide parsing functions for command line arguments:

```python
import argparse
import sys
```

It then creates a Startup class which is started with the hostname, username, and password provided by the user via the command line:

```python
class Startup(object):
 def __init__(self, hostname, user, secret):
 self._hostname = hostname
 self._user = user
 self._secret = secret
 self._ep = 'http://%s/api/v1.0' % hostname
 def request(self, resource, method='GET', data=None):
 if data is None:
 data = ''
 r = requests.request(
 method,
 '%s/%s' % (self._ep, resource),
 data=json.dumps(data),
 headers={'Content-Type': 'application/json'},
 auth=(self._user, self._secret),
)
 if r.ok:
 try:
 return r.json()
 except:
 return r.text
 raise ValueError(r)
```

A get_disks method is defined to get all the disks in the system as a disk_name response. The create_pool method uses this information to create a ZFS pool named tank which is created as a stripe. The volume_name and layout JSON parameters are described in the “Storage Volume” resource of the API documentation.
def _get_disks(self):
    disks = self.request('storage/disk')
    return [disk['disk_name'] for disk in disks]

def create_pool(self):
    disks = self._get_disks()
    self.request('storage/volume', method='POST', data={
        'volume_name': 'tank',
        'layout': [
            {'vdevtype': 'stripe', 'disks': disks},
        ]
    })

The create_dataset method is defined which creates a dataset named MyShare:

def create_dataset(self):
    self.request('storage/volume/tank/datasets', method='POST', data={
        'name': 'MyShare',
    })

The create_cifs_share method is used to share /mnt/tank/MyShare with guest-only access enabled. The cifs_name, cifs_path, cifs_guestonly JSON parameters, as well as the other allowable parameters, are described in the “Sharing CIFS” resource of the API documentation.

def create_cifs_share(self):
    self.request('sharing/cifs', method='POST', data={
        'cifs_name': 'My Test Share',
        'cifs_path': '/mnt/tank/MyShare',
        'cifs_guestonly': True
    })

Finally, the service_start method enables the CIFS service. The srv_enable JSON parameter is described in the Services resource.

def service_start(self, name):
    self.request('services/services/%s' % name, method='PUT', data={
        'srv_enable': True,
    })
Symbols
802.1Q, 121

A
Add Group, 57
Add Jail, 259
Add User, 60
Adding Devices to a VM, 277
AFP, 179, 218
Alert, 303
Alert Services, 83
API, 331
Apple Filing Protocol, 179, 218
arcstat, 314
Autotune, 73

B
Boot Environments, 67
Burn ISO, 20

C
CA, 84
Certificate Authority, 84
Certificates, 87
Checksum, 20
CIFS, 193, 236
Cloud Credentials, 82
Cloud Sync, 93
Compression, 134
Create Dataset, 131
Create Group, 57
Create Jail, 259
Create the Rancher VM, 283
Create User, 60
Creating VMs, 276
Cron Jobs, 98

D
DC, 220
DDNS, 221
Deduplication, 133
Delete Group, 58
Delete User, 62
Deleting VMs, 282
Dell PERC H330, 17
Dell PERC H730, 17
Dmidecode, 322
Docker/Rancher VM, 283
Domain Controller, 220
Download, 20
Dynamic DNS, 221

E
Email, 74
Encryption, 126
EtherChannel, 116

F
File Transfer Protocol, 223
Forums, 306
freenas-debug, 320
FTP, 223

G
Getting FreeNAS®', 20
Groups, 56
Guide, 302

H
Hardware Recommendations, 15
Highpoint RAID, 17
Hot Spares, 148

I
Install, 22
Internet Small Computer System Interface, 203
Iocage, 273
IOzone, 312
Iperf, 308
IRC, 307
iSCSI, 203
ISO, 20

J
Jails, 256

L
LACP, 116
LAGG, 116
Link Aggregation, 116
Index 337

Link Layer Discovery Protocol, 228
LLDP, 228
Localize, 323
Log Out, 298

M
MegaCLI, 320
Minio, 234
Mirroring the Boot Device, 70
Multiple Boot Environments, 67

N
Netdata, 229
Netperf, 311
Network File System, 185, 230
Network Settings, 110
New Group, 57
New Jail, 259
New User, 60
NFS, 185, 230

P
Path and Name Lengths, 14
Periodic Snapshot, 148
Plugin, 249
Professional Support, 307

R
Rancher VM Requirements, 283
Reboot, 299
Remove Group, 58
Remove User, 62
Replace Failed Drive, 145
Replication, 150
Reporting, 286
RFC
  RFC 2616, 332
  RFC 3721, 205
Route, 121
Rsync, 232
Rsync Tasks, 101
Running VMs, 282

S
S.M.A.R.T., 235
S.M.A.R.T. Tests, 108
S3, 234
Samba, 193, 236
SCP, 244
Scrub, 160
Secure Copy, 244
Secure Shell, 243
Self-Encrypting Drives, 73
Services, 215
Shadow Copies, 201
Shell, 296

Shutdow, 300
Simple Network Management Protocol, 241
SMB, 193, 236
Snapshot, 148
Snapshots, 163
SNMP, 241
Spares, 148
SSH, 243
Start Service, 216
Static Route, 121
Stop Service, 216
Support, 90, 301
System Dataset, 76

T
Tasks, 92
TFTP, 245
Time Machine, 182
tmux, 321
Translate, 323
Translation, 323
Trivial File Transfer Protocol, 245
Trunking, 121
Tunables, 76
tw_cli, 319

U
Uninterruptible Power Supply, 246
Upgrade, 30
Upgrade ZFS Pool, 35
UPS, 246
USB Stick, 20
Users, 58

V
VAAI, 330
VAAI for iSCSI, 331
Virtualization, 36
VLAN, 121
VM, 36
VMs, 275
VMware Snapshot, 165
Volumes, 124

W
WebDAV, 192, 249
Windows File Share, 236
Windows Shares, 193
Wizard, 288

Z
ZVOL, 134